Protective Molecules–C-Reactive Protein (CRP), Serum Amyloid P (SAP), Pentraxin3 (PTX3), Mannose-Binding Lectin (MBL), and Apolipoprotein A1 (Apo A1), and Their Autoantibodies: Prevalence and Clinical Significance in Autoimmunity

  • Martine Szyper Kravitz
  • Milena Pitashny
  • Yehuda Shoenfeld
Article

Abstract

Apoptotic defects and impaired clearance of cellular debris are considered key events in the development of autoimmunity, as they can contribute to autoantigen overload, and may initiate an autoimmune response. The pentraxins are a group of highly conserved proteins including the short pentraxins, C-reactive protein (CRP) and serum amyloid-P (SAP), and the long pentraxin-3 (PTX3), which are all involved in innate immunity and in acute-phase responses. Mannan-binding lectin (MBL) is an activator of the complement system, and Apolipoprotein A-1 (Apo A-1) is pivotal in the cholesterol homeostasis and has anti-inflammatory properties. In addition to their role in innate immunity and inflammation, each of these five proteins participates in the removal of damaged and apoptotic cells. In this review, we discuss the clinical significance of different levels of these proteins, their role in the induction or protection from autoimmunity, and the presence of specific autoantibodies against them in the different autoimmune diseases.

Key Words

Acute-phase proteins anti-CRP anti-SAP anti-PTX3 anti-MBL anti ApoA1 autoimmunity 

References

  1. 1.
    Tishler M, Shoenfeld Y: Vaccinaton may be associated with autoimmune diseases. Isr Med Assoc J 6:430–432, 2004PubMedGoogle Scholar
  2. 2.
    Bach JF: The effects of infections on susceptibility to autoimmune and allergic diseases. N Engl J Med 347:911–920, 2002PubMedCrossRefGoogle Scholar
  3. 3.
    Yoon JW: The role of viruses and environmental factors in the induction of diabetes. Curr Top Microbiol Immunol 164:95–123, 1990PubMedGoogle Scholar
  4. 4.
    Amital H, Shoenfeld Y: Autoimmunity and autoimmune diseases such as systemic lupus erythematosus. In Systemic Lupus Erythematosus, Robert G Lahita (ed). Amsterdam, Elsevier, 2004, pp 3–27Google Scholar
  5. 5.
    Shoenfeld Y, Isenberg DA: The mosaic of autoimmunity. Immunol Today 10:123–126, 1989PubMedCrossRefGoogle Scholar
  6. 6.
    Shoenfeld Y, Isenberg DA: The Mosaic of Autoimmunity. Amsterdam, Elsevier, 1989Google Scholar
  7. 7.
    Mevorach D, Zhou JL, Song X, Elkon KB: Systemic exposure to irradiated apoptotic cells induces autoantibody production. J Exp Med 188:387–392, 1998PubMedGoogle Scholar
  8. 8.
    Kalden J: Apoptosis in systemic autoimmunity. Autoimmun Rev 3:S9–S10, 2004PubMedCrossRefGoogle Scholar
  9. 9.
    Nauta AJ, Daha MR, Kootern C, Roos A: Recognition and clearance of apoptotic cells: A role for complement and pentraxins. Trends Immunol 24:148–153, 2003PubMedCrossRefGoogle Scholar
  10. 10.
    Emsley J, White HE, O'Hara BP, Oliva G, Srinivasan N, Tickle IJ, Blundell TL, Pepys MB, Wood SP: Structure of pentameric human serum amyloid P component. Nature 367:338–345, 1994PubMedCrossRefGoogle Scholar
  11. 11.
    Du Clos TW: Function of C-reactive protein. Ann Med 32:274–278, 2000PubMedCrossRefGoogle Scholar
  12. 12.
    Saevarsdottir S, Vikingsdottir T, Valdimarsson H: The potential role of mannan-binding lectin in the clearance of self-components including immune complexes. Scand J Immunol 60:23–29, 2004PubMedCrossRefGoogle Scholar
  13. 13.
