Journal of Clinical Immunology

, Volume 29, Issue 2, pp 180–189 | Cite as

Clinical Significance of Serum HMGB-1 and sRAGE Levels in Systemic Sclerosis: Association with Disease Severity

  • Ayumi Yoshizaki
  • Kazuhiro Komura
  • Yohei Iwata
  • Fumihide Ogawa
  • Toshihide Hara
  • Eiji Muroi
  • Motoi Takenaka
  • Kazuhiro Shimizu
  • Minoru Hasegawa
  • Manabu Fujimoto
  • Shinichi SatoEmail author



The high mobility group box 1 protein (HMGB-1)/advanced glycation end products (RAGE) system is recently shown to play an important part in immune/inflammatory disorders. However, the association of this system in systemic sclerosis (SSc) remains unknown.

Materials and Methods

To determine clinical association of serum levels of HMGB-1 and soluble RAGE (sRAGE) in patients with SSc, sera from 70 patients with SSc and 25 healthy controls were examined by enzyme-linked immunosorbent assay. Sera from tight-skin mice and bleomycin-induced scleroderma mice, animal models for SSc, were also examined. Skin HMGB-1 and RAGE expression was assessed by immunohistochemistry.

Results and Discussion

Serum HMGB-1 and sRAGE levels in SSc were higher than those in controls. Similarly, HMGB-1 and sRAGE levels in animal SSc models were higher than those in control mice. SSc patients with elevated HMGB-1 and sRAGE levels had more frequent involvement of several organs and immunological abnormalities compared to those with normal levels. Furthermore, HMGB-1 and sRAGE levels correlated positively with modified Rodnan total skin thickness score and negatively with pulmonary function test.


HMGB-1 and sRAGE expression in the sclerotic skin was more intense than normal skin. These results suggest that elevated serum HMGB-1 and sRAGE levels are associated with the disease severity and immunological abnormalities in SSc.


HMGB-1 RAGE autoimmune disease systemic sclerosis toll-like receptor 



We thank Ms. Y. Yamada, M. Yozaki, A. Usui, and K. Shimoda for technical assistance. This work was supported by a grant of Research on Intractable Diseases from the Ministry of Health, Labour and Welfare of Japan (to S. Sato).


