Journal of Clinical Immunology

, Volume 27, Issue 2, pp 181–192 | Cite as

The Role of Anti-α-Enolase Autoantibodies in Pathogenicity of Autoimmune-Mediated Retinopathy

Original Paper

Autoantibodies against α-enolase, a glycolytic enzyme, have been frequently associated with visual loss and retinal degeneration in patients with autoimmune and cancer-associated retinopathy; however their role in the pathogenicity of retinopathy has not been fully explained. Thus, we examined the causative role of anti-enolase antibodies on retinal cells. In the in vitro studies reported here, we found that Enol-1 monoclonal antibody against α-enolase significantly inhibited the catalytic function of enolase, which resulted in the depletion of glycolytic ATP. Enol-1 significantly increased intracellular Ca2+, which led to Bax translocation to the mitochondria, and the release of cytochrome c into the cytoplasm—events that correlated with the initiation of apoptosis. Normal IgG did not induce intracellular calcium or reduce cytosolic ATP. L-type voltage-gated calcium channel blockers (nifedipine, D-cis-diltiazem, and verapamil) were effective in blocking the Ab-induced intracellular Ca2+ rise and induction of Bax. Based on these findings we propose that chronic access of autoantibodies to the retina results in the inhibition of enolase catalytic function, depletion of ATP, and elevation in intracellular Ca2+, leading to deregulation of glycolysis in retinal neurons and their destruction.


Autoimmunity enolase autoantibody apoptosis glycolysis neuroimmunology 



We thank Dr. Gail Seigel for the E1A.NR3 retinal neuronal cells. This study was supported by a grant from the National Institutes of Health EY13053 (G.A.).


