Journal of Clinical Immunology

, Volume 29, Issue 1, pp 29–37

In Vitro Differentiation of Human Monocytes into Dendritic Cells by Peptic–Tryptic Digest of Gliadin Is Independent of Genetic Predisposition and the Presence of Celiac Disease

  • Maryam Rakhimova
  • Birgit Esslinger
  • Anja Schulze-Krebs
  • Eckhart G. Hahn
  • Detlef Schuppan
  • Walburga Dieterich



This study was done to further reveal the role of the innate immune system in celiac disease.


Dendritic cells were matured from venous blood of patients with active or treated celiac disease and DQ2–DQ8-positive or negative controls. Dendritic cells were treated with a peptic–tryptic digest of gliadin (500 μg/ml) and their activation was analyzed by fluorescent-activated cell sorting analysis, cytokine secretion, and their ability to elicit T cell proliferation.

Results and Discussion

Gliadin upregulated interleukin (IL)-6, IL-8, and IL-12 (p40) secretion in dendritic cells and induced strong expression of the maturation markers human leukocyte antigen (HLA)-DR, CD25, CD83, and CD86 of all subjects irrespective of their genotype or the presence of disease, whereas the digest of bovine serum albumin showed no effect. However, gliadin-stimulated dendritic cells from active celiac showed enhanced stimulation of autologous T cells compared to the other groups.


Further research should be aimed at identifying the mechanisms that control inflammation in healthy individuals.


