Journal of Clinical Immunology

, Volume 28, Issue 4, pp 350–360

Human CD8 Responses to a Complete Epitope Set from Preproinsulin: Implications for Approaches to Epitope Discovery

  • Caroline Baker
  • Liliana G. Petrich de Marquesini
  • Amanda J. Bishop
  • Alan J. Hedges
  • Colin M. Dayan
  • F. Susan Wong



In this study, we explored the breadth of CD8 T cell reactivity to preproinsulin (PPI) in type 1 diabetes.

Materials and Methods

We tested a complete peptide set in pools covering all 406 potential 8–11mer epitopes of PPI and 61 algorithm-predicted human leukocyte antigen (HLA)-A2-specific epitopes (15 pools) from islet-specific glucose-6-phophatase catalytic subunit-related protein (IGRP), using a CD8-specific granzyme B enzyme-linked immunosorbent spot assay.


Responses were seen to 64 of the 102 PPI pools in two or more newly diagnosed patients (63%) compared to 11 pools in the control subjects (11%, p < 0.0001, Fisher’s exact test). We identified five pools containing 20 peptides, which distinguished patients from control subjects, most of which had predicted low-affinity binding to HLA class I molecules. In contrast, fewer (5 of 15 = 33%) IGRP peptide pools, selected by higher binding affinity for HLA-A2 (present in seven of eight patients and five of seven control subjects), stimulated responses in two or more patients, and none stimulated responses in more than two control subjects (p = 0.042, Fisher’s exact test).


Thus, we conclude that CD8 T cell reactivity to PPI in patients with type 1 diabetes can be much broader than shown previously and more diverse than seen in control subjects. Furthermore, responses were often stimulated by peptides with low predicted HLA-binding affinities.


