Journal of Clinical Immunology

, Volume 27, Issue 1, pp 69–87 | Cite as

Novel Analysis of Clonal Diversification in Blood B Cell and Bone Marrow Plasma Cell Clones in Immunoglobulin Light Chain Amyloidosis


Immunoglobulin light chain amyloidosis (AL) is characterized by a limited clonal expansion of plasma cells and amyloid formation. Here, we report restriction in the diversity of VL gene usage with a dominance of clonally related B cells in the peripheral blood (PB) isotype-specific repertoire of AL patients. A rigorous quantification of lineage trees reveals presence of intraclonal variations in the PB clones compared to the bone marrow (BM) clones, which suggests a common precursor that is still subject to somatic mutation. When compared to normal BM and PB B cells, AL clones showed significant but incomplete impairment of antigenic selection, which could not be detected by conventional R and S mutation analysis. Therefore, graphical analysis of B cell lineage trees and mathematical quantification of tree properties provide novel insights into the process of B cell clonal evolution in AL.


Human B cells cell differentiation repertoire development plasma cells light chain amyloidosis immunoglobulin light chain 



The authors acknowledge the Mayo Dysproteinemia Cell Bank for providing BM and blood samples for the AL and MM patients. The authors thank Michal Barak and Avital Steiman for critical reading of the manuscript, and Ms. Lavonne Knutson for assistance with manuscript preparation. The authors would like to acknowledge the following sources of financial support for this study: the Hematological Malignancies Research Fund (RSA), the Israel Science Foundation (grant number 759/01-1), the Israel Cancer Research Fund, the Human Frontiers Science Program, and the Swedish Foundation for Strategic Research (RM).


  1. 1.
    Gertz MA, Kyle RA: Primary systemic amyloidosis—A diagnostic primer. Mayo Clinic Proc 64:1505–1519, 1989Google Scholar
  2. 2.
    Gertz MA, Lacy MQ, Dispenzieri A: Amyloidosis. Hematol Oncol Clin North Am 13:1211–1233, 1999PubMedCrossRefGoogle Scholar
  3. 3.
    Kyle RA, Greipp PR: Amyloidosis (AL). Clinical and laboratory features in 229 cases. Mayo Clinic Proc 58:665–683, 1983Google Scholar
  4. 4.
    Kyle RA, Gertz MA: Primary systemic amyloidosis: Clinical and laboratory features in 474 cases. Seminars Hematol 32:45–59, 1995Google Scholar
  5. 5.
    Billadeau D, Quam L, Thomas W, Kay N, Greipp P, Kyle R, Oken MM, Van Ness B: Detection and quantitation of malignant cells in the peripheral blood of multiple myeloma patients. Blood 80:1818–1824, 1992PubMedGoogle Scholar
  6. 6.
    Billadeau D, Van Ness B, Kimlinger T, Kyle RA, Therneau TM, Greipp PR, Witzig TE: Clonal circulating cells are common in plasma cell proliferative disorders: A comparison of monoclonal gammopathy of undetermined significance, smoldering multiple myeloma, and active myeloma. Blood 88:289–296, 1996PubMedGoogle Scholar
  7. 7.
    Rawstron AC, Owen RG, Davies FE, Johnson RJ, Jones RA, Richards SJ, Evans PA, Child JA, Smith GM, Jack AS, Morgan GJ: Circulating plasma cells in multiple myeloma: Characterization and correlation with disease stage.[see comment]. Br J Haematol 97:46–55, 1997PubMedCrossRefGoogle Scholar
  8. 8.
    Witzig TE, Dhodapkar MV, Kyle RA, Greipp PR: Quantitation of circulating peripheral blood plasma cells and their relationship to disease activity in patients with multiple myeloma. Cancer 72:108–113, 1993PubMedCrossRefGoogle Scholar
  9. 9.
