Advertisement

Journal of Clinical Immunology

, Volume 29, Issue 1, pp 90–98 | Cite as

Downregulation of Inflammatory Responses by Novel Caffeic Acid Ester Derivative by Inhibiting NF-kappa B

  • Julie S. Bose
  • Vijay Gangan
  • Swatantra Kumar Jain
  • Sunil K. Manna
Article

Abstract

Introduction

Considering anti-tumorigenic activity of caffeic acid phenyl ester, synthesis of several esterified form of caffeic acid is a novel approach in designing for potent drugs.

Results

Our study demonstrates that esterified caffeic acid with methyl vanillate, termed as caffeic acid methyl vanillate ester (CAMVE), blocked inflammatory stimuli-induced inflammatory responses. It decreased amounts of iNOS, Cox-2, and ICAM1 by inhibiting NF-κB through inhibition of IKK activity, IκBα degradation, and p65 nuclear translocation.

Conclusion

Overall, our data suggest that novel caffeic acid ester down-regulates inflammatory responses through inhibition of NF-κB and dependent several gene expressions, further suggesting its efficacy as a promising therapeutic agent.

Keywords

CAMVE NF-κB inflammation Cox-2 ROI TNF 

Abbreviations

CAMVE

methyl 4-[{(2E)-3-(3,4-dihydroxyphenyl)prop-2-enoyl}oxy]-3-methoxybenzoate and/or caffeic acid methyl vanillate ester

Cox

cyclooxygenase

FITC

fluorescein isothiocyanate

ICAM

intercellular adhesion molecules

IκBα

inhibitory subunit of NF-kappaB

IKK

IκBα kinase

LPS

lipopolysaccharaide

MFI

mean fluorescence intensity

NF-κB

nuclear transcription factor kappa B

Cox

cyclooxygenase

NE

nuclear extract

ROI

reactive oxygen intermediate

SEAP

secretory alkaline phosphatase

TBARS

thiobarbituric-acid reactive substances

TNF

tumor necrosis factor

Notes

Acknowledgments

This work was supported by the Reliance Life Sciences and core grant of Centre for DNA Fingerprinting and Diagnostics (CDFD). We duly thank Dr. J. V. Raman, Research Director and Head, Chemical Research Technology Group, Reliance Life Sciences for valuable comments on the work.