Type 1 diabetes autoimmunity human CD8 T cells 


  1. 1.
    Atkinson MA, Eisenbarth GS. Type 1 diabetes: new perspectives on disease pathogenesis and treatment. Lancet 2001;358:221–9.PubMedCrossRefGoogle Scholar
  2. 2.
    Serreze DV, Leiter EH. Genes and cellular requirements for autoimmune diabetes susceptibility in nonobese diabetic mice. Curr Dir Autoimmun 2001;4:31–67.PubMedCrossRefGoogle Scholar
  3. 3.
    Lieberman SM, DiLorenzo TP. A comprehensive guide to antibody and T-cell responses in type 1 diabetes. Tissue Antigens 2003;62:359–77.PubMedCrossRefGoogle Scholar
  4. 4.
    Rathmann S, Rajasalu T, Rosinger S, Schlosser M, Eiermann T, Boehm BO, et al. Preproinsulin-specific CD8+ T cells secrete IFN{gamma} in human type 1 diabetes. Ann NY Acad Sci 2004;1037:22–5.PubMedCrossRefGoogle Scholar
  5. 5.
    Toma A, Haddouk S, Briand JP, Camoin L, Gahery H, Connan F, et al. Recognition of a subregion of human proinsulin by class I-restricted T cells in type 1 diabetic patients. Proc Natl Acad Sci USA 2005;102:10581–6.PubMedCrossRefGoogle Scholar
  6. 6.
    Hassainya Y, Garcia-Pons F, Kratzer R, Lindo V, Greer F, Lemonnier FA, et al. Identification of naturally processed HLA-A2-restricted proinsulin epitopes by reverse immunology. Diabetes 2005;54:2053–9.PubMedCrossRefGoogle Scholar
  7. 7.
    Mallone R, Martinuzzi E, Blancou P, Novelli G, Afonso G, Dolz M, et al. CD8+ T-cell responses identify {beta}-cell autoimmunity in human type 1 diabetes. Diabetes 2007;56:613–21.PubMedCrossRefGoogle Scholar
  8. 8.
    Ou D, Jonsen LA, Metzger DL, Tingle AJ. CD4+ and CD8+ T-cell clones from congenital rubella syndrome patients with IDDM recognize overlapping GAD65 protein epitopes. Implications for HLA class I and II allelic linkage to disease susceptibility. Hum Immunol 1999;60:652–64.PubMedCrossRefGoogle Scholar
  9. 9.
    Panina-Bordignon P, Lang R, van Endert PM, Benazzi E, Felix AM, Pastore RM, et al. Cytotoxic T cells specific for glutamic acid decarboxylase in autoimmune diabetes. J Exp Med 1995;181:1923–7.PubMedCrossRefGoogle Scholar
  10. 10.
    Panagiotopoulos C, Qin H, Tan R, Verchere CB. Identification of a beta-cell-specific HLA class I restricted epitope in type 1 diabetes. Diabetes 2003;52:2647–51.PubMedCrossRefGoogle Scholar
  11. 11.
    Standifer NE, Ouyang Q, Panagiotopoulos C, Verchere CB, Tan R, Greenbaum CJ, et al. Identification of Novel HLA-A*0201-restricted epitopes in recent-onset type 1 diabetic subjects and antibody-positive relatives. Diabetes 2006;55:3061–7.PubMedCrossRefGoogle Scholar
  12. 12.
    Ouyang Q, Standifer NE, Qin H, Gottlieb P, Verchere CB, Nepom GT, et al. Recognition of HLA class I-restricted beta-cell epitopes in type 1 diabetes. Diabetes 2006;55:3068–74.PubMedCrossRefGoogle Scholar
  13. 13.
    Wong FS, Karttunen J, Dumont C, Wen L, Visintin I, Pilip IM, et al. Identification of an MHC class I-restricted autoantigen in type 1 diabetes by screening an organ-specific cDNA library. Nat Med 1999;5:1026–31.PubMedCrossRefGoogle Scholar
  14. 14.
    Kimura K, Kawamura T, Kadotani S, Inada H, Niihira S, Yamano T. Peptide-specific cytotoxicity of T lymphocytes against glutamic acid decarboxylase and insulin in type 1 diabetes mellitus. Diabetes Res Clin Pract 2001;51:173–9.PubMedCrossRefGoogle Scholar
  15. 15.
    Martinez NR, Augstein P, Moustakas AK, Papadopoulos GK, Gregori S, Adorini L, et al. Disabling an integral CTL epitope allows suppression of autoimmune diabetes by intranasal proinsulin peptide. J Clin Invest 2003;111:1365–71.PubMedGoogle Scholar
  16. 16.
    Pinkse GG, Tysma OH, Bergen CA, Kester MG, Ossendorp F, van Veelen PA, et al. Autoreactive CD8 T cells associated with {beta} cell destruction in type 1 diabetes. Proc Natl Acad Sci USA 2005;102:18425–30.PubMedCrossRefGoogle Scholar
  17. 17.
    Arden SD, Zahn T, Steegers S, Webb S, Bergman B, O’Brien RM, et al. Molecular cloning of a pancreatic islet-specific glucose-6-phosphatase catalytic subunit-related protein. Diabetes 1999;48:531–42.PubMedCrossRefGoogle Scholar
  18. 18.