    Witzig TE: Detection of malignant cells in the peripheral blood of patients with multiple myeloma: Clinical implications and research applications. Mayo Clin Proc 69:903–907, 1994PubMedGoogle Scholar
  10. 10.
    Witzig TE, Gertz MA, Pineda AA, Kyle RA, Greipp PR: Detection of monoclonal plasma cells in the peripheral blood stem cell harvests of patients with multiple myeloma. Br J Haematol 89:640–642, 1995PubMedGoogle Scholar
  11. 11.
    Witzig TE, Kimlinger TK, Ahmann GJ, Katzmann JA, Greipp PR: Detection of myeloma cells in the peripheral blood by flow cytometry. Cytometry 26:113–120, 1996PubMedCrossRefGoogle Scholar
  12. 12.
    Witzig TE, Gertz MA, Lust JA, Kyle RA, Greipp PR: Serial studies of peripheral blood myeloma cells in patients with multiple myeloma: When is the optimal time for stem cell harvest? Leukemia Lymphoma 19:417–422, 1995PubMedGoogle Scholar
  13. 13.
    Rawstron AC, Davies FE, DasGupta R, Ashcroft AJ, Patmore R, Drayson MT, Owen RG, Jack AS, Child JA, Morgan GJ: Flow cytometric disease monitoring in multiple myeloma: The relationship between normal and neoplastic plasma cells predicts outcome after transplantation. Blood 100:3095–3100, 2002PubMedCrossRefGoogle Scholar
  14. 14.
    Gertz MA, Witzig TE, Pineda AA, Greipp PR, Kyle RA, Litzow MR: Monoclonal plasma cells in the blood stem cell harvest from patients with multiple myeloma are associated with shortened relapse-free survival after transplantation. Bone Marrow Transplant 19:337–342, 1997PubMedCrossRefGoogle Scholar
  15. 15.
    Comenzo RL, Michelle D, LeBlanc M, Wally J, Zhang Y, Kica G, Karandish S, Arkin CF, Wright DG, Skinner M, McMannis J: Mobilized CD34+ cells selected as autografts in patients with primary light-chain amyloidosis: Rationale and application. [see comment]. Transfusion 38:60–69, 1998PubMedCrossRefGoogle Scholar
  16. 16.
    Drewinko B, Alexanian R, Boyer H, Barlogie B, Rubinow SI: The growth fraction of human myeloma cells. Blood 57:333–338, 1981PubMedGoogle Scholar
  17. 17.
    Hamburger A, Salmon SE: Primary bioassay of human myeloma stem cells. J Clin Invest 60:846–854, 1977PubMedGoogle Scholar
  18. 18.
    Levy Y, Schmitt C, Tsapis A, Brouet JC, Fermand JP: Phenotype and immunoglobulin gene configuration of blood B cells from patients with multiple myeloma. Clin Exp Immunol 84:435–439, 1991PubMedGoogle Scholar
  19. 19.
    Guikema JE, Vellenga E, Veeneman JM, Hovenga S, Bakkus MH, Klip H, Bos NA: Multiple myeloma related cells in patients undergoing autologous peripheral blood stem cell transplantation. Br J Haematol 104:748–754, 1999PubMedCrossRefGoogle Scholar
  20. 20.
    Billadeau D, Ahmann G, Greipp P, Van Ness B: The bone marrow of multiple myeloma patients contains B cell populations at different stages of differentiation that are clonally related to the malignant plasma cell. J Exp Med 178:1023–1031, 1993PubMedCrossRefGoogle Scholar
  21. 21.
    Pilarski LM, Masellis-Smith A, Szczepek A, Mant MJ, Belch AR: Circulating clonotypic B cells in the biology of multiple myeloma: Speculations on the origin of myeloma. Leukemia Lymphoma 22:375–383, 1996PubMedGoogle Scholar
  22. 22.
    Mellstedt H, Hammarstrom S, Holm G: Monoclonal lymphocyte population in human plasma cell myeloma. Clin Exp Immunol 17:371–384, 1974PubMedGoogle Scholar
  23. 23.