  1. 1.
    Sato S, Hayakawa I, Hasegawa M, Fujimoto M, Takehara K. Function blocking autoantibodies against matrix metalloproteinase-1 in patients with systemic sclerosis. J Invest Dermatol. 2003;120:542–7. doi: 10.1046/j.1523-1747.2003.12097.x.PubMedCrossRefGoogle Scholar
  2. 2.
    La Montagna G, D’Angelo S, Valentini G. Cross-sectional evaluation of ykl-40 serum concentrations in patients with systemic sclerosis. Relationship with clinical and serological aspects of disease. J Rheumatol. 2003;30:2147–51.PubMedGoogle Scholar
  3. 3.
    Szegedi A, Czirjak L, Unkeless JC, Boros P. Serum cytokine and anti-fc gamma r autoantibody measurements in patients with systemic sclerosis. Acta Derm Venereol. 1996;76:21–3.PubMedGoogle Scholar
  4. 4.
    Arnett FC. Is scleroderma an autoantibody mediated disease? Curr Opin Rheumatol. 2006;18:579–81. doi: 10.1097/01.bor.0000245726.33006.c3.PubMedCrossRefGoogle Scholar
  5. 5.
    Bell CW, Jiang W, Reich CF 3rd, Pisetsky DS. The extracellular release of HMGB1 during apoptotic cell death. Am J Physiol Cell Physiol. 2006;291:C1318–25. doi: 10.1152/ajpcell.00616.2005.PubMedCrossRefGoogle Scholar
  6. 6.
    Rovere-Querini P, Capobianco A, Scaffidi P, Valentinis B, Catalanotti F, Giazzon M, et al. HMGB1 is an endogenous immune adjuvant released by necrotic cells. EMBO Rep. 2004;5:825–30. doi: 10.1038/sj.embor.7400205.PubMedCrossRefGoogle Scholar
  7. 7.
    Dumitriu IE, Baruah P, Manfredi AA, Bianchi ME, Rovere-Querini P. HMGB1: guiding immunity from within. Trends Immunol. 2005;26:381–7. doi: 10.1016/ Scholar
  8. 8.
    Wang H, Bloom O, Zhang M, Vishnubhakat JM, Ombrellino M, Che J, et al. Hmg-1 as a late mediator of endotoxin lethality in mice. Science. 1999;285:248–51. doi: 10.1126/science.285.5425.248.PubMedCrossRefGoogle Scholar
  9. 9.
    Lotze MT, Tracey KJ. High-mobility group box 1 protein (HMGB1): nuclear weapon in the immune arsenal. Nat Rev Immunol. 2005;5:331–42. doi: 10.1038/nri1594.PubMedCrossRefGoogle Scholar
  10. 10.
    Bartling B, Fuchs C, Silber RE, Simm A. Fibroblasts mediate induction of high mobility group box protein 1 in lung epithelial cancer cells by diffusible factors. Int J Mol Med. 2007;20:217–24.PubMedGoogle Scholar
  11. 11.
    Ren D, Sun R, Wang S. Role of inducible nitric oxide synthase expressed by alveolar macrophages in high mobility group box 1-induced acute lung injury. Inflamm Res. 2006;55:207–15. doi: 10.1007/s00011-006-0072-2.PubMedCrossRefGoogle Scholar
  12. 12.
    Tian J, Avalos AM, Mao SY, Chen B, Senthil K, Wu H, et al. Toll-like receptor 9-dependent activation by DNA-containing immune complexes is mediated by HMGB1 and rage. Nat Immunol. 2007;8:487–96. doi: 10.1038/ni1457.PubMedCrossRefGoogle Scholar
  13. 13.
    Ishihara K, Tsutsumi K, Kawane S, Nakajima M, Kasaoka T. The receptor for advanced glycation end-products (rage) directly binds to ERK by a d-domain-like docking site. FEBS Lett. 2003;550:107–13. doi: 10.1016/S0014-5793(03)00846-9.PubMedCrossRefGoogle Scholar
  14. 14.
    Malherbe P, Richards JG, Gaillard H, Thompson A, Diener C, Schuler A, et al. cDNA cloning of a novel secreted isoform of the human receptor for advanced glycation end products and characterization of cells co-expressing cell-surface scavenger receptors and Swedish mutant amyloid precursor protein. Brain Res Mol Brain Res. 1999;71:159–70. doi: 10.1016/S0169-328X(99)00174-6.PubMedCrossRefGoogle Scholar
  15. 15.
    Yonekura H, Yamamoto Y, Sakurai S, Petrova RG, Abedin MJ, Li H, et al. Novel splice variants of the receptor for advanced glycation end-products expressed in human vascular endothelial cells and pericytes, and their putative roles in diabetes-induced vascular injury. Biochem J. 2003;370:1097–109. doi: 10.1042/BJ20021371.PubMedCrossRefGoogle Scholar