    Burger D, Dayer JM: High-density lipoprotein-associated apolipoprotein A-I: The missing link between infection and chronic inflammation? Autoimmun Rev 1:111–117, 2002PubMedCrossRefGoogle Scholar
  14. 14.
    Bickerstaff MCM, Botto M, Hutchinson W, Herbert J, Tennent GA, Bybee A, Mitchell DA, Cook HT, Butler PJ, Walport MJ, Pepys MB: Serum amyloid P component controls chromatin degradation and prevents antinuclear autoimmunity. Nat Med 5:694–697, 1999PubMedGoogle Scholar
  15. 15.
    DuClos TW, Zlock L, Hicks PS, Mold C: Decreased autoantibody levels and enhanced survival of (NZB X NZW) F1 mice treated with C-reactive protein. Clin Immunol Immunopathol 70:22–27, 1994Google Scholar
  16. 16.
    Szalai AJ, Weaver CT, McCrory MA, van Ginkel FW, Reiman RM, Kearney JF, Marion TN, Volanakis JE: Delayed lupus onset in (NZB x NZW)F1 mice expressing a human C-reactive protein transgene. Arthritis Rheum 48:1602–1611, 2003PubMedCrossRefGoogle Scholar
  17. 17.
    Rodriguez W, Mold C, Katavanovski M, Hutt J, Marnell LL, DuClos TW: Reversal of ongoing proteinuria in autoimmune mice by treatment with CRP. Arthritis Rheum 52:642–650, 2005PubMedCrossRefGoogle Scholar
  18. 18.
    Pepys MB, Lanham JG, de Beer FC: C-reactive protein in SLE. Clin Rheum Dis 8:91–103, 1982PubMedGoogle Scholar
  19. 19.
    Zandman-Goddard G, Blank M, Langevitz P, Slutsky L, Pras M, Levy Y, Shovman O, Witte T, Doria A, Rovensky J, Shoenfeld Y: Anti-serum amyloid P (SAP) antibodies in SLE patients correlate with disease activity. Ann Rheum Dis 2005, Jul 13[Epub ahead of print]Google Scholar
  20. 20.
    Pepys MB, Hirschfeld M: C-reactive protein: A critical update. J Clin Invest 111:1805–1812, 2003PubMedCrossRefGoogle Scholar
  21. 21.
    Moser KL, Neas BR, Salmon JE, Yu H, Gray-McGuire C, Asundi N, Bruner GR, Fox J, Kelly J, Henshall S, Bacino D, Dietz M, Hogue R, Koelsch G, Nightingale L, Shaver T, Abdou NI, Albert DA, Carson C, Petri M, Treadwell EL, James JA, Harley JB: Genome scan of human systemic lupus erythematosus: Evidence for linkage on chromosome 1q in African-American pedigrees. Proc Natl Acad Sci USA 95:14869–14874, 1998PubMedCrossRefGoogle Scholar
  22. 22.
    Shai R, Quismorio FP, Li L, Kwon OJ, Morrison J, Wallace DJ, Neuwelt CM, Brautbar C, Gauderman WJ, Jacob CO: Genome-wide screen for systemic lupus erythematosus susceptibility genes in multiplex families. Hum Mol Genet 8:639–644, 1999PubMedCrossRefGoogle Scholar
  23. 23.
    Du Clos TW, Mold C: C-reactive protein. An activator of innate immunity and a modulator of adaptive immunity. Immunol Res 30:261–277, 2004PubMedGoogle Scholar
  24. 24.
    Zhang D, Jiang SL, Rzewnicki D, Samols D, Kushner I: The effects of interleukin-1 on C-reactive protein expression in Hep3B cells is exerted at the transcriptional level. Biochem J 310:143–148, 1995PubMedGoogle Scholar
  25. 25.
    Hirshfeld GM, Pepys MB: C-reactive protein and cardiovascular disease: New insights from an old molecule. Q J Med 96:793–807, 2003Google Scholar
  26. 26.