  1. 1.
    Adamus G, Amundson D, Seigal GM, Machnicki M: Anti-enolase alpha autoantibodies in cancer-associated retinopathy: Epitope mapping and cytotoxicity on retinal cells. J Autoimmun 11:671–677, 1998PubMedCrossRefGoogle Scholar
  2. 2.
    Adamus G, Aptsiauri N, Guy J, Heckenlively J, Flannery J, Hargrave PA: The occurrence of serum autoantibodies against enolase in cancer-associated retinopathy. Clin Immunol Immunopathol 78:120–129, 1996PubMedCrossRefGoogle Scholar
  3. 3.
    Weleber RG, Watzke RC, Shults WT, Trzupek KM, Heckenlively JR, Egan RA, Adamus G: Clinical and electrophysiologic characterization of paraneoplastic and autoimmune retinopathies associated with antienolase antibodies. Am J Ophthalmol 139:780–794, 2005PubMedCrossRefGoogle Scholar
  4. 4.
    Adamus G, Ren G, Weleber RG: Autoantibodies against retinal proteins in paraneoplastic and autoimmune retinopathy. BMC Ophthalmol 4:5, 2004PubMedCrossRefGoogle Scholar
  5. 5.
    Dot C, Guigay J, Adamus G: Anti-alpha-enolase antibodies in cancer-associated retinopathy with small cell carcinoma of the lung. Am J Ophthalmol 139:746–747, 2005PubMedCrossRefGoogle Scholar
  6. 6.
    Gitlits VM, Toh BH, Sentry JW: Disease association, origin, and clinical relevance of autoantibodies to the glycolytic enzyme enolase. J Invest Med 49:138–145, 2001Google Scholar
  7. 7.
    Pratesi F, Moscato S, Sabbatini A, Chimenti D, Bombardieri SPM: Autoantibodies specific for alpha-enolase in systemic autoimmune disorders. J Rheumatol 27:109–115, 2000PubMedGoogle Scholar
  8. 8.
    Akisawa N, Maeda T, Iwasaki S, Onishi S: Identification of an autoantibody against alpha enolase in primary biliary cirrhosis. J Hepatol 26:845–851, 1997PubMedCrossRefGoogle Scholar
  9. 9.
    Orth T, Kellner R, Diekmann O, Faust J, Meyer zum Buschenfelde KH, Mayet WJ: Identification and characterization of autoantibodies against catalase and alpha-enolase in patients with primary sclerosing cholangitis. Clin Exp Immunol 112:507–515, 1998PubMedCrossRefGoogle Scholar
  10. 10.
    Roozendaal C, Zhao MH, Horst G, Lockwood CM, Kleibeuker JH, Limburg PC, Nelis GF, Kallenberg CGM: Catalase and alpha-enolase: Two novel granulocyte autoantigens in inflammatory bowel disease (IBD). Clin Exp Immunol 112:10–16, 1998PubMedCrossRefGoogle Scholar
  11. 11.
    Moodie FD, Leaker B, Cambridge G, Totty NF, Segal AW: Alpha-enolase: A novel autoantigen in ANCA positive vasculitis. Kidney Int 43:675–681, 1993PubMedGoogle Scholar
  12. 12.
    Ishiguro Y, Kato K, Shimizu A, Ito T, Nagaya M: High level of immunoreactive nervous system-specific enolase in sera of patients with neuroblastoma. Clin Chim Acta 121:173–180, 1982PubMedCrossRefGoogle Scholar
  13. 13.
    Jankowska R, Witkowska D, Porebska I, Kuropatwa M, Kurowska E, Gorczyca WA: Serum antibodies to retinal antigens in lung cancer and sarcoidosis. Pathobiology 71:323–328, 2004PubMedCrossRefGoogle Scholar
  14. 14.
    Tojo K, Tokuda T, Yazaki M, Oide T, Nakamura A, Mitsuhashi S, Kaneko K, Maruyama K, Kametani F, Higuchi K, Ikeda S-i: Paraneoplastic sensorimotor neuropathy and encephalopathy associated with anti-α-enolase antibody in a case of gastric adenocarcinoma. Eur Neurol 51:231–233, 2004PubMedCrossRefGoogle Scholar
  15. 15.
    Maruyama I, Ikeda Y, Nakazawa M, Ohguro H: Clinical roles of serum autoantibody against neuron-specific enolase in glaucoma patients. Tohoku J Exp Med 197:125–132, 2002PubMedCrossRefGoogle Scholar
  16. 16.
    Maruyama I, Maeda T, Okisaka S, Mizukawa A, Nakazawa M, Ohguro H: Autoantibody against neuron-specific enolase found in glaucoma patients causes retinal dysfunction in vivo. Jpn J Ophthalmol 46:1–12, 2002PubMedCrossRefGoogle Scholar
  17. 17.
    Maruyama I, Ohguro H, Ikeda Y: Retinal ganglion cells recognized by serum autoantibody against gamma-enolase found in glaucoma patients. Invest Ophthalmol Vis Sci 41:1657–1665, 2000PubMedGoogle Scholar
  18. 18.
    Ikeda Y, Maruyama I, Nakazawa M, Ohguro H: Clinical significance of serum antibody against neuron-specific enolase in glaucoma patients. Jpn J Ophthalmol 46:13–17, 2002PubMedCrossRefGoogle Scholar
  19. 19.
    Pancholi V: Multifunctional alpha-enolase: Its role in diseases. Cell Mol Life Sci 58:902–920, 2001PubMedCrossRefGoogle Scholar
  20. 20.
    Kim J-W, Dang CV: Multifaceted roles of glycolytic enzymes. Trends Biochem Sci 30:142–150, 2005PubMedCrossRefGoogle Scholar
  21. 21.
