Journal of Clinical Immunology

, Volume 28, Issue 6, pp 697–706 | Cite as

Multiple Sclerosis and Regulatory T Cells

  • Cristina Maria Costantino
  • Clare Baecher-Allan
  • David A. Hafler



Multiple sclerosis (MS) is a complex genetic disease characterized by chronic inflammation of the central nervous system (CNS). The pathology of MS is largely attributed to autoreactive effector T cells that penetrate the blood–brain barrier and become activated within the CNS. As autoreactive T cells are present in the blood of both patients with MS and healthy individuals, other regulatory mechanisms exist to prevent autoreactive T cells from causing immune disorders. Active suppression by regulatory T (Treg) cells plays a key role in the control of self-antigen-reactive T cells and the induction of peripheral tolerance in vivo. In particular, the importance of antigen-specific Treg cells in conferring genetic resistance to organ-specific autoimmunity and in limiting autoimmune tissue damage has been documented in many disease models including MS.


We have found that the frequency of Tregs in MS patients is unchanged from controls, but their function measured in vitro may be diminished, correlating with impaired inhibitory activity in vivo. This review discusses the immunopathology of MS with particular focus given to regulatory T cells and their potential for the development of new therapies to treat this disease.


Regulatory T cells immune system lymphocytes autoimmune disease multiple sclerosis 



Work was supported by the NIH grants: UO1DK6192601, RO1NS2424710, PO1AI39671, and PO1NS38037; and grants from the National Multiple Sclerosis Society: RG2172C9 and RG3308A10, and from the 2004 FOCIS Centers of Excellence Amgen Award.