    Epstein J: Myeloma stem cell phenotype. Implications for treatment. Hematol-Oncol Clin North Am 11:43–49, 1997PubMedCrossRefGoogle Scholar
  24. 24.
    Berenson JR, Vescio RA, Said J: Multiple myeloma: The cells of origin—a two-way street. Leukemia 12:121–127, 1998PubMedCrossRefGoogle Scholar
  25. 25.
    Mitterer M, Oduncu F, Lanthaler AJ, Drexler E, Amaddii G, Fabris P, Emmerich B, Coser P, Straka C: The relationship between monoclonal myeloma precursor B cells in the peripheral blood stem cell harvests and the clinical response of multiple myeloma patients.[see comment]. Br J Haematol 106:737–743, 1999PubMedCrossRefGoogle Scholar
  26. 26.
    Davies FE, Rawstron AC, Owen RG, Morgan GJ: Controversies surrounding the clonogenic origin of multiple myeloma.[comment]. Br J Haematol 110:240–241, 2000PubMedCrossRefGoogle Scholar
  27. 27.
    Rawstron AC, Barrans SL, Blythe D, English A, Richards SJ, Fenton JA, Davies FE, Child JA, Jack AS, Morgan GJ: In multiple myeloma, only a single stage of neoplastic plasma cell differentiation can be identified by VLA-5 and CD45 expression.[see comment]. Br J Haematol 113:794–802, 2001PubMedCrossRefGoogle Scholar
  28. 28.
    Bergsagel PL, Smith AM, Szczepek A, Mant MJ, Belch AR, Pilarski LM: In multiple myeloma, clonotypic B lymphocytes are detectable among CD19+ peripheral blood cells expressing CD38, CD56, and monotypic Ig light chain.[erratum appears in Blood 1995 Jun 1; 85(11):3365]. Blood 85:436–447, 1995PubMedGoogle Scholar
  29. 29.
    Rasmussen T, Kastrup J, Knudsen LM, Johnsen HE: High numbers of clonal CD19+ cells in the peripheral blood of a patient with multiple myeloma. Br J Haematol 105:265–267, 1999PubMedGoogle Scholar
  30. 30.
    Mitterer M, Lanthaler AJ, Schnabel B, Svaldi M, Oduncu F, Coser P, Emmerich B, Huemer H, Straka C: Peripheral blood monoclonal B-cells predict the event free survival in multiple myeloma. Leukemia Lymphoma 41:387–395, 2001PubMedGoogle Scholar
  31. 31.
    Perfetti V, Ubbiali P, Magni M, Colli Vignarelli M, Casarini S, Matteucci P, Gianni AM, Merlini G: Cells with clonal light chains are present in peripheral blood at diagnosis and in apheretic stem cell harvests of primary amyloidosis. Bone Marrow Transplant 23:323–327, 1999PubMedCrossRefGoogle Scholar
  32. 32.
    Perfetti V, Vignarelli MC, Bellotti V, Glennie MJ, Zorzoli I, Ubbiali P, Obici L, Massa M, Ippoliti G, Ascari E, Merlini G: Membrane CD22 defines circulating myeloma-related cells as mature or later B cells. Lab Invest 77:333–344, 1997PubMedGoogle Scholar
  33. 33.
    Matsui W, Huff CA, Wang Q, Malehorn MT, Barber J, Tanhehco Y, Smith BD, Civin CI, Jones RJ: Characterization of clonogenic multiple myeloma cells. Blood 103:2332–2336, 2004PubMedCrossRefGoogle Scholar
  34. 34.
    Vescio RA, Hong CH, Cao J, Kim A, Schiller GJ, Lichtenstein AK, Berenson RJ, Berenson JR: The hematopoietic stem cell antigen, CD34, is not expressed on the malignant cells in multiple myeloma. Blood 84:3283–3290, 1994PubMedGoogle Scholar
  35. 35.