    Szalai AJ: The antimicrobial activity of C-reactive protein. Microbes Infect 4:201–205, 2002PubMedCrossRefGoogle Scholar
  27. 27.
    Du Clos: The interaction of C-reactive protein and serum amyloid P component with nuclear antigens. Med Biol Rep 23:253–260, 1996Google Scholar
  28. 28.
    Pepys MB, Booth SE, Tennent GA, Butler PJG, Williams DG: Binding of pentraxins to different nuclear structures: C-reactive protein binds to small ribonucleoprotein particles, serum amyloid P component binds chromatin and nucleoli. Clin Exp Immunol 97:152–157, 1994PubMedGoogle Scholar
  29. 29.
    Gershov D, Kim SJ, Brot N, Elkon KB: C-reactive protein binds to apoptotic cells, protects the cells from assembly of the terminal complement components, and sustain anti-inflammatory innate immune response: Implications for systemic autoimmunity. J Exp Med 192:1353–1363, 2000PubMedCrossRefGoogle Scholar
  30. 30.
    Szalai AJ, van Ginkel FW, Wang Y, McGhee JR, Volanakis JE: Complement-dependent acute-phase expression of C-reactive protein and serum amyloid P component. J Immunol 165:1030–1035, 2000PubMedGoogle Scholar
  31. 31.
    Xia D, Samols D: Transgenic mice expressing rabbit C-reactive protein are resistant to endotoxemia. Proc Natl Acad Sci USA 94:2575–2580, 1997PubMedGoogle Scholar
  32. 32.
    Heuertz RM, Xia D, Samols D, Webster RO: Inhibition of C5a des Arg-induced neutrophil alveolitis in transgenic mice expressing C-reactive protein. Am J Physiol 266:L649–L654, 1994PubMedGoogle Scholar
  33. 33.
    Lin CS, Xia D, Yun JS, Wagner T, Magnuson T, Mold C, Samols D: Expression of rabbit C-reactive protein in transgenic mice. Immunol Cell Biol 73:521–531, 1995PubMedGoogle Scholar
  34. 34.
    Arici M, Walls J: End-stage renal disease, atherosclerosis, and cardiovascular mortality: Is C-reactive protein the missing link? Kidney Int 59:407–414, 2001PubMedCrossRefGoogle Scholar
  35. 35.
    Russel AI, Cunninghame Graham DS, Shepherd C, Roberton CA, Whittaker J, Meeks J, Powell RJ, Isenberg DA, Walport MJ, Vyse TJ: Polymorphism at the C-reactive protein locus influences gene expression and predisposes to systemic lupus erythematosus. Hum Mol Genet 13:137–147, 2004Google Scholar
  36. 36.
    Sjowall C, Eriksson P, Almer S, Skogh T: Autoantibodies to C-reactive protein is a common finding in SLE, but not in primary Sjogren syndrome, rheumatoid arthritis or inflammatory bowel disease. J Autoimmun 19:155–160, 2002PubMedGoogle Scholar
  37. 37.
    Bell SA, Faust H, Schmid A, Meurer M: Autoantibodies to C-reactive protein (CRP) and other acute-phase proteins in systemic lupus erythematosus. Clin Exp Immunol 113:327–332, 1998PubMedCrossRefGoogle Scholar
  38. 38.
    Sjowall C, Bengtsson AA, Sturfel G, Skogh T: Serum levels of autoantibodies against monomeric C-reactive protein are correlated with disease activity in systemic lupus erythematosus. Arthritis Res Ther 6:R87–R94, 2004Google Scholar
  39. 39.
    Ogden CA, Elkon KB: Single-dose therapy for lupus nephritis: C-reactive protein, nature's own dual scavenger and immunosuppressant. Arhtritis Rheum 52:378–381, 2005Google Scholar
  40. 40.
    Zahedi K: Characterization of the binding of serum amyloid P to laminin. J Biol Chem 272:2143–2148, 1997PubMedGoogle Scholar
  41. 41.
