Journal of Clinical Immunology

, Volume 27, Issue 1, pp 109–116

The Effect of Natural Killer Cell Killer Ig-Like Receptor Alloreactivity on the Outcome of Bone Marrow Stem Cell Transplantation for Severe Combined Immunodeficiency (SCID)

  • M. D. KELLER
  • D.-F. CHEN
  • S. A. CONDRON
  • N. LIU
  • N. L. REINSMOEN
  • R. H. BUCKLEY
Original Paper

Natural killer (NK) cell alloreactions against recipient cells in the setting of bone marrow transplantation have been associated with decreased rates of graft-versus-host disease (GVHD) and improved survival in transplant recipients with myeloid leukemia. These alloreactions are predicted by the absence of recipient HLA class I ligands for donor inhibitory killer Ig-like receptors (KIR). We hypothesized that donor NK cell alloreactions against recipient cells may affect the development of T and B-cell functions and incidence of GVHD in infants with severe combined immunodeficiency (SCID). Of the 156 patients with SCID who had received related bone marrow transplants without pretransplant chemotherapy or posttransplant GVHD prophylaxis, 137 patient–donor pairs were evaluated for the absence of recipient HLA class I ligands for donor inhibitory KIR. Analysis showed that the absence of a KIR ligand had no effect on the incidence or severity of GVHD (R2 = 0.95, p = 0.84), development of T-cell function (R2 = 1.05, p = 0.69), production of IgA (p = 0.46) or IgM (p = 0.33), or on 5-year survival (R2 = 1.21, p = 0.10). Further, in patients possessing native NK cells, the absence of KIR ligands in donors for recipient-inhibitory KIR did not alter transplantation outcomes. This study suggests that inhibitory KIR/HLA interactions do not play a significant role in bone marrow transplantation for SCID.

KEY WORDS

Natural killer cells Immunodeficiency Killer Ig-like receptors Hematopoietic stem cell transplantation 

