Journal of Clinical Immunology

, Volume 26, Issue 3, pp 222–232 | Cite as

Covariates of Cervical Cytokine mRNA Expression by Real-Time PCR in Adolescents and Young Women: Effects of Chlamydia trachomatis Infection, Hormonal Contraception, and Smoking

  • Mark E. Scott
  • Yifei Ma
  • Sepideh Farhat
  • Stephen Shiboski
  • Anna-Barbara Moscicki

Measurements of mucosal immune parameters in the uterine cervix are potentially influenced by numerous factors, including infections, endogenous and exogenous hormones, semen, and nicotine and its metabolites in cervical mucus. The objective of this study was to examine correlates of immunoregulatory cytokine mRNA expression in cervical cytology samples in a cross-sectional design. Samples, collected at study entry by cervical cytology brush from 368 women aged 13–21 enrolled in a longitudinal study of the natural history of human papillomavirus (HPV) infection, were tested by quantitative RT-PCR for expression of IFN-γ, IL-4, IL-10, and IL-12. In a multivariate analysis, elevated levels of IFN-γ, IL-10, and IL-12 were significantly (p < 0.05) associated with several variables, including current C. trachomatis infection, recent intercourse, and current oral contraceptive pill use. Suppressed IL-4 and IL-10 levels were associated with cigarette smoking within the last 24 h. Time since last menstrual period did not affect any of the cytokines; in a substudy of weekly cytokine variability, however, IL-10 showed a non-significant trend toward higher levels around the time of menstruation.

Key Words

Adolescent women uterine cervix biologic covariates cytokines mucosal immunity 



This work was supported by PHS grants 2 R01 CA51323-11A1 and 2 R01 CA87905-01 and was carried out in part in the Pediatric Clinical Research Center, University of California, San Francisco, with funds provided by the National Center for Research Resources, 5 M01 RR-01271, U.S. Public Health Service. We would like to thank Roche Molecular Diagnostics for training and supplies to support the HPV DNA testing. We also thank Dr. David Ginzinger for his kind assistance in developing the quantitative RT‐PCR cytokine assays.