    Lin BF, KU NO, Zahedi K, Whitehead AS, Mortensen RF: IL-1 and IL-6 mediate increased production and synthesis by hepatocytes of acute-phase serum amyloid P-component (SAP). Inflammation 14:297–313, 1990PubMedCrossRefGoogle Scholar
  42. 42.
    Noursadeghi M, Bickerstaff MC, Galimore JR, Herbert J, Cohen J, Pepys MB: Role of serum amyloid P component in bacterial infection: Protection of the host or protection of the pathogen. Proc Natl Acad Sci USA 97:14584–14589, 2000PubMedCrossRefGoogle Scholar
  43. 43.
    Gerlanda C, Bottazzi B, Bastone A, Mantovani A: Pentraxins at the crossroads between innate immunity, inflammation, matrix deposition, and female fertility. Ann Rev Immunol 23:337–366, 2005Google Scholar
  44. 44.
    Rordorf C, Schnebli HP, Baltz M, Tennent GA, Pepys MB: The acute phase response in (NZB X NZW) F1 and MRL/1 mice. J Exp Med 156:1268–1273, 1982PubMedCrossRefGoogle Scholar
  45. 45.
    Morgan BP, Walport MJ: Complement deficiency and disease. Immunol Today 12:301–306, 1991PubMedCrossRefGoogle Scholar
  46. 46.
    Botto M, Dell'Agnola C, Bygrave AE, Thompson EM, Cook T, Petry F, Loos M, Pandolfi PP, Walport MJ: Homozygous C1q deficiency causes glomerulonephritis associated with multiple apoptotic bodies. Nat Genet 19:56–59, 1998PubMedGoogle Scholar
  47. 47.
    Mantovani A, Garlanda C, Bottazzi B: Pentraxin 3, a non-redundant soluble pattern recognition receptor involved in innate immunity. Vaccine 21 Suppl 2:S43–S47, 2003Google Scholar
  48. 48.
    Bottazzi B, Vouret-Craviari V, Bastone A, De Gioia L, Matteucci C, Peri G, Spreafico F, Pausa M, D'Ettorre C, Gianazza E, Tagliabue A, Salmona M, Tedesco F, Introna M, Mantovani A: Multimer formation and ligand recognition by the long pentraxin PTX3—similarities and differences with the short pentraxins C-reactive protein and serum amyloid P component. J Biol Chem 272:32817–32823, 1997PubMedCrossRefGoogle Scholar
  49. 49.
    Muller B, Peri G, Doni A, Torri V, Landmann R, Bottazzi B, Mantovani A: Circulating levels of the long pentraxin PTX3 correlate with severity of infection in critically ill patients. Crit Care Med 29:1404–1407, 2001PubMedGoogle Scholar
  50. 50.
    Rovere P, Peri G, Fazzini F, Bottazzi B, Doni A, Bondanza A, Zimmermann VS, Garlanda C, Fascio U, Sabbadini MG, Rugarli C, Mantovani A, Manfredi AA: The long pentraxin PTX3 binds to apoptotic cells and regulates their clearance by antigen-presenting dendritic cells. Blood 96:4300–4306, 2000PubMedGoogle Scholar
  51. 51.
    Nauta AJ, Bottazzi B, Mantovani A, Salvatori G, Kishore U, Schwaeble WJ, Gingras AR, Tzima S, Vivanco F, Egido J, Tijsma O, Hack EC, Daha MR, Roos A: Biochemical and functional characterization of the interaction between pentraxin 3 and C1q. Eur J Immunol 33:465–473, 2003PubMedGoogle Scholar
  52. 52.
    Garlanda C, Hirsch E, Bozza S, Salustri A, De Acetis M, Nota R, Maccagno A, Riva F, Bottazzi B, Peri G, Doni A, Vago L, Botto M, De Santis R, Carminati P, Siracusa G, Altruda F, Vecchi A, Romani L, Mantovani A: Non-redundant role of the long pentraxin PTX3 in anti-fungal innate immune response. Nature 420:182–186, 2002PubMedCrossRefGoogle Scholar
  53. 53.