References

  1. 1.
    Buckley RH: Molecular defects in human severe combined immunodeficiency and approaches to immune reconstitution. Annu Rev Immunol 22:625–655, 2004PubMedCrossRefGoogle Scholar
  2. 2.
    Ryser O, Morell A, Hitzig W: Primary immunodeficiencies in Switzerland: First report of the national registry in adults and children. J Clin Immunol 8:479–488, 1988PubMedCrossRefGoogle Scholar
  3. 3.
    Myers L, Patel DD, Buck JM, Buckley RH: Hematopoietic stem cell transplantation for severe combined immunodeficiency in the neonatal period leads to superior thymic output and improved survival. Blood 99:872–878, 2002PubMedCrossRefGoogle Scholar
  4. 4.
    Buckley RH, Schiff SE, Schiff RI, Markert ML, Williams LW, Roberts JL, Myers LA, Ward FE: Hematopoietic stem-cell transplantation for the treatment of severe combined immunodeficiency. N Engl J Med 340(7):508–516, 1999PubMedCrossRefGoogle Scholar
  5. 5.
    Barao I, Murphy WJ: The immunobiology of natural killer cells and bone marrow allograft rejection. Biol Blood Marrow Transplant 9(12):727–741, 2003PubMedCrossRefGoogle Scholar
  6. 6.
    Farag S, Fehniger TA, Ruggeri L, Velardi A, Caligiuri MA: Natural killer cell receptors: New biology and insights into the graft-versus-leukemia effect. Blood 100:1935–1947, 2002PubMedCrossRefGoogle Scholar
  7. 7.
    Parham P, McQueen K: Alloreactive killer cells: Hindrance and help for haematopoietic transplants. Nat Rev Immunol 3(2):108–122, 2003PubMedCrossRefGoogle Scholar
  8. 8.
    Raulet D, Vance R, McMahon C: Regulation of the natural killer cell receptor repertoire. Annu Rev Immunol 19:291–330, 2001PubMedCrossRefGoogle Scholar
  9. 9.
    Lanier LL: NK cell recognition. Annu Rev Immunol 23:225–274, 2005PubMedCrossRefGoogle Scholar
  10. 10.
    Gumperz J, Litwin V, Phillips JH, Lanier LL, Parham P: The Bw4 public epitope of HLA-B molecules confers reactivity with natural killer cell clones that express NKB1, a putative HLA receptor. J Exp Med 181(3):1133–1144, 1995PubMedCrossRefGoogle Scholar
  11. 11.
    Parham P: MHC class I molecules and KIRs in human history, health, and survival. Nat Rev Immunol 5:201–214, 2005PubMedCrossRefGoogle Scholar
  12. 12.
    Leonard W: Cytokines and immunodeficiency diseases. Nat Rev Immunol 1(3):200–208, 2001PubMedCrossRefGoogle Scholar
  13. 13.
    Orange JS: Human natural killer cell deficiencies and susceptibility to infection. Microbes Infect 4(15):1545–1558, 2002PubMedCrossRefGoogle Scholar
  14. 14.
    Murphy WJ, Bennett M, Kumar V, Longo DL: Donor-type activated natural killer cells promote marrow engraftment and B cell development during allogeneic bone marrow transplantation. J Immunol 148(9):2953–2960, 1992PubMedGoogle Scholar
  15. 15.
    Gaines AD, Schiff S, Buckley RH: Donor type natural killer cells after haploidentical T-cell depleted bone marrow stem cell transplantation in a patient with adenosine deaminase-deficient severe combined immunodeficiency. Clin Immunol Immunopathol 60(2):299–304, 1991PubMedCrossRefGoogle Scholar
  16. 16.
    Cooley S, McCullar V, Wangen R, Bergemann TL, Spellman S, Weisdorf DJ, Miller JS: KIR reconstitution is altered by T-cells in the graft and correlates with clinical outcomes after unrelated donor transplantation. Blood 106(13):4370–4376, 2005PubMedCrossRefGoogle Scholar
  17. 17.
    Leung W, Iyengar R, Turner V, Lang P, Bader P, Conn P, Niethammer D, Handgretinger R: Determinants of antileukemia effects of allogeneic NK cells. J Immunol 172(1):644–650, 2004PubMedGoogle Scholar
  18. 18.
    Yawata M, Yawata N, Draghi M, Little AM, Partheniou F, Parham P: Roles for HLA and KIR polymorphisms in natural killer cell repetoire selection and modulation of effector function. J Exp Med 203(3):633–645, 2006PubMedCrossRefGoogle Scholar
  19. 19.
    Ruggeri L, Capanni M, Casucci M, Volpi I, Tosti A, Perruccio K, Urbani E, Negrin R, Martelli MF, Velardi A: Role of natural killer cell alloreactivity in HLA-mismatched hematopoietic stem cell transplantation. Blood 94(1):333–339, 1995Google Scholar
  20. 20.
    Ruggeri L, Capanni M, Urbani E, Perruccio K, Schlomchik WD, Tosti A, Posati S, Rogaia D, Frassoni, F, Aversa F, Martelli MF, Velardi A: Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoeitic transplants. Science 295(5562):2097–2100, 2002PubMedCrossRefGoogle Scholar
  21. 21.
    Bornhauser M, Schwerdtfeger R, Martin H, Frank KH, Theuser C, Ehninger G: Role of KIR ligand incompatibility in hematopoietic stem cell transplantation using unrelated donors. Blood 103(7):2860–2861, 2004PubMedCrossRefGoogle Scholar
  22. 22.