References

  1. 1.
    Wattenberg LW, Coccia JB, Lam LK. Inhibitory effects of phenolic compounds on benzo(a)pyrene-induced neoplasia. Cancer Res. 1980;40:2820–3.PubMedGoogle Scholar
  2. 2.
    Talalay P, De Long MJ, Prochaska HJ. Identification of a common chemical signal regulating the induction of enzymes that protects against chemical carcinogenesis. Proc Natl Acad Sci USA. 1988;85:8261–5. doi: 10.1073/pnas.85.21.8261.PubMedCrossRefGoogle Scholar
  3. 3.
    Macheix JJ, Fleuriet A, Billot J. Fruit phenolics. Boca Raton, FL: CRC; 1990.Google Scholar
  4. 4.
    Natarajan K, Singh S, Burke TR Jr, Grunberger D, Aggarwal BB. Caffeic acid phenyl ester is a potent and specific inhibitor of activation of nuclear transcription factor NF-қB. Proc Natl Acad Sci USA. 1996;93:9090–5. doi: 10.1073/pnas.93.17.9090.PubMedCrossRefGoogle Scholar
  5. 5.
    Chiao C, Carothers AM, Grunberger D, Solomon G, Preston GA, Barrett JC. Apoptosis and altered redox state induced by caffeic acid phenylethyl ester (CAPE) in transformed rat fibroblast cells. Cancer Res. 1995;55:3576–83.PubMedGoogle Scholar
  6. 6.
    Burke TR Jr, Fesen MR, Mazumder A, Wang J, Carothers AM, Grunberger D, et al. Hydroxylated aromatic inhibitors of HIV-1 integrase. J Med Chem. 1995;38:4171–8. doi: 10.1021/jm00021a006.PubMedCrossRefGoogle Scholar
  7. 7.
    Da-Cunha FM, Duma D, Assreuy J, Buzzi FC, Niero R, Campos MM, et al. Caffeic acid derivatives: in vitro and in vivo anti-inflammatory properties. Free Radic Res. 2004;38:1241–53. doi: 10.1080/10715760400016139.PubMedCrossRefGoogle Scholar
  8. 8.
    Busam K, Gieringer C, Freudenberg M, Hohmann HP. Staphylococcus aureus and derived exotoxins induce nuclear factor kappa B-like activity in murine bone marrow macrophages. Infect Immun. 1992;60:2008–15.PubMedGoogle Scholar
  9. 9.
    Mercurio F, Manning A. NF-κB as a primary regulator of stress response. Oncogene. 1999;18:6163–71. doi: 10.1038/sj.onc.1203174.PubMedCrossRefGoogle Scholar
  10. 10.
    Li N, Karin M. Is NF-kappa B the sensor of oxidative stress? FASEB J. 1999;13:1137–43.PubMedGoogle Scholar
  11. 11.
    Garg A, Aggarwal BB. Nuclear transcription factor-қB as a target for cancer drug development. Leukemia. 2002;16:1053–68. doi: 10.1038/sj.leu.2402482.PubMedCrossRefGoogle Scholar
  12. 12.
    Christman JW, Sadikot RT, Blackwell TS. The role of nuclear factor-kappa B in pulmonary diseases. Chest. 2000;117:1482–7. doi: 10.1378/chest.117.5.1482.PubMedCrossRefGoogle Scholar
  13. 13.
    Sarkar A, Sreenivasan Y, Ramesh GT, Manna SK. b- d-glucoside suppresses tumor necrosis factor-induced activation of nuclear transcription factor kB but potentiates apoptosis. J Biol Chem. 2004;279:33768–81. doi: 10.1074/jbc.M403424200.PubMedCrossRefGoogle Scholar
  14. 14.
    Kalgutkar AS, Zhao Z. Discovery and design of selective cyclooxygenase-2 inhibitors as non-ulcerogenic, anti-inflammatory drugs with potential utility as anti-cancer agents. Curr Drug Targets. 2001;2:79–106. doi: 10.2174/1389450013348830.PubMedCrossRefGoogle Scholar
  15. 15.
    Marrogi A, Pass HI, Khan M, Metheny-Barlow LJ, Harris CC, Gerwin BI. Human mesothelioma samples overexpress both cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase NOS: invitro antiproliferative effects of COX-2 inhibitor. Cancer Res. 2000;60:3696–700.PubMedGoogle Scholar
  16. 16.
    Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR. Analysis of nitrate, nitrite and (15N) nitrate in biological fluids. Anal Biochem. 1982;126:131–8. doi: 10.1016/0003-2697(82)90118-X.PubMedCrossRefGoogle Scholar
  17. 17.
    Manna SK, Mukhopadhyay A, Van NT, Aggarwal BB. Silymarin suppresses TNF-induced activation of NF-kappa B, c-Jun N-terminal kinase, and apoptosis. J Immunol. 1999;163:6800–9.PubMedGoogle Scholar