    Szczepek AJ, Bergsagel PL, Axelsson L, Brown CB, Belch AR, Pilarski LM: CD34+ cells in the blood of patients with multiple myeloma express CD19 and IgH mRNA and have patient-specific IgH VDJ gene rearrangements. Blood 89:1824–1833, 1997PubMedGoogle Scholar
  36. 36.
    Abraham RS, Geyer SM, Price-Troska TL, Allmer C, Kyle RA, Gertz MA, Fonseca R: Immunoglobulin light chain variable (V) region genes influence clinical presentation and outcome in light chain-associated amyloidosis (AL). Blood 101:3801–3808, 2003PubMedCrossRefGoogle Scholar
  37. 37.
    Fais F, Ghiotto F, Hashimoto S, Sellars B, Valetto A, Allen SL, Schulman P, Vinciguerra VP, Rai K, Rassenti LZ, Kipps TJ, Dighiero G, Schroeder Jr HW, Ferrarini M, Chiorazzi N: Chronic lymphocytic leukemia B cells express restricted sets of mutated and unmutated antigen receptors. J Clin Invest 102:1515–1525, 1998PubMedCrossRefGoogle Scholar
  38. 38.
    Dunn-Walters D, Belelovsky A, Edelman H, Banerjee M, Mehr R: The dynamics of germinal centre selection as measured by graph-theoretical analysis of mutational lineage trees. Develop Immunol 9:233–245, 2003CrossRefGoogle Scholar
  39. 39.
    Dunn-Walters D, Edelman H, Mehr R: Immune system learning and memory quantified by graphical analysis of B-lymphocyte phylogenetic trees. Bio Sys 76:141–155, 2004Google Scholar
  40. 40.
    Mehr R, Edelman H, Sehgal D, Mage R: Analysis of mutational lineage trees from sites of primary and secondary Ig gene diversification in rabbits and chickens. J Immunol 172:4790–4796, 2004PubMedGoogle Scholar
  41. 41.
    Benjamini Y, Hochberg Y: Controlling the false discovery rate: A practical and powerful approach to multiple testing. J Roy Stat Soc 57:289–300, 1995Google Scholar
  42. 42.
    Lossos IS, Tibshirani R, Narasimhan B, Levy R: The inference of antigen selection on Ig genes. J Immunol 165:5122–5126, 2000PubMedGoogle Scholar
  43. 43.
    Kocks C, Rajewsky K: Stepwise intraclonal maturation of antibody affinity through somatic hypermutation. Proc Nat Acad Sci US Am 85:8206–8210, 1988CrossRefGoogle Scholar
  44. 44.
    Manser T: Evolution of antibody structure during the immune response. The differentiative potential of a single B lymphocyte. J Exp Med 170:1211–1230, 1989PubMedCrossRefGoogle Scholar
  45. 45.
    Jacob J, Kelsoe G, Rajewsky K, Weiss U: Intraclonal generation of antibody mutants in germinal centres. [see comment]. Nature 354:389–392, 1991PubMedCrossRefGoogle Scholar
  46. 46.
    Jacob J, Kelsoe G: In situ studies of the primary immune response to (4-hydroxy-3-nitrophenyl)acetyl. II. A common clonal origin for periarteriolar lymphoid sheath-associated foci and germinal centers. J Exp Med 176:679–687, 1992PubMedCrossRefGoogle Scholar
  47. 47.
    Shannon M, Mehr R: Reconciling repertoire shift with affinity maturation: The role of deleterious mutations. J Immunol 162:3950–3956, 1999PubMedGoogle Scholar
  48. 48.
    Jacob J, Przylepa J, Miller C, Kelsoe G: In situ studies of the primary immune response to (4-hydroxy-3-nitrophenyl)acetyl. III. The kinetics of V region mutation and selection in germinal center B cells. J Exp Med 178:1293–1307, 1993PubMedCrossRefGoogle Scholar
  49. 49.