  1. 1.
    Mackay RP, Myrianth NC. Multiple sclerosis in twins and their relatives—final report. Arch Neurol 1966;15(5):449–57.PubMedGoogle Scholar
  2. 2.
    International Multiple Sclerosis Genetic ConsortiumHafler DA, Compston A, Sawcer S, Lander S, Daly MJ, DeJager PL, de Bakker PIW, Gabriel SB, Mirel DB, Ivinson AJ, Pericak-Vance MA, Gregory SG, Rioux JD, McCauley JL, Haines JL, Barcellos LF, Cree B, Oksenberg JR, Hauser SL. Novel risk alleles for multiple sclerosis identified by a whole genome association study. N Engl J Med 2007;357:851–62.PubMedCrossRefGoogle Scholar
  3. 3.
    McCarthy MI. Susceptibility gene discovery for common metabolic and endocrine traits. J Mol Endocrin 2002;28:1–17.CrossRefGoogle Scholar
  4. 4.
    Kabat EA, Glusman M, Knaub V. Quantitative estimation of the albumin and gamma-globulin in normal and pathologic cerebrospinal fluid by immunochemical methods. Am J Med 1948;4(5):653–62.PubMedCrossRefGoogle Scholar
  5. 5.
    Rivers TM, Sprunt DH, Berry GP. Observations on attempts to produce acute disseminated encephalomyelitis in monkeys. J Exp Med 1933;58(1):39–U58.CrossRefGoogle Scholar
  6. 6.
    Goverman J, et al. Transgenic mice that express a myelin basic protein-specific T-cell receptor develop spontaneous autoimmunity. Cell 1993;72(4):551–60.PubMedCrossRefGoogle Scholar
  7. 7.
    Miller DH, et al. A controlled trial of natalizumab for relapsing multiple sclerosis. New Eng J Med 2003;348:15–23.PubMedCrossRefGoogle Scholar
  8. 8.
    Ota K, et al. T-cell recognition of an immunodominant myelin basic-protein epitope in multiple-sclerosis. Nature 1990;346(6280):183–7.PubMedCrossRefGoogle Scholar
  9. 9.
    Pette M, et al. Myelin basic protein-specific lymphocyte—T lines from MS patients and healthy-individuals. Neurology 1990;40(11):1770–6.PubMedGoogle Scholar
  10. 10.
    Martin R, et al. Fine specificity and HLA restriction of myelin basic protein-specific cytotoxic T-cell lines from multiple-sclerosis patients and healthy-individuals. J Immunol 1990;145(2):540–8.PubMedGoogle Scholar
  11. 11.
    Hahn M, Nicholson MJ, Pyrdol J, Wucherpfennig KW. Unconventional topology of self peptide-major histocompatibility complex binding by a human autoimmune T cell receptor. Nat Immunol 2005;6(5):490–6.PubMedCrossRefGoogle Scholar
  12. 12.
    Ausubel LJ, et al. Complementary mutations in an antigenic peptide allow for crossreactivity of autoreactive T-cell clones. Proc Natl Acad Sci U S A 1996;93(26):15317–22.PubMedCrossRefGoogle Scholar
  13. 13.
    Zhang X, et al. Degenerate TCR recognition and dual DR2 restriction of autoreactive T cells: implications for the initiation of the autoimmune response in multiple sclerosis. Euro J Immunol 2008;38(5):1297–309.CrossRefGoogle Scholar
  14. 14.
    Fujinami RS, Oldstone MB. Amino acid homology between the encephalitogenic site of myelin basic protein and virus: mechanism for autoimmunity. Science 1985;230(4729):1043–5.PubMedCrossRefGoogle Scholar
  15. 15.
    Wucherpfennig KW, Strominger JL. Molecular mimicry in T-cell-mediated autoimmunity—viral peptides activate human T-cell clones specific for myelin basic-protein. Cell 1995;80(5):695–705.PubMedCrossRefGoogle Scholar
  16. 16.
    Hemmer B, et al. Identification of high potency microbial and self ligands for a human autoreactive class II-restricted T cell clone. J Exp Med 1997;185(9):1651–9.PubMedCrossRefGoogle Scholar
  17. 17.
    Lang HL, et al. A functional and structural basis for TCR cross-reactivity in multiple sclerosis. Nat Immunol 2002;3(10):940–3.PubMedCrossRefGoogle Scholar
  18. 18.
    Lenz DC, et al. A Chlamydia pneumoniae-specific peptide induces experimental autoimmune encephalomyelitis in rats. J Immunol 2001;167(3):1803–8.PubMedGoogle Scholar
  19. 19.
    Fujinami RS, et al. Molecular mimicry in virus infection: crossreaction of measles virus phosphoprotein or of herpes simplex virus protein with human intermediate filaments. Proc Natl Acad Sci U S A 1983;80(8):2346–50.PubMedCrossRefGoogle Scholar