  18. 18.
    Manna SK, Manna P, Sarkar A. Inhibition of RelA phosphorylation sensitizes chemotherapeutic agents-mediated apoptosis in constitutive NF-kappaB-expressing and chemoresistant cells. Cell Death Differ. 2007;14:158–70. doi: 10.1038/sj.cdd.4401929.PubMedCrossRefGoogle Scholar
  19. 19.
    Manna SK, Mukhopadhyay A, Aggarwal BB. IFN-α suppresses activation of nuclear transcription factors NF-қB and activator protein 1 and potentiates TNF-induced apoptosis. J Immunol. 2000;165:4927–34.PubMedGoogle Scholar
  20. 20.
    Blaecke A, Delneste Y, Herbault N, Jeannin P, Bonnefoy JY, Beck A, et al. Measurement of nuclear factor-kappa B translocation on lipopolysaccharide-activated human dendritic cells by confocal microscopy and flow cytometry. Cytometry. 2002;48:71–9. doi: 10.1002/cyto.10115.PubMedCrossRefGoogle Scholar
  21. 21.
    Soehnlein O, Schmeisser A, Cicha I, Reiss C, Ulbrich H, Lindbom L, et al. ACE inhibition lowers angiotensin-ii-induced monocyte adhesion to HUVEC by reduction of p65 translocation and AT1 expression. J Vasc Res. 2005;42:399–407. doi: 10.1159/000087340.PubMedCrossRefGoogle Scholar
  22. 22.
    Bryngelsson S, Dimberg LH, Kamal-Eldin A. Effects of commercial processing on levels of antioxidants in oats (Avena sativa L.). J Agric Food Chem. 2002;50:1890–6. doi: 10.1021/jf011222z.PubMedCrossRefGoogle Scholar
  23. 23.
    Mattila P, Kumpulainen J. Determination of free and total phenolic acids in plant-derived foods by HPLC with diode-array detection. J Agric Food Chem. 2002;50:3660–7. doi: 10.1021/jf020028p.PubMedCrossRefGoogle Scholar
  24. 24.
    Eberhardt MV, Lee CY, Liu RH. Antioxidant activity of fresh apples. Nature. 2000;405:903–4.PubMedGoogle Scholar
  25. 25.
    Manna SK, Sah NK, Newman RA, Cisneros A, Aggarwal BB. Oleandrin suppresses activation of nuclear transcription factor-қB, activator protein-1, and c-jun NH2-terminal kinase. Cancer Res. 2000;60:3838–47.PubMedGoogle Scholar
  26. 26.
    Petros A, Bennett D, Vallance P. Effect of nitric oxide synthase inhibitors on hypotension in patients with septic shock. Lancet. 1991;338:1557–8. doi: 10.1016/0140-6736(91)92376-D.PubMedCrossRefGoogle Scholar
  27. 27.
    Xie QW, Kashiwabara Y, Nathan C. Role of transcription factor NF-қB/Rel in induction of nitric oxide synthase. J Biol Chem. 1994;269:4705–8.PubMedGoogle Scholar
  28. 28.
    Thanos D, Maniatis D. NF-kB: a lesson in family values. Cell. 1995;80:529–32. doi: 10.1016/0092-8674(95)90506-5.PubMedCrossRefGoogle Scholar
  29. 29.
    Beckman JS, Beckman TW, Chen J, Marshall PA, Freeman BA. Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci USA. 1990;87:1620–4. doi: 10.1073/pnas.87.4.1620.PubMedCrossRefGoogle Scholar
  30. 30.
    Bredt DS, Synder SH. Nitric oxide: a physiological messenger molecule. Annu Rev Biochem. 1994;63:175–95. doi: 10.1146/annurev.bi.63.070194.001135.PubMedCrossRefGoogle Scholar
  31. 31.
    Marrogi A, Pass HI, Khan M, Metheny-Barlow LJ, Harris CC, Gerwin BI. Human mesothelioma samples overexpress both cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase NOS: invitro antiproliferative effects of COX-2 inhibitor. Cancer Res. 2000;60:3696–700.PubMedGoogle Scholar
  32. 32.
    Roebuck KA, Finnegan A. Regulation of intercellular adhesion molecule-1 (CD54) gene expression. J Leukoc Biol 1999;66:876–88.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Julie S. Bose
    • 1
  • Vijay Gangan
    • 1
  • Swatantra Kumar Jain
    • 2
  • Sunil K. Manna
    • 3
  1. 1.Reliance Life Sciences Pvt. Ltd.MumbaiIndia
  2. 2.Department of BiotechnologyJamia HamdardNew DelhiIndia
  3. 3.Laboratory of ImmunologyCentre for DNA Fingerprinting and Diagnostics (CDFD)HyderabadIndia

Personalised recommendations