    Redlitz A, Fowler BJ, Plow EF, Miles LA: The role of an enolase-related molecule in plasminogen binding to cells. Eur J Biochem 227:407–415, 1995PubMedCrossRefGoogle Scholar
  22. 22.
    Arza B, Felez J, Lopez-Alemany R, Miles LA, Munoz-Canoves P: Identification of an epitope of alpha-enolase (a candidate plasminogen receptor) by phage display. Thromb Haemost 78:1097–1103, 1997PubMedGoogle Scholar
  23. 23.
    Jolodar A, Fischer P, Bergmann S, Buttner DW, Hammerschmidt S, Brattig NW: Molecular cloning of an [alpha]-enolase from the human filarial parasite Onchocerca volvulus that binds human plasminogen. Biochim Biophys Acta (BBA)—Gene Struct Expr 1627:111–120, 2003CrossRefGoogle Scholar
  24. 24.
    Subramanian A, Miller DM: Structural analysis of alpha -enolase. Mapping the functional domains involved in down-regulation of the c-myc protooncogene. J Biol Chem 275:5958–5965, 2000PubMedCrossRefGoogle Scholar
  25. 25.
    Feo S, Arcuri D, Piddini E, Passantino R, Giallongo A: ENO1 gene product binds to the c-myc promoter and acts as a transcriptional repressor: relationship with Myc promoter-binding protein 1 (MBP-1). FEBS Lett 473:47–52, 2000PubMedCrossRefGoogle Scholar
  26. 26.
    Nakajima K, Hamanoue M, Takemoto N, Hattori T, Kato K, Kohsaka S: Plasminogen binds speciffically to alpha enolase on rat neuronal plasma membrane. J Neurochem 63:2048–2057, 1994PubMedCrossRefGoogle Scholar
  27. 27.
    Ren G, Adamus G: Cellular targets of anti-alpha-enolase autoantibodies of patients with autoimmune retinopathy. J Autoimmun 23:161–167, 2004PubMedCrossRefGoogle Scholar
  28. 28.
    Seigel GM: Establishment of an E1A-immortalized retinal cell line. In Vitro Cell Dev Biol 32:66–68, 1996Google Scholar
  29. 29.
    Seigel GM, Mutchler AL, Adamus G, Imperato-Kalmar EL: Recoverin expression in the R28 retinal precursor cell line [letter]. In Vitro Cell Dev Biol Anim 33:499–502, 1997PubMedGoogle Scholar
  30. 30.
    Seigel GM, Sun W, Wang J, Hershberger DH, Campbell LM, Salvi RJ: Neuronal gene expression and function in the growth-stimulated R28 retinal precursor cell line. Curr Eye Res 28:257–269, 2004PubMedCrossRefGoogle Scholar
  31. 31.
    Shiraga S, Adamus G: Mechanism of CAR syndrome: Anti-recoverin antibodies are the inducers of retinal cell apoptotic death via the caspase 9- and caspase 3-dependent pathway. J Neuroimmunol 132:72–82, 2002PubMedCrossRefGoogle Scholar
  32. 32.
    Saunders C, Limbird LE: Disruption of microtubules reveals two independent apical targeting mechanisms for G-protein-coupled receptors in polarized renal epithelial cells. J Biol Chem 272:19035–19045, 1997PubMedCrossRefGoogle Scholar
  33. 33.
    Kockskamper J, Zima AV, Blatter LA: Modulation of sarcoplasmic reticulum Ca2 +release by glycolysis in cat atrial myocytes. J Physiol (Lond) 564:697–714, 2005CrossRefGoogle Scholar
  34. 34.
    Adamus G, Webb S, Shiraga S, Duvoisin RM: Anti-recoverin antibodies induce an increase in intracellular calcium in retinal cells. J Autoimmun 26:146–153, 2006PubMedCrossRefGoogle Scholar
  35. 35.
    Scorrano L, Korsmeyer SJ: Mechanisms of cytochrome c release by proapoptotic BCL-2 family members. Biochem Biophys Res Commun 304:437–444, 2003PubMedCrossRefGoogle Scholar
  36. 36.
    Kluck RM, Bossy-Wetzel E, Green DR, Newmeyer DD: The release of cytochrome c from mitochondria: A primary site for Bcl-2 regulation of apoptosis. Science 275:1132–1136, 1997PubMedCrossRefGoogle Scholar
  37. 37.
    Rosen A, Casciola-Rosen L: Autoantigens as substrates for apoptotic proteases: Implications for the pathogenesis of systemic autoimmune disease. Cell Death Differ 6:6–12, 1999PubMedCrossRefGoogle Scholar
  38. 38.
    Arscott PL, Koenig RJ, Kaplan MM, Glick GD, Baker JR, Jr: Unique autoantibody epitopes in an immunodominant region of thyroid peroxidase. J Biol Chem 271:4966–4973, 1996PubMedCrossRefGoogle Scholar
  39. 39.
    Banga JP, McGregor AM: Enzymes as targets for autoantibodies in human autoimmune disease: Relevance to pathogenesis? Autoimmunity 9:177–182, 1991PubMedCrossRefGoogle Scholar
  40. 40.
    Putcha GV, Deshmukh M, Johnson EM, Jr: BAX translocation is a critical event in neuronal apoptosis: Regulation by neuroprotectants, BCL-2, and caspases. J Neurosci 19:7476–7485, 1999PubMedGoogle Scholar
  41. 41.
    Izyumov DS, Avetisyan AV, Pletjushkina OY, Sakharov DV, Wirtz KW, Chernyak BV, Skulachev VP: “Wages of fear”: Transient threefold decrease in intracellular ATP level imposes apoptosis. Biochim Biophys Acta 1658:141–147, 2004PubMedCrossRefGoogle Scholar