    Peri G, Introna M, Corradi D, Iacuitti G, Signorini S, Avanzini F, Pizzetti F, Maggioni AP, Moccetti T, Metra M, Cas LD, Ghezzi P, Sipe JD, Re G, Olivetti G, Mantovani A, Latini R: PTX3, A prototypical long pentraxin, is an early indicator of acute myocardial infarction in humans. Circulation 102:636–641, 2000PubMedGoogle Scholar
  54. 54.
    Latini R, Maggioni AP, Peri G, Gonzini L, Lucci D, Mocarelli P, Vago L, Pasqualini F, Signorini S, Soldateschi D, Tarli L, Schweiger C, Fresco C, Cecere R, Tognoni G, Mantovani A: Lipid Assessment Trial Italian Network (LATIN) Investigators. Prognostic significance of the long pentraxin PTX3 in acute myocardial infarction. Circulation 110:2349–2354, 2004Google Scholar
  55. 55.
    Napoleone E, Di Santo A, Bastone A, Peri G, Mantovani A, de Gaetano G, Donati MB, Lorenzet R: Long pentraxin PTX3 upregulates tissue factor expression in human endothelial cells: A novel link between vascular inflammation and clotting activation. Arterioscler Thromb Vasc Biol 22:782–787, 2002PubMedGoogle Scholar
  56. 56.
    Napoleone E, di Santo A, Peri G, Mantovani A, de Gaetano G, Donati MB, Lorenzet R: The long pentraxin PTX3 up-regulates tissue factor in activated monocytes: another link between inflammation and clotting activation. J Leukoc Biol 76:203–209, 2004PubMedCrossRefGoogle Scholar
  57. 57.
    Rolph MS, Zimmer S, Bottazzi B, Garlanda C, Mantovani A, Hansson GK: Production of the long pentraxin PTX3 in advanced atherosclerotic plaques. Arterioscler Thromb Vasc Biol 22:e10–e14, 2002PubMedGoogle Scholar
  58. 58.
    Luchetti MM, Piccinini G, Mantovani A, Peri G, Matteucci C, Pomponio G, Fratini M, Fraticelli P, Sambo P, Di Loreto C, Doni A, Introna M, Gabrielli A: Expression and production of the long pentraxin PTX3 in rheumatoid arthritis (RA). Clin Exp Immunol 119:196–202, 2000PubMedCrossRefGoogle Scholar
  59. 59.
    Luchetti MM, Sambo P, Majlingova P, Svegliati Baroni S, Peri G, Paroncini P, Introna M, Stoppacciaro A, Mantovani A, Gabrielli A: Scleroderma fibroblasts constitutively express the long pentraxin PTX3. Clin Exp Rheumatol 22(3 Suppl 33):S66–S72, 2004PubMedGoogle Scholar
  60. 60.
    Fazzini F, Peri G, Doni A, Dell'Antonio G, Dal Cin E, Bozzolo E, D'Auria F, Praderio L, Ciboddo G, Sabbadini MG, Manfredi AA, Mantovani A, Querini PR: PTX3 in small-vessel vasculitides: An independent indicator of disease activity produced at sites of inflammation. Arthritis Rheum 44:2841–2850, 2001PubMedCrossRefGoogle Scholar
  61. 61.
    Nauta AJ, de Haij S, Bottazzi B, Mantovani A, Borrias MC, Aten J, Rastaldi MP, Daha MR, van Kooten C, Roos A: Human renal epithelial cells produce the long pentraxin PTX3. Kidney Int 67:543–553, 2005PubMedCrossRefGoogle Scholar
  62. 62.
    Bussolati B, Peri G, Salvidio G, Verzola D, Mantovani A, Camussi G: The long pentraxin PTX3 is synthesized in IgA glomerulonephritis and activates mesangial cells. J Immunol 170:1466–1472, 2003PubMedGoogle Scholar
  63. 63.