Celiac disease gliadin dendritic cell maturation 


  1. 1.
    Marsh MN. Gluten, major histocompatibility complex, and the small intestine. A molecular and immunobiologic approach to the spectrum of gluten sensitivity (‘celiac sprue’). Gastroenterology 1992;102:330–54.PubMedGoogle Scholar
  2. 2.
    Green PH, Jabri B. Celiac disease. Annu Rev Med 2006;57:207–21. doi:10.1146/ Scholar
  3. 3.
    Schuppan D. Current concepts of celiac disease pathogenesis. Gastroenterology 2000;119:234–42. doi:10.1053/gast.2000.8521.PubMedCrossRefGoogle Scholar
  4. 4.
    Sollid LM. Genetics of the immune response to gluten in coeliac disease. Dig Dis 1998;16:345–7. doi:10.1159/000016889.PubMedCrossRefGoogle Scholar
  5. 5.
    Vader W, Stepniak D, Kooy Y, Mearin L, Thompson A, van Rood JJ, et al. The HLA-DQ2 gene dose effect in celiac disease is directly related to the magnitude and breadth of gluten-specific T cell responses. Proc Natl Acad Sci U S A 2003;100:12390–5. doi:10.1073/pnas.2135229100.PubMedCrossRefGoogle Scholar
  6. 6.
    Dube C, Rostom A, Sy R, Cranney A, Saloojee N, Garritty C, et al. The prevalence of celiac disease in average-risk and at-risk Western European populations: a systematic review. Gastroenterology 2005;128:S57–67. doi:10.1053/j.gastro.2005.02.014.PubMedCrossRefGoogle Scholar
  7. 7.
    Catassi C, Kryszak D, Louis-Jacques O, Duerksen DR, Hill I, Crowe SE, et al. Detection of Celiac disease in primary care: a multicenter case-finding study in North America. Am J Gastroenterol 2007;102:1454–60. doi:10.1111/j.1572-0241.2007.01173.x.PubMedCrossRefGoogle Scholar
  8. 8.
    Dieterich W, Ehnis T, Bauer M, Donner P, Volta U, Riecken EO, et al. Identification of tissue transglutaminase as the autoantigen of celiac disease. Nat Med 1997;3:797–801. doi:10.1038/nm0797-797.PubMedCrossRefGoogle Scholar
  9. 9.
    Wong RC, Wilson RJ, Steele RH, Radford-Smith G, Adelstein S. A comparison of 13 guinea pig and human anti-tissue transglutaminase antibody ELISA kits. J Clin Pathol 2002;55:488–94.PubMedGoogle Scholar
  10. 10.
    Dieterich W, Laag E, Schopper H, Volta U, Ferguson A, Gillett H, et al. Autoantibodies to tissue transglutaminase as predictors of celiac disease. Gastroenterology 1998;115:1317–21. doi:10.1016/S0016-5085(98)70007-1.PubMedCrossRefGoogle Scholar
  11. 11.
    Lewis NR, Scott BB. Systematic review: the use of serology to exclude or diagnose coeliac disease (a comparison of the endomysial and tissue transglutaminase antibody tests). Aliment Pharmacol Ther 2006;24:47–54. doi:10.1111/j.1365-2036.2006.02967.x.PubMedCrossRefGoogle Scholar
  12. 12.
    Rostom A, Murray JA, Kagnoff MF. American Gastroenterological Association (AGA) Institute technical review on the diagnosis and management of celiac disease. Gastroenterology 2006;131:1981–2002. doi:10.1053/j.gastro.2006.10.004.PubMedCrossRefGoogle Scholar
  13. 13.
    Lundin KE, Scott H, Hansen T, Paulsen G, Halstensen TS, Fausa O, et al. Gliadin-specific, HLA-DQ(alpha 1*0501,beta 1*0201) restricted T cells isolated from the small intestinal mucosa of celiac disease patients. J Exp Med 1993;178:187–96. doi:10.1084/jem.178.1.187.PubMedCrossRefGoogle Scholar
  14. 14.
    Anderson RP, Degano P, Godkin AJ, Jewell DP, Hill AV. In vivo antigen challenge in celiac disease identifies a single transglutaminase-modified peptide as the dominant A-gliadin T-cell epitope. Nat Med 2000;6:337–42. doi:10.1038/73200.PubMedCrossRefGoogle Scholar
  15. 15.
    Anderson RP, van Heel DA, Tye-Din JA, Barnardo M, Salio M, Jewell DP, et al. T cells in peripheral blood after gluten challenge in coeliac disease. Gut 2005;54:1217–23. doi:10.1136/gut.2004.059998.PubMedCrossRefGoogle Scholar
  16. 16.
    Molberg O, McAdam SN, Korner R, Quarsten H, Kristiansen C, Madsen L, et al. Tissue transglutaminase selectively modifies gliadin peptides that are recognized by gut-derived T cells in celiac disease. Nat Med 1998;4:713–7. doi:10.1038/nm0698-713.PubMedCrossRefGoogle Scholar
  17. 17.
    van de Wal Y, Kooy Y, van Veelen P, Pena S, Mearin L, Papadopoulos G, et al. Selective deamidation by tissue transglutaminase strongly enhances gliadin-specific T cell reactivity. J Immunol 1998;161:1585–8.PubMedGoogle Scholar
  18. 18.
    Lahat N, Shapiro S, Karban A, Gerstein R, Kinarty A, Lerner A. Cytokine profile in coeliac disease. Scand J Immunol 1999;49:441–6. doi:10.1046/j.1365-3083.1999.00523.x.PubMedCrossRefGoogle Scholar
  19. 19.
    Forsberg G, Hernell O, Melgar S, Israelsson A, Hammarstrom S, Hammarstrom ML. Paradoxical coexpression of proinflammatory and down-regulatory cytokines in intestinal T cells in childhood celiac disease. Gastroenterology 2002;123:667–78. doi:10.1053/gast.2002.35355.PubMedCrossRefGoogle Scholar
  20. 20.