  20. 20.
    Croxford JL, Anger HA, Miller SD. Viral delifery of an epitope from Haemophilus influenzae induces central nervous system autoimmune disease by molecular mimicry. J Immunol 2005;174(2):907–17.PubMedGoogle Scholar
  21. 21.
    Ascherio A, Munger KL. Environmental risk factors for multiple sclerosis. Part I: the role of infection. Ann Neuro 2007;61(4):288–99.CrossRefGoogle Scholar
  22. 22.
    de Jager PL, et al. Integrating risk factors: HLA-DRB1*1501 and Epstein–Barr virus in multiple sclerosis. Neurology 2008;70(13 part 2):1113–8.PubMedGoogle Scholar
  23. 23.
    Lehmann PV, et al. Spreading of T cell autoimmunity to cryptic determinants of an autoantigen. Nature 1992;358(6382):155–7.PubMedCrossRefGoogle Scholar
  24. 24.
    Ellmerich S, et al. Disease-related epitope spread in a humanized T cell receptor transgenic model of multiple sclerosis. Eur J Immunol 2004;34(7):1839–48.PubMedCrossRefGoogle Scholar
  25. 25.
    Trapp BD, et al. Axonal transection in the lesions of multiple sclerosis. New Eng J Med 1998;338(5):278–85.PubMedCrossRefGoogle Scholar
  26. 26.
    Lucchinetti CF, et al. Distinct patterns of multiple sclerosis pathology indicates heterogeneity in pathogenesis. Brain Pathol 1996;6(3):259–74.PubMedCrossRefGoogle Scholar
  27. 27.
    Wucherpfennig KW, et al. T-cell receptor V-alpha-V-beta repertoire and cytokine gene-expression in active multiple-sclerosis lesions. J Exp Med 1992;175(4):993–1002.PubMedCrossRefGoogle Scholar
  28. 28.
    Traugott U, Reinherz EL, Raine CS. Multiple-sclerosis—distribution of T-cell subsets within active chronic lesions. Science 1983;219(4582):308–10.PubMedCrossRefGoogle Scholar
  29. 29.
    Hauser SL, et al. Immunohistochemical analysis of the cellular infiltrate in multiple-sclerosis lesions. Ann Neurol 1986;19(6):578–87.PubMedCrossRefGoogle Scholar
  30. 30.
    Wucherpfennig KW, et al. Gamma-delta T-cell receptor repertoire in acute multiple-sclerosis lesions. Proc Natl Acad Sci U S A 1992;89(10):4588–92.PubMedCrossRefGoogle Scholar
  31. 31.
    Prineas JW, Wright RG. Macrophages, lymphocytes, and plasma-cells in perivascular compartment in chronic multiple-sclerosis. Lab Invest 1978;38(4):409–21.PubMedGoogle Scholar
  32. 32.
    Prineas J. Pathology of early lesion in multiple-sclerosis. Human Pathol 1975;6(5):531–54.CrossRefGoogle Scholar
  33. 33.
    Becher B, et al. Soluble tumor necrosis factor receptor inhibits interleukin 12 production by stimulated human adult microglial cells in vitro. J Clin Invest 1996;98(7):1539–43.PubMedCrossRefGoogle Scholar
  34. 34.
    Anderson AC, Anderson DE, Bregoli L, Hastings WD, Kassam N, Lei C, Chandwaskar R, Karman J, Su EW, Hirashima M, Bruce JN, Kane LP, Kuchroo VK, Hafler DA. TIM-3 is expressed by cells of the innate immune system and promotes tissue inflammation. Science 2007;318(5853):1141–3.PubMedCrossRefGoogle Scholar
  35. 35.
    Lehnardt S, et al. Activation of innate immunity in the CNS triggers neurodegeneration through a Toll-like receptor 4-dependent pathway. Proc Natl Acad Sci U S A 2003;100(14):8514–9.PubMedCrossRefGoogle Scholar
  36. 36.
    Monje ML, Toda H, Palmer TD. Inflammatory blockade restores adult hippocampal neurogenesis. Science 2003;302(5651):1760–5.PubMedCrossRefGoogle Scholar
  37. 37.
    Ekdahl CT, et al. Inflammation is detrimental for neurogenesis in adult brain. Proc Natl Acad Sci U S A 2003;100(23):13632–7.PubMedCrossRefGoogle Scholar
  38. 38.
    Baranzini SE, et al. Transcriptional analysis of multiple sclerosis brain lesions reveals a complex pattern of cytokine expression. J Immunol 2000;165(11):6576–82.PubMedGoogle Scholar
  39. 39.
    Mycko MP, et al. Microarray gene expression profiling of chronic active and inactive lesions in multiple sclerosis. Clin Neurol Neurosurg 2004;106(3):223–9.PubMedCrossRefGoogle Scholar
  40. 40.
    Aloisi F, et al. IL-12 production by central nervous system microglia is inhibited by astrocytes. J Immunol 1997;159(4):1604–12.PubMedGoogle Scholar