    Verdaguer J, Schmidt D, Amrani A, Anderson B, Averill N, Santamaria P. Spontaneous autoimmune diabetes in monoclonal T cell nonobese diabetic mice. J Exp Med 1997;186:1663–76.PubMedCrossRefGoogle Scholar
  19. 19.
    Lieberman SM, Evans AM, Han B, Takaki T, Vinnitskaya Y, Caldwell JA, et al. Identification of the beta cell antigen targeted by a prevalent population of pathogenic CD8+ T cells in autoimmune diabetes. Proc Natl Acad Sci USA 2003;100:8384–8.PubMedCrossRefGoogle Scholar
  20. 20.
    Wong CP, Li L, Frelinger JA, Tisch R. Early autoimmune destruction of islet grafts is associated with a restricted repertoire of IGRP-specific CD8+ T cells in diabetic nonobese diabetic mice. J Immunol 2006;176:1637–44.PubMedGoogle Scholar
  21. 21.
    Takaki T, Marron MP, Mathews CE, Guttmann ST, Bottino R, Trucco M, et al. HLA-A*0201-restricted T cells from humanized NOD mice recognize autoantigens of potential clinical relevance to type 1 diabetes. J Immunol 2006;176:3257–65.PubMedGoogle Scholar
  22. 22.
    Bingley PJ, Bonifacio E, Williams AJ, Genovese S, Bottazzo GF, Gale EA. Prediction of IDDM in the general population: strategies based on combinations of autoantibody markers. Diabetes 1997;46:1701–10.PubMedCrossRefGoogle Scholar
  23. 23.
    Rammensee H, Bachmann J, Emmerich NP, Bachor OA, Stevanovic S. SYFPEITHI: database for MHC ligands and peptide motifs. Immunogenetics 1999;50:213–9.PubMedCrossRefGoogle Scholar
  24. 24.
    Kaufman DL, Clare-Salzler M, Tian J, Forsthuber T, Ting GS, Robinson P, et al. Spontaneous loss of T-cell tolerance to glutamic acid decarboxylase in murine insulin-dependent diabetes. Nature 1993;366:69–72.PubMedCrossRefGoogle Scholar
  25. 25.
    Tisch R, Yang XD, Singer SM, Liblau RS, Fugger L, McDevitt HO. Immune response to glutamic acid decarboxylase correlates with insulitis in non-obese diabetic mice. Nature 1993;366:72–5.PubMedCrossRefGoogle Scholar
  26. 26.
    Ott PA, Dittrich MT, Herzog BA, Guerkov R, Gottlieb PA, Putnam AL, et al. T cells recognize multiple GAD65 and proinsulin epitopes in human type 1 diabetes, suggesting determinant spreading. J Clin Immunol 2004;24:327–39.PubMedCrossRefGoogle Scholar
  27. 27.
    Moudgil KD, Sercarz EE. Understanding crypticity is the key to revealing the pathogenesis of autoimmunity. Trends Immunol 2005;26:355–9.PubMedCrossRefGoogle Scholar
  28. 28.
    Wong FS, Moustakas AK, Wen L, Papadopoulos GK, Janeway CA Jr. Analysis of structure and function relationships of an autoantigenic peptide of insulin bound to H-2K(d) that stimulates CD8 T cells in insulin-dependent diabetes mellitus. Proc Natl Acad Sci USA 2002;99:5551–6.PubMedCrossRefGoogle Scholar
  29. 29.
    Jarchum I, Baker JC, Yamada T, Takaki T, Marron MP, Serreze DV, et al. In vivo cytotoxicity of insulin-specific CD8+ T-cells in HLA-A*0201 transgenic NOD mice. Diabetes 2007;56:2551–60.PubMedCrossRefGoogle Scholar
  30. 30.
    Olcott AP, Tian J, Walker V, Dang H, Middleton B, Adorini L, et al. Antigen-based therapies using ignored determinants of beta cell antigens can more effectively inhibit late-stage autoimmune disease in diabetes-prone mice. J Immunol 2005;175:1991–9.PubMedGoogle Scholar
  31. 31.
    Blancou P, Mallone R, Martinuzzi E, Severe S, Pogu S, Novelli G, et al. Immunization of HLA class I transgenic mice identifies autoantigenic epitopes eliciting dominant responses in type 1 diabetes patients. J Immunol 2007;178:7458–66.PubMedGoogle Scholar
  32. 32.
    Arif S, Tree TI, Astill TP, Tremble JM, Bishop AJ, Dayan CM, et al. Autoreactive T cell responses show proinflammatory polarization in diabetes but a regulatory phenotype in health. J Clin Invest 2004;113:451–63.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Caroline Baker
    • 1
  • Liliana G. Petrich de Marquesini
    • 2
  • Amanda J. Bishop
    • 2
  • Alan J. Hedges
    • 1
  • Colin M. Dayan
    • 2
  • F. Susan Wong
    • 1
  1. 1.Department of Cellular and Molecular Medicine, School of Medical SciencesUniversity of BristolBristolUK
  2. 2.Henry Wellcome Laboratories for Integrative Neuroscience and EndocrinologyUniversity of BristolBristolUK

Personalised recommendations