    Gianfrani C, Levings MK, Sartirana C, Mazzarella G, Barba G, Zanzi D, et al. Gliadin-specific type 1 regulatory T cells from the intestinal mucosa of treated celiac patients inhibit pathogenic T cells. J Immunol 2006;177:4178–86.PubMedGoogle Scholar
  21. 21.
    Maiuri L, Ciacci C, Ricciardelli I, Vacca L, Raia V, Auricchio S, et al. Association between innate response to gliadin and activation of pathogenic T cells in coeliac disease. Lancet 2003;362:30–7. doi:10.1016/S0140-6736(03)13803-2.PubMedCrossRefGoogle Scholar
  22. 22.
    Londei M, Maiuri L. Gliadin as stimulator adaptive and innate immune responses in celiac disease. J Pediatr Gastroenterol Nutr 2004;39( Suppl 3):S729. doi:10.1097/00005176-200406003-00006.PubMedGoogle Scholar
  23. 23.
    Di Sabatino A, Ciccocioppo R, Cupelli F, Cinque B, Millimaggi D, Clarkson MM, et al. Epithelium derived interleukin 15 regulates intraepithelial lymphocyte Th1 cytokine production, cytotoxicity, and survival in coeliac disease. Gut 2006;55:469–77. doi:10.1136/gut.2005.068684.PubMedCrossRefGoogle Scholar
  24. 24.
    Nikulina M, Habich C, Flohe SB, Scott FW, Kolb H. Wheat gluten causes dendritic cell maturation and chemokine secretion. J Immunol 2004;173:1925–33.PubMedGoogle Scholar
  25. 25.
    Palova-Jelinkova L, Rozkova D, Pecharova B, Bartova J, Sediva A, Tlaskalova-Hogenova H, et al. Gliadin fragments induce phenotypic and functional maturation of human dendritic cells. J Immunol 2005;175:7038–45.PubMedGoogle Scholar
  26. 26.
    Cinova J, Palova-Jelinkova L, Smythies LE, Cerna M, Pecharova B, Dvorak M, et al. Gliadin peptides activate blood monocytes from patients with celiac disease. J Clin Immunol 2007;27:201–9. doi:10.1007/s10875-006-9061-z.PubMedCrossRefGoogle Scholar
  27. 27.
    Smith PD, Ochsenbauer-Jambor C, Smythies LE. Intestinal macrophages: unique effector cells of the innate immune system. Immunol Rev 2005;206:149–59. doi:10.1111/j.0105-2896.2005.00288.x.PubMedCrossRefGoogle Scholar
  28. 28.
    Raki M, Tollefsen S, Molberg O, Lundin KE, Sollid LM, Jahnsen FL. A unique dendritic cell subset accumulates in the celiac lesion and efficiently activates gluten-reactive T cells. Gastroenterology 2006;131:428–38. doi:10.1053/j.gastro.2006.06.002.PubMedCrossRefGoogle Scholar
  29. 29.
    Rhodes J. Evidence for an intercellular covalent reaction essential in antigen-specific T cell activation. J Immunol 1989;143:1482–9.PubMedGoogle Scholar
  30. 30.
    Hill ME, Ferguson DJ, Austyn JM, Newsom-Davis J, Willcox HN. Potent immunostimulatory dendritic cells can be cultured in bulk from progenitors in normal infant and adult myasthenic human thymus. Immunology 1999;97:325–32. doi:10.1046/j.1365-2567.1999.00799.x.PubMedCrossRefGoogle Scholar
  31. 31.
    Frazer AC, Fletcher RF, Ross CA, Shaw B, Sammons HG, Schneider R. Gluten-induced enteropathy: the effect of partially digested gluten. Lancet 1959;2:252–5. doi:10.1016/S0140-6736(59)92051-3.PubMedCrossRefGoogle Scholar
  32. 32.
    Wieser H, Belitz HD. Coeliac active peptides from gliadin: large-scale preparation and characterization. Z Lebensm Unters Forsch 1992;194:229–34. doi:10.1007/BF01198412.PubMedCrossRefGoogle Scholar
  33. 33.
    Mahnke K, Johnson TS, Ring S, Enk AH. Tolerogenic dendritic cells and regulatory T cells: a two-way relationship. J Dermatol Sci 2007;46:159–67. doi:10.1016/j.jdermsci.2007.03.002.PubMedCrossRefGoogle Scholar
  34. 34.
    Lutz MB, Schuler G. Immature, semi-mature and fully mature dendritic cells: which signals induce tolerance or immunity? Trends Immunol 2002;23:445–9. doi:10.1016/S1471-4906(02)022810.PubMedCrossRefGoogle Scholar
  35. 35.
    Royer PJ, Tanguy-Royer S, Ebstein F, Sapede C, Simon T, Barbieux I, et al. Culture medium and protein supplementation in the generation and maturation of dendritic cells. Scand J Immunol 2006;63:401–9. doi:10.1111/j.1365-3083.2006.001757.x.PubMedCrossRefGoogle Scholar
  36. 36.
    Velten FW, Rambow F, Metharom P, Goerdt S. Enhanced T-cell activation and T-cell-dependent IL-2 production by CD83+, CD25high, CD43high human monocyte-derived dendritic cells. Mol Immunol 2007;44:1544–50. doi:10.1016/j.molimm.2006.08.020.PubMedCrossRefGoogle Scholar
  37. 37.
    Coombes JL, Maloy KJ. Control of intestinal homeostasis by regulatory T cells and dendritic cells. Semin Immunol 2007;19:116–26. doi:10.1016/j.smim.2007.01.001.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Maryam Rakhimova
    • 1
  • Birgit Esslinger
    • 1
  • Anja Schulze-Krebs
    • 1
  • Eckhart G. Hahn
    • 1
  • Detlef Schuppan
    • 2
  • Walburga Dieterich
    • 1
  1. 1.Department of Medicine 1University Erlangen-NuernbergErlangenGermany
  2. 2.Division of GastroenterologyBeth Israel Deaconess Medical Center and Harvard Medical SchoolBostonUSA

Personalised recommendations