    Garred P, Larsen F, Madsen HO, Koch C: Mannose-binding lectin deficiency—revisited. Mol Immunol 40:73–84, 2003PubMedCrossRefGoogle Scholar
  64. 64.
    Turner MW: The role of mannose-binding lectin in health and disease. Mol Immunol 40:423–429, 2003PubMedCrossRefGoogle Scholar
  65. 65.
    Ogden CA, deCathelineau A, Hoffmann PR, Bratton D, Ghebrehiwet B, Fadok VA, Henson PM: Clq and mannose binding lectin engagement of cell surface calreticulin and CD91 initiates macropinocytosis and uptake of apoptotic cells. J Exp Med 194:781–795, 2001PubMedCrossRefGoogle Scholar
  66. 66.
    Roos A, Bouwman LH, van Gijlswijk-Janssen DJ, Faber-Krol MC, Stahl GL, Daha MR: Human IgA activates the complement system via the mannan-binding lectin pathway. J Immunol 167:2861–2868, 2001PubMedGoogle Scholar
  67. 67.
    Sato R, Matsushita M, Miyata M, Sato Y, Kasukawa R, Fujita T: Substances reactive with mannose-binding protein (MBP) in sera of patients with rheumatoid arthritis. Fukushima J Med Sci 43:99–111, 1997PubMedGoogle Scholar
  68. 68.
    Dini L: Recognizing death: Liver phagocytosis of apoptotic cells. Eur J Histochem 44:217–227, 2000PubMedGoogle Scholar
  69. 69.
    Satomura A, Endo M, Ohi H, Sudo S, Ohsawa I, Fujita T, Matsushita M, Fujita T: Significant elevations in serum mannose-binding lectin levels in patients with chronic renal failure. Nephron 92:702–704, 2002PubMedCrossRefGoogle Scholar
  70. 70.
    Garred P, J Strom J, Quist L, Taaning E, Madsen HO: Association of mannose-binding lectin polymorphisms with sepsis and fatal outcome, in patients with systemic inflammatory response syndrome. J Infect Dis 188:1394–1403, 2003PubMedCrossRefGoogle Scholar
  71. 71.
    Summerfield JA, Sumiya M, Levin M, Turner MW: Association of mutations in mannose binding protein gene with childhood infection in consecutive hospital series. Br Med J 314:1229–1232, 1997Google Scholar
  72. 72.
    Koch, A, Melbye M, Sørensen P, Homøe P, Madsen HO, Mølbak K, Hansen CH, Andersen LH, Hahn GW, Garred P: Acute respiratory tract infections and mannose-binding lectin insufficiency during early childhood. JAMA 285:1316–1321, 2001PubMedGoogle Scholar
  73. 73.
    Matsushita M, Hijikata M, Ohta Y, Iwata K, Matsumoto M, Nakao K, Kanai K, Yoshida N, Baba K, Mishiro S: Hepatitis C virus infection and mutations of mannose-binding lectin gene MBL. Arch Virol 143:645–651, 1998PubMedCrossRefGoogle Scholar
  74. 74.
    Yuen MF, Lau CS, Lau YL, Wong WM, Cheng CC. Lai CL: Mannose binding lectin gene mutations are associated with progression of liver disease in chronic hepatitis B infection. Hepatology 29:1248–1251, 1999PubMedGoogle Scholar
  75. 75.
    Davies EJ, Teh LS, Ordi-Ros J, Snowden N, Hillarby MC, Hajeer A, Donn R, Perez-Pemen P, Vilardell-Tarres M, Ollier WE: A dysfunctional allele of the mannose binding protein gene associates with systemic lupus erythematosus in a Spanish population. J Rheumatol 24:485–488, 1997PubMedGoogle Scholar
  76. 76.
    Ip WK, Chan SY, Lau CS, Lau YL: Association of systemic lupus erythematosus with promoter polymorphisms of the mannose-binding lectin gene. Arthritis Rheum 41:1663–1668, 1998PubMedGoogle Scholar
  77. 77.