  16. 16.
    Park IH, Yeon SI, Youn JH, Choi JE, Sasaki N, Choi IH, et al. Expression of a novel secreted splice variant of the receptor for advanced glycation end products (rage) in human brain astrocytes and peripheral blood mononuclear cells. Mol Immunol. 2004;40:1203–11. doi: 10.1016/j.molimm.2003.11.027.PubMedCrossRefGoogle Scholar
  17. 17.
    Nawroth PP, Stern DM. Soluble forms of rage: an index of vascular stress? A commentary on “Soluble rage in type 2 diabetes: association with oxidative stress”. Free Radic Biol Med. 2007;43:506–10. doi: 10.1016/j.freeradbiomed.2007.04.014.PubMedCrossRefGoogle Scholar
  18. 18.
    Ueno H, Matsuda T, Hashimoto S, Amaya F, Kitamura Y, Tanaka M, et al. Contributions of high mobility group box protein in experimental and clinical acute lung injury. Am J Respir Crit Care Med. 2004;170:1310–6. doi: 10.1164/rccm.200402-188OC.PubMedCrossRefGoogle Scholar
  19. 19.
    Hatada T, Wada H, Nobori T, Okabayashi K, Maruyama K, Abe Y, et al. Plasma concentrations and importance of high mobility group box protein in the prognosis of organ failure in patients with disseminated intravascular coagulation. Thromb Haemost. 2005;94:975–9.PubMedGoogle Scholar
  20. 20.
    Kim JY, Park JS, Strassheim D, Douglas I, Diaz del Valle F, Asehnoune K, et al. HMGB1 contributes to the development of acute lung injury after hemorrhage. Am J Physiol Lung Cell Mol Physiol. 2005;288:L958–65. doi: 10.1152/ajplung.00359.2004.PubMedCrossRefGoogle Scholar
  21. 21.
    Pullerits R, Bokarewa M, Dahlberg L, Tarkowski A. Synovial fluid expression of autoantibodies specific for rage relates to less erosive course of rheumatoid arthritis. Rheumatology (Oxford). 2007;46:1367–71. doi: 10.1093/rheumatology/kem141.CrossRefGoogle Scholar
  22. 22.
    Pullerits R, Bokarewa M, Dahlberg L, Tarkowski A. Decreased levels of soluble receptor for advanced glycation end products in patients with rheumatoid arthritis indicating deficient inflammatory control. Arthritis Res Ther. 2005;7:R817–24. doi: 10.1186/ar1749.PubMedCrossRefGoogle Scholar
  23. 23.
    Bopp C, Hofer S, Weitz J, Bierhaus A, Nawroth PP, Martin E, et al. sRAGE is elevated in septic patients and associated with patients outcome. J Surg Res 2008;147:79–83.PubMedCrossRefGoogle Scholar
  24. 24.
    Yamamoto T, Takagawa S, Katayama I, Yamazaki K, Hamazaki Y, Shinkai H, et al. Animal model of sclerotic skin. I: local injections of bleomycin induce sclerotic skin mimicking scleroderma. J Invest Dermatol. 1999;112:456–62. doi: 10.1046/j.1523-1747.1999.00528.x.PubMedCrossRefGoogle Scholar
  25. 25.
    Green MC, Sweet HO, Bunker LE. Tight-skin, a new mutation of the mouse causing excessive growth of connective tissue and skeleton. Am J Pathol. 1976;82:493–512.PubMedGoogle Scholar
  26. 26.
    Committee SfSCotARADaTC. Preliminary criteria for the classification of systemic sclerosis (scleroderma). Arthritis Rheum 1980;23:581–90. doi: 10.1002/art.1780230510.CrossRefGoogle Scholar
  27. 27.
    LeRoy EC, Black C, Fleischmajer R, Jablonska S, Krieg T, Medsger TA Jr, et al. Scleroderma (systemic sclerosis): Classification, subsets and pathogenesis. J Rheumatol. 1988;15:202–5.PubMedGoogle Scholar
  28. 28.
    Clements PJ, Lachenbruch PA, Seibold JR, Zee B, Steen VD, Brennan P, et al. Skin thickness score in systemic sclerosis: an assessment of interobeservar variability in 3 independent studies. J Rheumatol. 1993;20:1892–6.PubMedGoogle Scholar
  29. 29.
    Sato S, Ihn H, Kikuchi K, Takehara K. Antihistone antibodies in systemic sclerosis: association with pulmonary fibrosis. Arthritis Rheum. 1994;37:391–4. doi: 10.1002/art.1780370313.PubMedCrossRefGoogle Scholar
  30. 30.