  41. 41.
    Ledeboer A, et al. Interleukin-10, interleukin-4, and transforming growth factor-beta differentially regulate lipopolysaccharide-induced production of pro-inflammatory cytokines and nitric oxide in co-cultures of rat astroglial and microglial cells. Glia 2000;30(2):134–42.PubMedCrossRefGoogle Scholar
  42. 42.
    Onuki I, et al. Axonal degeneration is an early pathological feature in autoimmune-mediated demyelination in mice. Microsc Res Tech 2001;52(6):731–9.PubMedCrossRefGoogle Scholar
  43. 43.
    Ayers MM, et al. Early glial responses in murine models of multiple sclerosis. Neurochem Int 2004;45(2–3):409–19.PubMedCrossRefGoogle Scholar
  44. 44.
    Trajkovic V, et al. Astrocyte-induced regulatory T cells mitigate CNS autoimmunity. Glia 2004;47(2):168–79.PubMedCrossRefGoogle Scholar
  45. 45.
    Roncarolo MG, et al. Type 1 T regulatory cells. Imm Rev 2001;182:68–79.CrossRefGoogle Scholar
  46. 46.
    Pullen AM, Marrack P, Kappler JW. Evidence that MLS-2 antigens which delete V-beta-3+ T-cells are controlled by multiple genes. J Immunol 1989;142(9):3033–7.PubMedGoogle Scholar
  47. 47.
    Sakaguchi S. Regulatory T cells: key controllers of immunologic self-tolerance. Cell 2000;101(5):455–8.PubMedCrossRefGoogle Scholar
  48. 48.
    Shevach EM, et al. Control of T-cell activation by CD4(+) CD25(+) suppressor T cells. Immunol Rev 2001;182:58–67.PubMedCrossRefGoogle Scholar
  49. 49.
    Sakaguchi S, et al. Organ-specific autoimmune-diseases induced in mice by elimination of T-cell subset 1. Evidence for the active participation of T-cells in natural self-tolerance—deficit of a T-cell subset as a possible cause of autoimmune-disease. J Exp Med 1985;161(1):72–87.PubMedCrossRefGoogle Scholar
  50. 50.
    Read S, Malmstrom V, Powrie F. Cytotoxic T lymphocyte-associated antigen 4 plays an essential role in the function of CD25(+)CD4(+) regulatory cells that control intestinal inflammation. J Exp Med 2000;192(2):295–302.PubMedCrossRefGoogle Scholar
  51. 51.
    Baecher-Allan C, et al. CD4+CD25(high) regulatory cells in human peripheral blood. J Immunol 2001;167(3):1245–53.PubMedGoogle Scholar
  52. 52.
    Dieckmann D, et al. Ex vivo isolation and characterization of CD4(+)CD25(+) T cells with regulatory properties from human blood. J Exp Med 2001;193(11):1303–10.PubMedCrossRefGoogle Scholar
  53. 53.
    Wang J, et al. Transient expression of FOXP3 in human activated nonregulatory CD4+ T cells. Eur J Immunol 2007;37:129–38.PubMedCrossRefGoogle Scholar
  54. 54.
    Fontenot JD, et al. Regulatory T cell lineage specification by the forkhead transcription factor foxp3. Immunity 2005;22:329–41.PubMedCrossRefGoogle Scholar
  55. 55.
    Liu W, et al. CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4+ Treg cells. J Exp Med 2006;203:1701–11.PubMedCrossRefGoogle Scholar
  56. 56.
    Seddiki N, et al. Expression of interleukin (IL)-2 and IL-7 receptors discriminates between human regulatory and activated T cells. J Exp Med 2006;203:1693–700.PubMedCrossRefGoogle Scholar
  57. 57.
    Ruprecht CR, et al. Coexpression of CD25 and CD27 identifies FoxP3+ regulatory T cells in invlamed synovia. J Exp Med 2005;201:1793–803.PubMedCrossRefGoogle Scholar
  58. 58.
    Baecher-Allan CM, Wolf E, Hafler DA. MHC class II expression identifies functionally distinct human regulatory T cells. J Immunol 2006;176:4622–31.PubMedGoogle Scholar
  59. 59.
    Baecher-Allan CM, Hafler DA. Human regulatory T cells and their role in autoimmune disease. Imm Rev 2006;212:203–16.CrossRefGoogle Scholar
  60. 60.
    Dieckmann D, et al. Human CD4(+)CD25(+) regulatory, contact-dependent T cells induce interleukin 10-producing contact-independent type 1-like regulatory T cells. J Exp Med 2002;196:247–53.PubMedCrossRefGoogle Scholar
  61. 61.
    Jonuleit H, et al. Infectious tolerance: human CD25(+) regulatory T cells convey suppressor activity to conventional CD4(+) helper cells. J Exp Med 2002;196:255–60.PubMedCrossRefGoogle Scholar
  62. 62.