    Sullivan KE, Wooten C, Goldman D, Petri M: Mannose-binding protein genetic polymorphisms in black patients with systemic lupus erythematosus. Arthritis Rheum 39:2046–2051, 1996PubMedGoogle Scholar
  78. 78.
    Huang YF, Wang W, Han JY, Wu XW, Zhang ST, Liu CJ, Hu QG, Xiong P, Hamvas RM, Wood N, Gong FL, Bittles AH: Increased frequency of the mannose-binding lectin LX haplotype in Chinese systemic lupus erythematosus patients. Eur J Immunogenet 30:121–124, 2003PubMedCrossRefGoogle Scholar
  79. 79.
    Garred P, Voss A, Madsen HO, Junker P: Association of mannose-binding lectin gene variation with disease severity and infections in a population-based cohort of systemic lupus erythematosus patients. Genes Immun 2:442–450, 2001PubMedCrossRefGoogle Scholar
  80. 80.
    Werth VP, Berlin JA, Callen JP, Mick R, Sullivan KE: Mannose binding lectin (MBL) polymorphisms associated with low MBL production in patients with dermatomyositis. J Invest Dermatol 119:1394–1399, 2002PubMedGoogle Scholar
  81. 81.
    Saevarsdottir S, Vikingsdottir T, Vikingsson A, Manfredsdottir V, Geirsson AJ, Valdimarsson H: Low mannose binding lectin predicts poor prognosis in patients with early rheumatoid arthritis. A prospective study. J Rheumatol 28:728–734, 2001Google Scholar
  82. 82.
    Ip WK, Lau YL, Chan SY, Mok CC, Chan D, Tong KK, Lau CS: Mannose-binding lectin and rheumatoid arthritis in southern Chinese. Arthritis Rheum 43:1679–1687, 2000PubMedCrossRefGoogle Scholar
  83. 83.
    Graudal NA, Homann C, Madsen HO, Svejgaard A, Jurik AG, Graudal HK, Garred P: Mannan binding lectin in rheumatoid arthritis. A longitudinal study. J Rheumatol 25:629–635, 1998Google Scholar
  84. 84.
    Garred P, Voss A, Madsen HO, Junker P: Association of mannose-binding lectin gene variation with disease severity and infections in a population-based cohort of systemic lupus erythematosus patients. Genes Immun 2:442–450, 2001PubMedCrossRefGoogle Scholar
  85. 85.
    Sullivan KE, Jawad AF, Piliero LM, Kim N, Luan X, Goldman D, Petri M: Analysis of polymorphisms affecting immune complex handling in systemic lupus erythematosus. Rheumatology (Oxford) 42:446–452, 2003Google Scholar
  86. 86.
    Garred P, Madsen HO, Marquart H, Hansen TM, Sorensen SF, Petersen J, Volck B, Svejgaard A, Graudal NA, Rudd PM, Dwek RA, Sim RB, Andersen V: Two edged role of mannose binding lectin in rheumatoid arthritis: a cross sectional study. J Rheumatol 27:26–34, 2000PubMedGoogle Scholar
  87. 87.
    Jacobsen S, Madsen HO, Klarlund M, Jensen T, Skjodt H, Jensen KE, Svejgaard A, Garred P; TIRA Group: The influence of mannose binding lectin polymorphisms on disease outcome in early polyarthritis. J Rheumatol 8:935–942, 2001Google Scholar
  88. 88.
    Graudal NA, Madsen HO, Tarp U, Svejgaard A, Jurik G, Graudal HK, Garred P: The association of variant mannose-binding lectin genotypes with radiographic outcome in rheumatoid arthritis. Arthritis Rheum 43:515–521, 2000PubMedCrossRefGoogle Scholar
  89. 89.
    Madsen HO, Videm V, Svejgaard A, Svennevig JL, Garred P: Association of mannose-binding-lectin deficiency with severe atherosclerosis. Lancet 352:959–960, 1998PubMedGoogle Scholar
  90. 90.