    Nishijima C, Sato S, Hasegawa M, Nagaoka T, Hirata A, Komatsu K, et al. Renal vascular damage in Japanese patients with systemic sclerosis. Rheumatology. 2001;40:406–109. doi: 10.1093/rheumatology/40.4.406.CrossRefGoogle Scholar
  31. 31.
    Kokkola R, Li J, Sundberg E, Aveberger AC, Palmblad K, Yang H, et al. Successful treatment of collagen-induced arthritis in mice and rats by targeting extracellular high mobility group box chromosomal protein 1 activity. Arthritis Rheum. 2003;48:2052–8. doi: 10.1002/art.11161.PubMedCrossRefGoogle Scholar
  32. 32.
    Kuniyasu H, Chihara Y, Takahashi T. Co-expression of receptor for advanced glycation end products and the ligand amphoterin associates closely with metastasis of colorectal cancer. Oncol Rep. 2003;10:445–8.PubMedGoogle Scholar
  33. 33.
    Sakurai S, Yamamoto Y, Tamei H, Matsuki H, Obata K, Hui L, et al. Development of an ELISA for esRAGE and its application to type 1 diabetic patients. Diabetes Res Clin Pract. 2006;73:158–65. doi: 10.1016/j.diabres.2005.12.013.PubMedCrossRefGoogle Scholar
  34. 34.
    Alecu M, Geleriu L, Coman G, Galatescu L. The interleukin-1, interleukin-2, interleukin-6 and tumour necrosis factor alpha serological levels in localised and systemic sclerosis. Rom J Intern Med. 1998;36:251–9.PubMedGoogle Scholar
  35. 35.
    Yamamoto T. The bleomycin-induced scleroderma model: what have we learned for scleroderma pathogenesis? Arch Dermatol Res. 2006;297:333–44. doi: 10.1007/s00403-005-0635-z.PubMedCrossRefGoogle Scholar
  36. 36.
    Hofmann MA, Drury S, Fu C, Qu W, Taguchi A, Lu Y, et al. Rage mediates a novel proinflammatory axis: a central cell surface receptor for s100/calgranulin polypeptides. Cell. 1999;97:889–901. doi: 10.1016/S0092-8674(00)80801-6.PubMedCrossRefGoogle Scholar
  37. 37.
    Li J, Schmidt AM. Characterization and functional analysis of the promoter of rage, the receptor for advanced glycation end products. J Biol Chem. 1997;272:16498–506. doi: 10.1074/jbc.272.26.16498.PubMedCrossRefGoogle Scholar
  38. 38.
    Yamagishi S, Adachi H, Nakamura K, Matsui T, Jinnouchi Y, Takenaka K, et al. Positive association between serum levels of advanced glycation end products and the soluble form of receptor for advanced glycation end products in nondiabetic subjects. Metabolism. 2006;55:1227–31. doi: 10.1016/j.metabol.2006.05.007.PubMedCrossRefGoogle Scholar
  39. 39.
    Park JS, Svetkauskaite D, He Q, Kim JY, Strassheim D, Ishizaka A, et al. Involvement of toll-like receptors 2 and 4 in cellular activation by high mobility group box 1 protein. J Biol Chem. 2003;279:7370–7. doi: 10.1074/jbc.M306793200.PubMedCrossRefGoogle Scholar
  40. 40.
    Lin KI, Kao YY, Kuo HK, Yang WB, Chou A, Lin HH, et al. Reishi polysaccharides induce immunoglobulin production through the tlr4/tlr2-mediated induction of transcription factor blimp-1. J Biol Chem. 2006;281:24111–23. doi: 10.1074/jbc.M601106200.PubMedCrossRefGoogle Scholar
  41. 41.
    Ek M, Popovic K, Harris HE, Naucler CS, Wahren-Herlenius M. Increased extracellular levels of the novel proinflammatory cytokine high mobility group box chromosomal protein 1 in minor salivary glands of patients with Sjögren’s syndrome. Arthritis Rheum. 2006;54:2289–94. doi: 10.1002/art.21969.PubMedCrossRefGoogle Scholar
  42. 42.
    Popovic K, Ek M, Espinosa A, Padyukov L, Harris HE, Wahren-Herlenius M, et al. Increased expression of the novel proinflammatory cytokine high mobility group box chromosomal protein 1 in skin lesions of patients with lupus erythematosus. Arthritis Rheum. 2005;52:3639–45. doi: 10.1002/art.21398.PubMedCrossRefGoogle Scholar
  43. 43.
    Bruchfeld A, Qureshi AR, Lindholm B, Barany P, Yang L, Stenvinkel P, et al. High mobility group box protein-1 correlates with renal function in chronic kidney disease (CKD). Mol Med. 2008;14:1–15. doi: 10.2119/2007-00107.CrossRefGoogle Scholar