    Baecher-Allan C, Viglietta V, Hafler DA. Inhibition of human CD4(+)CD25(+high) regulatory T cell function. J Immunol 2002;169(11):6210–7.PubMedGoogle Scholar
  63. 63.
    Reijonen H, et al. Detection of GAD65-specific T-cells by major histocompatibility complex class II tetramers in type 1 diabetic patients and at-risk subjects. Diabetes 2002;51(5):1375–82.PubMedCrossRefGoogle Scholar
  64. 64.
    Viglietta V, et al. Loss of functional suppression by CD4+CD25+ regulatory T cells in patients with multiple sclerosis. J Exp Med 2004;199(7):971–9.PubMedCrossRefGoogle Scholar
  65. 65.
    Huan J, et al. Decreased FOXP3 levels in multiple sclerosis patients. J Neurosci Res 2005;81(1):45–52.PubMedCrossRefGoogle Scholar
  66. 66.
    Venken K, et al. Secondary progressive in contrast to relapsing-remitting multiple sclerosis patients show a normal CD4+CD25+ regulatory T-cell function and FOXP3 expression. J Neurosci Res 2006;83(8):1432–46.PubMedCrossRefGoogle Scholar
  67. 67.
    Astier AL, et al. Alterations in CD46-mediated Tr1 regulatory T cells in patients with multiple sclerosis. J Clin Invest 2006;116(12):3252–7.PubMedCrossRefGoogle Scholar
  68. 68.
    Cao D, et al. Isolation and functional characterization of regulatory CD25brightCD4+ T cells from the target organ of patients with rheumatoid arthritis. J Immunol 1998;160:1532–8.Google Scholar
  69. 69.
    Sugiyama H, et al. Dysfunctional blood and target tissue CD4+CD25high regulatory T cells in psoriasis: mechanism underlying unrestrained pathogenic effector T cell proliferation. J Immunol 2005;174:164–73.PubMedGoogle Scholar
  70. 70.
    Lindley S, et al. Defective suppressor function in CD4(+)CD25(+) T-cells from patients with type 1 diabetes. Diabetes 2005;54:92–9.PubMedCrossRefGoogle Scholar
  71. 71.
    Balandina A, et al. Analysis of CD4+CD25+ cell population in the thymus from myasthenia gravis patients. Ann NY Acad Sci 2003;998:275–7.PubMedCrossRefGoogle Scholar
  72. 72.
    Gambineri E, et al. Immune dysregulation, polyendocrinopathy, enteropathy, and X-linked inheritance (IPEX), a syndrome of systemic autoimmunity caused by mutations of FOXP3, a critical regulator of T-cell homeostasis. Curr Opin Rheum 2003;15:430–5.CrossRefGoogle Scholar
  73. 73.
    Hafler DA, et al. Risk alleles for multiple sclerosis identified by a genomewide study. New Eng J Med 2007;357:851–62.PubMedCrossRefGoogle Scholar
  74. 74.
    The Wellcome Trust Cast Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 2007;447:661–78.CrossRefGoogle Scholar
  75. 75.
    Kohm AP, et al. Cutting edge: CD4+CD25+ regulatory T cells suppress antigen-specific autoreactive immune responses and central nervous system inflammation during active experimental autoimmune encephalomyelitis. J Immunol 2002;169(9):4712–6.PubMedGoogle Scholar
  76. 76.
    McGeachy MJ, Stephens LA, Anderton SM. Natural recovery and protection from autoimmune encephalomyelitis: contribution of CD4+CD25+ regulatory cells within the central nervous system. J Immunol 2005;175(5):3025–32.PubMedGoogle Scholar
  77. 77.
    Gartner D, et al. CD25 regulatory T cells determine secondary but not primary remission in EAE: impact on long-term disease progression. J Neuroimmunol 2006;172(1–2):73–84.PubMedCrossRefGoogle Scholar
  78. 78.
    Zhang X, et al. Recovery from experimental allergic encephalomyelitis is TGF-beta dependent and associated with increases in CD4+LAP+ and CD4+CD25+ T cells. Int Immunol 2006;18(4):495–503.PubMedCrossRefGoogle Scholar
  79. 79.
    Korn T, et al. Myelin-specific regulatory T cells accumulate in the CNS but fail to control autoimmune inflammation. Nat Med 2007;13(4):423–31.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Cristina Maria Costantino
    • 1
  • Clare Baecher-Allan
    • 1
  • David A. Hafler
    • 1
    • 2
  1. 1.Division of Molecular Immunology, Center for Neurologic DiseasesHarvard Medical School/Brigham and Women’s HospitalBostonUSA
  2. 2.Center for Neurologic DiseasesBostonUSA

Personalised recommendations