  1. 1.
    Schiffman MH, Bauer HM, Hoover RN, Glass AG, Cadell DM, Rush BB, Scott DR, Sherman ME, Kurman RJ, Wacholder S, Stanton CK, Manos MM: Epidemiologic evidence showing that human papillomavirus infection causes most cervical intraepithelial neoplasia. J Natl Cancer Inst 85(12):958–964, 1993PubMedCrossRefGoogle Scholar
  2. 2.
    Bosch FX, Manos MM, Muñoz N, Sherman M, Jansen AM, Peto J, Schiffman MH, Moreno V, Kurman R, Shah KV, International Biological Study on Cervical Cancer (IBSCC) Study Group: Prevalence of human papillomavirus in cervical cancer: A worldwide perspective [see comments]. J Natl Cancer Inst 87(11):796–802, 1995PubMedCrossRefGoogle Scholar
  3. 3.
    Ho GY, Bierman R, Beardsley L, Chang CJ, Burk RD: Natural history of cervicovaginal papillomavirus infection in young women. N Engl J Med 338(7):423–428, 1998PubMedCrossRefGoogle Scholar
  4. 4.
    Moscicki AB, Hills N, Shiboski S, Powell K, Jay N, Hanson E, Miller S, Clayton L, Farhat S, Broering J, Darragh T, Palefsky J: Risks for incident human papillomavirus infection and low-grade squamous intraepithelial lesion development in young females. JAMA 285(23):2995–3002, 2001PubMedCrossRefGoogle Scholar
  5. 5.
    Moscicki AB, Shiboski S, Broering J, Powell K, Clayton L, Jay N, Darragh TM, Brescia R, Kanowitz S, Miller SB, Stone J, Hanson E, Palefsky J: The natural history of human papillomavirus infection as measured by repeated DNA testing in adolescent and young women. J Pediatr 132(2):277–284, 1998PubMedCrossRefGoogle Scholar
  6. 6.
    Scott M, Nakagawa M, Moscicki AB: Cell-mediated immune response to human papillomavirus infection. Clin Diagn Lab Immunol 8(2):209–220, 2001PubMedCrossRefGoogle Scholar
  7. 7.
    Romagnani S: Lymphokine production by human T cells in disease states. Annu Rev Immunol 12(227):227–257, 1994PubMedCrossRefGoogle Scholar
  8. 8.
    Locksley RM, Pingel S, Lacy D, Wakil AE, Bix M, Fowell DJ: Susceptibility to infectious diseases: Leishmania as a paradigm. J Infect Dis 179(Suppl. 2):S305–S308, 1999PubMedCrossRefGoogle Scholar
  9. 9.
    Murphy KM, Reiner SL: The lineage decisions of helper T cells. Nat Rev Immunol 2(12):933–944, 2002PubMedCrossRefGoogle Scholar
  10. 10.
    Trinchieri G: Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat Rev Immunol 3(2):133–146, 2003PubMedCrossRefGoogle Scholar
  11. 11.
    Scott M, Stites DP, Moscicki AB: Th1 cytokine patterns in cervical human papillomavirus infection. Clin Diagn Lab Immunol 6(5):751–755, 1999PubMedGoogle Scholar
  12. 12.
    Reddy BS, Rastogi S, Das B, Salhan S, Verma S, Mittal A: Cytokine expression pattern in the genital tract of Chlamydia trachomatis positive infertile women—Implication for T-cell responses. Clin Exp Immunol 137(3):552–558, 2004PubMedCrossRefGoogle Scholar
  13. 13.
    Jeremias J, Mockel S, Witkin SS: Human semen induces interleukin 10 and 70 kDa heat shock protein gene transcription and inhibits interferon-gamma messenger RNA production in peripheral blood mononuclear cells. Mol Hum Reprod 4(11):1084–1088, 1998PubMedCrossRefGoogle Scholar
  14. 14.
    Kelly RW, Carr GG, Critchley HO: A cytokine switch induced by human seminal plasma: An immune modulation with implications for sexually transmitted disease. Hum Reprod 12(4):677–681, 1997PubMedCrossRefGoogle Scholar
  15. 15.
    Gravitt PE, Hildesheim A, Herrero R, Schiffman M, Sherman ME, Bratti MC, Rodriguez AC, Morera LA, Cardenas F, Bowman FP, Shah KV, Crowley-Nowick PA: Correlates of IL-10 and IL-12 concentrations in cervical secretions. J Clin Immunol 23(3):175–183, 2003PubMedCrossRefGoogle Scholar
  16. 16.
    Shrier LA, Bowman FP, Lin M, Crowley-Nowick PA: Mucosal immunity of the adolescent female genital tract. J Adolesc Health 32(3):183–186, 2003PubMedCrossRefGoogle Scholar
  17. 17.
    Kutteh WH, Moldoveanu Z, Mestecky J: Mucosal immunity in the female reproductive tract: Correlation of immunoglobulins, cytokines, and reproductive hormones in human cervical mucus around the time of ovulation. AIDS Res Hum Retroviruses 14(Suppl. 1):S51–S55, 1998PubMedGoogle Scholar
  18. 18.
    Moore TO, Moore AY, Carrasco D, Vander Straten M, Arany I, Au W, Tyring SK: Human papillomavirus, smoking, and cancer. J Cutan Med Surg 5(4):323–328, 2001PubMedCrossRefGoogle Scholar
  19. 19.
    Gravitt PE, Peyton CL, Alessi TQ, Wheeler CM, Coutlee F, Hildesheim A, Schiffman MH, Scott DR, Apple RJ: Improved amplification of genital human papillomaviruses. J Clin Microbiol 38(1):357–361, 2000PubMedGoogle Scholar
  20. 20.