    Davies SM, Ruggieri L, DeFor T, Wagner JE, Weisdorf DJ, Miller JS, Velardi A, Blazar BR: Evaluation of KIR ligand incompatibility in mismatched unrelated donor hematopoietic transplants. Blood 100(10):3825–3827, 2002PubMedCrossRefGoogle Scholar
  23. 23.
    Giebel S, Locatelli F, Lamparelli T, Velardi A, Davies S, Frumento G, Maccario R, Bonetti F, Wojnar J, Martinetti M, Frassoni F, Giorgiani G, Bacigalupo A, Holowiecki J: Survival advantage with KIR ligand incompatibility in hematopoietic stem cell transplantation from unrelated donors. Blood 102(3):814–819, 2003PubMedCrossRefGoogle Scholar
  24. 24.
    Hsu KC, Keever-Taylor CA, Wilton A, Pinto C, Heller G, Arkun K, O’Reilly RJ, Horowitz MM, Dupont B: Improved outcome in HLA-identical sibling hematopoietic stem-cell transplantation for acute myelogenous leukemia predicted by KIR and HLA genotypes. Blood 105(12):4878–4884, 2005PubMedCrossRefGoogle Scholar
  25. 25.
    Cudkowicz G, Bennett M: Peculiar immunobiology of bone marrow allografts. I. Graft rejection by heavily irradiated “responder” mice. J Exp Med 134(1):83–102, 1971PubMedCrossRefGoogle Scholar
  26. 26.
    Cudkowicz G, Bennett M: Peculiar immunobiology of bone marrow allografts. II. Rejection of parental grafts by F1 hybrid mice. J Exp Med 134(6):1513–1528, 1971PubMedCrossRefGoogle Scholar
  27. 27.
    Murphy WJ, Kumar V, Bennett M: Rejection of bone marrow allograft by mice with severe combined immunodeficiency (SCID). Evidence that natural killer cells can mediate the specificity of marrow graft rejection. J Exp Med 165(4):1212–1217, 1987PubMedCrossRefGoogle Scholar
  28. 28.
    O’Reilly RJ, Brochstein J, Collins N, Keever C, Kapoor N, Kirkpatrick D, Kernan N, Dupont B, Burns J, Reisner Y: Evaluation of HLA-haplotype disparate parental marrow grafts depleted of T lymphocytes by differential agglutination with a soybean lectin and E-rosette depletion for the treatment of severe combined immunodeficiency. Vox Sang 51:81–86, 1986PubMedGoogle Scholar
  29. 29.
    Dal-Cortivo L, Ouachee-Chardin M, Hirsch I, Blanche S, Fischer A, Cavazzana-Calvo M, Caillat-Zucman S: Does haploidentical transplantation in children with primary immunodeficiencies have the potential to exploit donor NK cell alloreactivity? Bone Marrow Transplant 34(11):945–947, 2004PubMedCrossRefGoogle Scholar
  30. 30.
    Hershfield MS, Buckley RH, Greenberg ML, Melton AL, Schiff R, Hatem C, Kurtzberg J, Markert ML, Kobayashi RH, Kobayashi AL: Treatment of adenosine deaminase deficiency with polyethylene glycol-modified adenosine deaminase (PEG-ADA). N Engl J Med 316(10):589–596, 1987PubMedCrossRefGoogle Scholar
  31. 31.
    Aiuti A, Vai S, Mortellaro A, Casorati G, Ficara F, Andolfi G, Ferrari G, Tabucchi A, Carlucci F, Ochs HD, Notarangelo LD, Roncarolo MG, Bordignon C: Immune reconstitution in ADA-SCID after PBL gene therapy and discontinuation of enzyme replacement. Nat Med 8(5):423–425, 2002PubMedCrossRefGoogle Scholar
  32. 32.
    Glucksberg H, Storb R, Fefer A, Buckner CD, Neiman PE, Clift RA, Lerner KG, Thomas ED: Clinical manifestations of graft-versus-host disease in human recipients of marrow from HLA-matched sibling donors. Transplantation 18(4):295–304, 1974PubMedCrossRefGoogle Scholar
  33. 33.
    Iwasaki T: Recent advances in the treatment of graft-versus-host disease. Clin Med Res 2(4):243–252, 2004PubMedCrossRefGoogle Scholar
  34. 34.
    Couriel D, Caldera H, Champlin R, Komanduri K: Acute graft-versus-host disease: pathophysiology, clinical manifestations, and management. Cancer 101(9):1936–1946, 2004PubMedCrossRefGoogle Scholar
  35. 35.
    Cooper M, Fehniger T, Caligiuri M. The biology of human natural killer cell subsets. Trends Immunol 22(11):633–640, 2001PubMedCrossRefGoogle Scholar
  36. 36.
    Blanca IR, Bere EW, Young HA, Ortaldo JR: Human B cell activation by autologous NK cells is regulated by CD40-CD40 ligand interaction: Role of memory B cells and CD5+ B cells. J Immunol 167(11):6132–6139, 2001PubMedGoogle Scholar
  37. 37.
    Yuan D: Interactions between NK cells and B lymphocytes. Adv Immunol 84:1–84, 2004PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • M. D. KELLER
    • 1
  • D.-F. CHEN
    • 2
  • S. A. CONDRON
    • 3
  • N. LIU
    • 2
  • N. L. REINSMOEN
    • 2
  • R. H. BUCKLEY
    • 1
    • 4
  1. 1.Division of Pediatric Allergy and ImmunologyDuke University Medical CenterDurhamUSA
  2. 2.Clinical Transplantation Immunology LaboratoryDuke University Medical CenterDurhamUSA
  3. 3.Duke School of MedicineDuke University Medical CenterDurhamUSA
  4. 4.Duke University Medical CenterDurhamUSA

Personalised recommendations