  42. 42.
    Hollyfield JG, Rayborn ME: Endocytosis in the inner segment of rod photoreceptors: Analysis of Xenopus laevis retinas using horseradish peroxidase. Exp Eye Res 45:703–719, 1987PubMedCrossRefGoogle Scholar
  43. 43.
    Narayanan R, Ramaswami M: Endocytosis in Drosophila: Progress, possibilities, prognostications. Exp Cell Res 271:28–35, 2001PubMedCrossRefGoogle Scholar
  44. 44.
    Mizukami Y, Iwamatsu A, Aki T, Kimura M, Nakamura K, Nao T, Okusa T, Matsuzaki M, Yoshida K-i, Kobayashi S: ERK1/2 regulates intracellular ATP levels through α-enolase expression in cardiomyocytes exposed to ischemic hypoxia and reoxygenation. J Biol Chem 279:50120–31, 2004Google Scholar
  45. 45.
    Xu R-h, Pelicano H, Zhou Y, Carew JS, Feng L, Bhalla KN, Keating MJ, Huang P: Inhibition of glycolysis in cancer cells: A novel strategy to overcome drug resistance associated with mitochondrial respiratory defect and hypoxia. Cancer Res 65:613–621, 2005PubMedCrossRefGoogle Scholar
  46. 46.
    Danial NN, Gramm CF, Scorrano L, Zhang CY, Krauss S, Ranger AM, Datta SR, Greenberg ME, Licklider LJ, Lowell BB, Gygi SP, Korsmeyer SJ: BAD and glucokinase reside in a mitochondrial complex that integrates glycolysis and apoptosis. Nature 424:952–956, 2003PubMedCrossRefGoogle Scholar
  47. 47.
    Ohguro H, Ogawa K, Maeda T, Maruyama I, Maeda A, Takano Y, Nakazawa M: Retinal dysfunction in cancer-associated retinopathy is improved by ca(2+) antagonist administration and dark adaptation. Invest Ophthalmol Vis Sci 42:2589–2595, 2001PubMedGoogle Scholar
  48. 48.
    Xu KY, Zweier JL, Becker LC: Functional coupling between glycolysis and sarcoplasmic reticulum Ca2+ transport. Circ Res 77:88–97, 1995PubMedGoogle Scholar
  49. 49.
    Massieu L, Haces ML, Montiel T, Hernandez-Fonseca K: Acetoacetate protects hippocampal neurons against glutamate-mediated neuronal damage during glycolysis inhibition. Neuroscience 120:365–378, 2003PubMedCrossRefGoogle Scholar
  50. 50.
    Hernandez-Fonseca K, Massieu L: Disruption of endoplasmic reticulum calcium stores is involved in neuronal death induced by glycolysis inhibition in cultured hippocampal neurons. J Neurosci Res 82:196–205, 2005PubMedCrossRefGoogle Scholar
  51. 51.
    Fox DA, Poblenz AT, He L, Harris JB, Medrano CJ: Pharmacological strategies to block rod photoreceptor apoptosis caused by calcium overload: A mechanistic target-site approach to neuroprotection. Eur J Ophthalmol 13(Suppl 3):S44–S56, 2003PubMedGoogle Scholar
  52. 52.
    Frasson M, Sahel JA, Fabre M, Simonutti M, Dreyfus H, Picaud S: Retinitis pigmentosa: Rod photoreceptor rescue by a calcium-channel blocker in the rd mouse. Nat Med 5:1183–1187, 1999PubMedCrossRefGoogle Scholar
  53. 53.
    Takano Y, Ohguro H, Dezawa M, Ishikawa H, Yamazaki H, Ohguro I, Mamiya K, Metoki T, Ishikawa F, Nakazawa M: Study of drug effects of calcium channel blockers on retinal degeneration of rd mouse. Biochem Biophys Res Commun 313:1015–1022, 2004PubMedCrossRefGoogle Scholar
  54. 54.
    Sato M, Ohguro H, Ohguro I, Mamiya K, Takano Y, Yamazaki H, Metoki T, Miyagawa Y, Ishikawa F, Nakazawa M: Study of pharmacological effects of nilvadipine on RCS rat retinal degeneration by microarray analysis. Biochem Biophys Res Commun 306:826–831, 2003PubMedCrossRefGoogle Scholar
  55. 55.
    Oliver PM, Vass T, Kappler J, Marrack P: Loss of the proapoptotic protein, Bim, breaks B cell anergy. J Exp Med 203:731–741, 2006PubMedCrossRefGoogle Scholar
  56. 56.
    Napankangas U, Lindqvist N, Lindholm D, Hallbook F: Rat retinal ganglion cells upregulate the pro-apoptotic BH3-only protein Bim after optic nerve transection. Brain Res Mol Brain Res 120:30–37, 2003PubMedCrossRefGoogle Scholar
  57. 57.
    Wakabayashi T, Kosaka J, Oshika T: JNK inhibitory kinase is up-regulated in retinal ganglion cells after axotomy and enhances BimEL expression level in neuronal cells. J Neurochem 95:526–536, 2005PubMedCrossRefGoogle Scholar
  58. 58.
    Gomez-Vicente V, Doonan F, Donovan M, Cotter TG: Induction of BIM(EL) following growth factor withdrawal is a key event in caspase-dependent apoptosis of 661W photoreceptor cells. Eur J Neurosci 24:981–990, 2006PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

    • 1
    • 1
    • 1
    • 1
    • 2
  1. 1.Neurological Sciences InstituteOregon Health and Science UniversityBeavertonUSA
  2. 2.Neurological Sciences InstituteOregon Health and Science UniversityBeavertonUSA

Personalised recommendations