    Gravitt PE, Peyton CL, Apple RJ, Wheeler CM: Genotyping of 27 human papillomavirus types by using L1 consensus PCR products by a single-hybridization, reverse line blot detection method. J Clin Microbiol 36(10):3020–3027, 1998PubMedGoogle Scholar
  21. 21.
    Ting Y, Manos MM: Detection and typing of genital human papillomavirus. In PCR Protocols: A Guide to Methods and Applications, M Innis, D Gelfand, J Sninsky, T White (eds). San Diego, California, Academic Press, 1990, pp 356–367Google Scholar
  22. 22.
    Molecular Research Center Inc.: TRI Reagent—RNA, DNA, protein isolation reagent. Manufacturer's protocol, 1995Google Scholar
  23. 23.
    Chomczynski P, Mackey K: Substitution of chloroform by bromochloropropane in the single-step method of RNA isolation. Anal Biochem 225(1):163–164, 1995PubMedCrossRefGoogle Scholar
  24. 24.
    Chomczynski P, Mackey K: Modification of the TRI reagent procedure for isolation of RNA from polysaccharide- and proteoglycan-rich sources. Biotechniques 19(6):942–945, 1995PubMedGoogle Scholar
  25. 25.
    Wilfinger WW, Mackey K, Chomczynski P: Effect of pH and ionic strength on the spectrophotometric assessment of nucleic acid purity. Biotechniques 22(3):474–476, 478–481, 1997PubMedGoogle Scholar
  26. 26.
    Ginzinger DG: Gene quantification using real-time quantitative PCR: An emerging technology hits the mainstream. Exp Hematol 30(6):503–512, 2002PubMedCrossRefGoogle Scholar
  27. 27.
    Box GEP, Cox DR: An analysis of transformations. J R Stat Soc Ser B (Methodological) 26:211–246, 1964Google Scholar
  28. 28.
    Fox HS, Bond BL, Parslow TG: Estrogen regulates the IFN-gamma promoter. J Immunol 146(12):4362–4367, 1991PubMedGoogle Scholar
  29. 29.
    Karpuzoglu-Sahin E, Hissong BD, Ansar Ahmed S: Interferon-gamma levels are upregulated by 17-beta-estradiol and diethylstilbestrol. J Reprod Immunol 52(1–2):113–127, 2001PubMedCrossRefGoogle Scholar
  30. 30.
    Maret A, Coudert JD, Garidou L, Foucras G, Gourdy P, Krust A, Dupont S, Chambon P, Druet P, Bayard F, Guery JC: Estradiol enhances primary antigen-specific CD4 T cell responses and Th1 development in vivo. Essential role of estrogen receptor alpha expression in hematopoietic cells. Eur J Immunol 33(2):512–521, 2003PubMedCrossRefGoogle Scholar
  31. 31.
    Nakaya M, Yamasaki M, Miyazaki Y, Tachibana H, Yamada K: Estrogenic compounds suppressed interferon-gamma production in mouse splenocytes through direct cell–cell interaction. In Vitro Cell Dev Biol Anim 39(8–9):383–387, 2003PubMedCrossRefGoogle Scholar
  32. 32.
    Muñoz N, Bosch FX, de Sanjosé S, Shah KV: The role of HPV in the etiology of cervical cancer. Mutat Res 305(2):293–301, 1994PubMedGoogle Scholar
  33. 33.
    Ernst P: Review article: The role of inflammation in the pathogenesis of gastric cancer. Aliment Pharmacol Ther 13(Suppl. 1):13–18, 1999PubMedCrossRefGoogle Scholar
  34. 34.
    Castellsagué X, Bosch FX, Muñoz N: Environmental co-factors in HPV carcinogenesis. Virus Res 89(2):191–199, 2002PubMedCrossRefGoogle Scholar
  35. 35.
    Poppe WA, Ide PS, Drijkoningen MP, Lauweryns JM, Van Assche FA: Tobacco smoking impairs the local immunosurveillance in the uterine cervix. An immunohistochemical study. Gynecol Obstet Invest 39(1):34–38, 1995PubMedCrossRefGoogle Scholar
  36. 36.
    Ohga S, Nomura A, Takada H, Ihara K, Kawakami K, Yanai F, Takahata Y, Tanaka T, Kasuga N, Hara T: Epstein-Barr virus (EBV) load and cytokine gene expression in activated T cells of chronic active EBV infection. J Infect Dis 183(1):1–7, 2001PubMedCrossRefGoogle Scholar
  37. 37.
    Härtel C, Bein G, Kirchner H, Kluter H: A human whole-blood assay for analysis of T-cell function by quantification of cytokine mRNA. Scand J Immunol 49(6):649–654, 1999PubMedCrossRefGoogle Scholar
  38. 38.
    Brink N, Szamel M, Young AR, Wittern KP, Bergemann J: Comparative quantification of IL-1beta, IL-10, IL-10r, TNFalpha and IL- 7 mRNA levels in UV-irradiated human skin in vivo. Inflamm Res 49(6):290–296, 2000PubMedCrossRefGoogle Scholar
  39. 39.
    Yawalkar N, Karlen S, Egli F, Brand CU, Graber HU, Pichler WJ, Braathen LR: Down-regulation of IL-12 by topical corticosteroids in chronic atopic dermatitis. J Allergy Clin Immunol 106(5 Pt. 1):941–947, 2000PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Mark E. Scott
    • 1
    • 3
  • Yifei Ma
    • 1
  • Sepideh Farhat
    • 1
  • Stephen Shiboski
    • 2
  • Anna-Barbara Moscicki
    • 1
  1. 1.Department of Pediatrics, Division of Adolescent MedicineUniversity of CaliforniaSan FranciscoUSA
  2. 2.Department of Epidemiology and Biostatistics, Division of BiostatisticsUniversity of CaliforniaSan FranciscoUSA
  3. 3.University of CaliforniaSan FranciscoUSA

Personalised recommendations