    Best LG, Davidson M, North KE, MacCluer JW, Zhang Y, Lee ET, Howard BV, DeCroo S, Ferrell RE: Prospective analysis of mannose-binding lectin genotypes and coronary artery disease in American Indians: The Strong Heart Study. Circulation 109:471–475, 2004PubMedCrossRefGoogle Scholar
  91. 91.
    Ohlenschlaeger T, Garred P, Madsen HO, Jacobsen S: Mannose-binding lectin variant alleles and the risk of arterial thrombosis in systemic lupus erythematosus. N Engl J Med 351:260–267, 2004PubMedCrossRefGoogle Scholar
  92. 92.
    Mok MY, Jack DL, Lau CS, Fong DY, Turner MW, Isenberg DA, Lydyard PM: Antibodies to mannose binding lectin in patients with systemic lupus erythematosus. Lupus 13:522–528, 2004PubMedGoogle Scholar
  93. 93.
    Seelen MA, Trouw LA, van der Hoorn JW, Fallaux-van den Houten FC, Huizinga TW, Daha MR, Roos A: Autoantibodies against mannose-binding lectin in systemic lupus erythematosus. Clin Exp Immunol 134:335–343, 2003PubMedCrossRefGoogle Scholar
  94. 94.
    Vuilleumier N, Reber G, James R, Burger D, de Moerloose P, Dayer JM, Roux-Lombard P: Presence of autoantibodies to apolipoprotein A-1 in patients with acute coronary syndrome further links autoimmunity to cardiovascular disease. J Autoimmun 23:353–360, 2004PubMedCrossRefGoogle Scholar
  95. 95.
    Burger D, Dayer JM: Cytokines, acute-phase proteins, and hormones: IL-1 and TNF-alpha production in contact-mediated activation of monocytes by T lymphocytes. Ann NY Acad Sci 966:464–473, 2002PubMedCrossRefGoogle Scholar
  96. 96.
    Bresnihan B, Gogarty M, Fitzgerald O, Dayer JM, Burger D: Apolipoprotein A-I infiltration in rheumatoid arthritis synovial tissue: A control mechanism of cytokine production? Arthritis Res Ther 6:R563–R566, 2004CrossRefGoogle Scholar
  97. 97.
    Abe H, Tsuboi N, Suzuki S, Sakuraba H, Takanashi H, Tahara K, Tonozuka N, Hayashi T, Umeda M: Anti-apolipoprotein A-I autoantibody: Characterization of monoclonal autoantibodies from patients with systemic lupus erythematosus. J Rheumatol 28:990–995, 2001PubMedGoogle Scholar
  98. 98.
    Dinu AR, Merrill JT, Shen C, Antonov IV, Myones BL, Lahita RG: Frequency of antibodies to the cholesterol transport protein apolipoprotein A1 in patients with SLE. Lupus 7:355–360, 1998PubMedCrossRefGoogle Scholar
  99. 99.
    Marcel YL, Jewer D, Leblond L, Weech PK, Milne RW: Lipid peroxidation changes the expression of specific epitopes of apolipoprotein A-I. J Biol Chem 264:19942–19950, 1989PubMedGoogle Scholar
  100. 100.
    Sherer Y, Gorstein A, Fritzler MJ, Shoenfeld Y: Autoantibody explosion in systemic lupus erythematosus: more than 100 different antibodies found in SLE patients. Semin Arthritis Rheum 34:501–537, 2004PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • Martine Szyper Kravitz
    • 1
  • Milena Pitashny
    • 1
  • Yehuda Shoenfeld
    • 1
    • 2
    • 3
  1. 1.Center for Autoimmune Diseases and Department of Medicine B, Chaim Sheba Medical Center Tel-Hashomer, Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
  2. 2.Incumbent of the Laura Schwatz-Kipp chair for autoimmunityTelAviv UniversityTel AvivIsrael
  3. 3.Department of Medicine BChaim Sheba Medical CenterTel-HashomerIsrael

Personalised recommendations