    Banerjee M, Mehr R, Belelovsky A, Spencer J, Dunn-Walters D: Age and tissue-specific differences in human germinal centre B cell selection. Euro J Immunol 32:1947–1957, 2002CrossRefGoogle Scholar
  50. 50.
    Shlomchik MJ, Marshak-Rothstein A, Wolfowicz CB, Rothstein TL, Weigert MG: The role of clonal selection and somatic mutation in autoimmunity. Nature 328:805–811, 1987PubMedCrossRefGoogle Scholar
  51. 51.
    Kepler TB: Codon bias and plasticity in immunoglobulins. Mole Biol Evol 14:637–643, 1997Google Scholar
  52. 52.
    Dunn-Walters DK, Spencer J: Strong intrinsic biases towards mutation and conservation of bases in human IgVH genes during somatic hypermutation prevent statistical analysis of antigen selection. Immunology 95:339–345, 1998PubMedCrossRefGoogle Scholar
  53. 53.
    Berek C: The development of B cells and the B-cell repertoire in the microenvironment of the germinal center. Immunol Rev 126:5–19, 1992PubMedCrossRefGoogle Scholar
  54. 54.
    Levy R, Levy S, Cleary ML, Carroll W, Kon S, Bird J, Sklar J: Somatic mutation in human B-cell tumors. Immunol Rev 96:43–58, 1987PubMedCrossRefGoogle Scholar
  55. 55.
    Jacobs H, Bross L: Towards an understanding of somatic hypermutation. Curr Opin Immunol 13:208–218, 2001PubMedCrossRefGoogle Scholar
  56. 56.
    Perfetti V, Ubbiali P, Vignarelli MC, Diegoli M, Fasani R, Stoppini M, Lisa A, Mangione P, Obici L, Arbustini E, Merlini G: Evidence that amyloidogenic light chains undergo antigen-driven selection. Blood 91:2948–2954, 1998PubMedGoogle Scholar
  57. 57.
    Bakkus MH, Heirman C, Van Riet I, Van Camp B, Thielemans K: Evidence that multiple myeloma Ig heavy chain VDJ genes contain somatic mutations but show no intraclonal variation. Blood 80:2326–2335, 1992PubMedGoogle Scholar
  58. 58.
    Vescio RA, Cao J, Hong CH, Lee JC, Wu CH, Der Danielian M, Wu V, Newman R, Lichtenstein AK, Berenson JR: Myeloma Ig heavy chain V region sequences reveal prior antigenic selection and marked somatic mutation but no intraclonal diversity. J Immunol 155:2487–2497, 1995PubMedGoogle Scholar
  59. 59.
    Taylor BJ, Pittman JA, Seeberger K, Mant MJ, Reiman T, Belch AR, Pilarski LM: Intraclonal homogeneity of clonotypic immunoglobulin M and diversity of nonclinical post-switch isotypes in multiple myeloma: Insights into the evolution of the myeloma clone. Clin Can Res 8:502–513, 2002Google Scholar
  60. 60.
    Kosmas C, Stamatopoulos K, Stavroyianni N, Belessi C, Viniou N, Yataganas X: Molecular analysis of immunoglobulin genes in multiple myeloma. Leukemia Lymphoma 33:253–265, 1999PubMedGoogle Scholar
  61. 61.
    Kuppers R, Klein U, Hansmann ML, Rajewsky K: Cellular origin of human B-cell lymphomas. New England J Med 341:1520–1529, 1999CrossRefGoogle Scholar
  62. 62.
    Bahler DW, Levy R: Clonal evolution of a follicular lymphoma: Evidence for antigen selection. Proc Nat Acad Sci US Am 89:6770–6774, 1992CrossRefGoogle Scholar
  63. 63.
    Matolcsy A, Schattner EJ, Knowles DM, Casali P: Clonal evolution of B cells in transformation from low- to high-grade lymphoma. Euro J Immunol 29:1253–1264, 1999CrossRefGoogle Scholar
  64. 64.