  44. 44.
    van Zoelen MA, Yang H, Florquin S, Meijers JC, Akira S, Arnold B, et al. Role of toll-like receptors 2 and 4, and the receptor for advanced glycation end products (rage) in HMGB1 induced inflammation in vivo. Shock. 2008. PMID: 18665043.Google Scholar
  45. 45.
    Sunden-Cullberg J, Norrby-Teglund A, Rouhiainen A, Rauvala H, Herman G, Tracey KJ, et al. Persistent elevation of high mobility group box-1 protein (HMGB1) in patients with severe sepsis and septic shock. Crit Care Med. 2005;33:564–73. doi: 10.1097/01.CCM.0000155991.88802.4D.PubMedCrossRefGoogle Scholar
  46. 46.
    Sundberg E, Grundtman C, Af Klint E, Lindberg J, Ernestam S, Ulfgren AK, et al. Systemic tnf blockade does not modulate synovial expression of the pro-inflammatory mediator hmgb1 in rheumatoid arthritis patients—a prospective clinical study. Arthritis Res Ther. 2008;10:R33. doi: 10.1186/ar2387.PubMedCrossRefGoogle Scholar
  47. 47.
    Kielty CM, Raghunath M, Siracusa LD, Sherratt MJ, Peters R, Shuttleworth CA, et al. The tight skin mouse: demonstration of mutant fibrillin-1 production and assembly into abnormal microfibrils. J Cell Biol. 1998;140:1159–66. doi: 10.1083/jcb.140.5.1159.PubMedCrossRefGoogle Scholar
  48. 48.
    Bona C, Rothfield N. Autoantibodies in scleroderma and tightskin mice. Curr Opin Immunol. 1994;6:931–7. doi: 10.1016/0952-7915(94)90016-7.PubMedCrossRefGoogle Scholar
  49. 49.
    Inghilleri S, Morbini P, Oggionni T, Barni S, Fenoglio C. In situ assessment of oxidant and nitrogenic stress in bleomycin pulmonary fibrosis. Histochem Cell Biol. 2006;125:661–9. doi: 10.1007/s00418-005-0116-7.PubMedCrossRefGoogle Scholar
  50. 50.
    Taguchi A, Blood DC, del Toro G, Canet A, Lee DC, Qu W, et al. Blockade of rage-amphoterin signalling suppresses tumour growth and metastases. Nature. 2000;405:354–60. doi: 10.1038/35012626.PubMedCrossRefGoogle Scholar
  51. 51.
    Chavakis T, Bierhaus A, Al-Fakhri N, Schneider D, Witte S, Linn T, et al. The pattern recognition receptor (rage) is a counterreceptor for leukocyte integrins: a novel pathway for inflammatory cell recruitment. J Exp Med. 2003;198:1507–15. doi: 10.1084/jem.20030800.PubMedCrossRefGoogle Scholar
  52. 52.
    Nakamura K, Yamagishi S, Adachi H, Kurita-Nakamura Y, Matsui T, Yoshida T, et al. Serum levels of srage, the soluble form of receptor for advanced glycation end products, are associated with inflammatory markers in patients with type 2 diabetes. Mol Med. 2007;13:1–9. doi: 10.2119/2006-00090.CrossRefGoogle Scholar
  53. 53.
    Ogawa F, Shimizu K, Muroi E, Hara T, Hasegawa M, Takehara K, et al. Serum levels of 8-isoprostane, a marker of oxidative stress, are elevated in patients with systemic sclerosis. Rheumatology. 2006;45:815–8. doi: 10.1093/rheumatology/kel012.PubMedCrossRefGoogle Scholar
  54. 54.
    Simonini G, Pignone A, Generini S, Falcini F, Cerinic MM. Emerging potentials for an antioxidant therapy as a new approach to the treatment of systemic sclerosis. Toxicology. 2000;155:1–15. doi: 10.1016/S0300-483X(00)00272-9.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Ayumi Yoshizaki
    • 1
  • Kazuhiro Komura
    • 1
  • Yohei Iwata
    • 1
  • Fumihide Ogawa
    • 1
  • Toshihide Hara
    • 1
  • Eiji Muroi
    • 1
  • Motoi Takenaka
    • 1
  • Kazuhiro Shimizu
    • 1
  • Minoru Hasegawa
    • 2
  • Manabu Fujimoto
    • 2
  • Shinichi Sato
    • 1
    Email author
  1. 1.Department of DermatologyNagasaki University Graduate School of Biomedical SciencesNagasakiJapan
  2. 2.Department of DermatologyKanazawa University Graduate School of Medical ScienceKanazawaJapan

Personalised recommendations