    Jain R, Roncella S, Hashimoto S, Carbone A, Francia di Celle P, Foa R, Ferrarini M, Chiorazzi N: A potential role for antigen selection in the clonal evolution of Burkitt's lymphoma. J Immunol 153:45–52, 1994PubMedGoogle Scholar
  65. 65.
    Billadeau D, Blackstadt M, Greipp P, Kyle RA, Oken MM, Kay N, Van Ness B: Analysis of B-lymphoid malignancies using allele-specific polymerase chain reaction: A technique for sequential quantitation of residual disease. Blood 78:3021–3029, 1991PubMedGoogle Scholar
  66. 66.
    Sahota SS, Garand R, Mahroof R, Smith A, Juge-Morineau N, Stevenson FK, Bataille R: V(H) gene analysis of IgM-secreting myeloma indicates an origin from a memory cell undergoing isotype switch events. Blood 94:1070–1076, 1999PubMedGoogle Scholar
  67. 67.
    Sahota SS, Leo R, Hamblin TJ, Stevenson FK: Myeloma VL and VH gene sequences reveal a complementary imprint of antigen selection in tumor cells.[see comment]. Blood 89:219–226, 1997PubMedGoogle Scholar
  68. 68.
    Sahota SS, Leo R, Hamblin TJ, Stevenson FK: Ig VH gene mutational patterns indicate different tumor cell status in human myeloma and monoclonal gammopathy of undetermined significance. Blood 87:746–755, 1996PubMedGoogle Scholar
  69. 69.
    Szczepek AJ, Seeberger K, Wizniak J, Mant MJ, Belch AR, Pilarski LM: A high frequency of circulating B cells share clonotypic Ig heavy-chain VDJ rearrangements with autologous bone marrow plasma cells in multiple myeloma, as measured by single-cell and in situ reverse transcriptase-polymerase chain reaction. Blood 92:2844–2855, 1998PubMedGoogle Scholar
  70. 70.
    Zaitoun AM: Cell population kinetics of the germinal centres of lymph nodes of BALB/c mice. J Anato 130:131–137, 1980Google Scholar
  71. 71.
    MacLennan IC, Johnson GD, Liu YJ, Gordon J: The heterogeneity of follicular reactions. Res Immunol 142:253–257, 1991PubMedCrossRefGoogle Scholar
  72. 72.
    Razzeca KJ, Pillemer E, Weissman IL, Rouse RV: In situ identification of idiotype-positive cells participating in the immune response to phosphorylcholine. Euro J Immunol 16:393–399, 1986Google Scholar
  73. 73.
    Abraham RS, Geyer SM, Ramirez-Alvarado M, Price-Troska TL, Gertz MA, Fonseca R: Analysis of somatic hypermutation and antigenic selection in the clonal B cell in immunoglobulin light chain amyloidosis (AL). J Clin Immunol 24:340–353, 2004PubMedCrossRefGoogle Scholar
  74. 74.
    Comenzo RL, Zhang Y, Martinez C, Osman K, Herrera GA: The tropism of organ involvement in primary systemic amyloidosis: Contributions of Ig V(L) germ line gene use and clonal plasma cell burden. Blood 98:714–720, 2001PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

    • 1
    • 6
    • 2
    • 3
    • 4
    • 3
    • 3
    • 2
    • 5
    • 5
    • 3
  1. 1.Department of Laboratory Medicine and PathologyMayo Clinic College of MedicineRochesterUSA
  2. 2.Hematology Research LaboratoryMayo ClinicRochesterUSA
  3. 3.Faculty of Life SciencesBar-Ilan UniversityRamat-GanIsrael
  4. 4.Genetics, Cell and Developmental BiologyUniversity of MinnesotaMinnesotaUSA
  5. 5.Division of HematologyMayo Clinic College of MedicineRochesterUSA
  6. 6.Department of Laboratory Medicine and PathologyHilton 210 e, Mayo Clinic College of MedicineRochesterUSA

Personalised recommendations