Journal of Clinical Immunology

, Volume 25, Issue 4, pp 365–375

Non-Pathogenic Mycobacterium smegmatis Induces the Differentiation of Human Monocytes Directly into Fully Mature Dendritic Cells

  • Angelo Martino
  • Alessandra Sacchi
  • Elisabetta Volpe
  • Chiara Agrati
  • Rafaella De Santis
  • Leopoldo Paolo Pucillo
  • Vittorio Colizzi
  • Silvia Vendetti
Article

Abstract

Mycobacterium smegmatis infects human monocytes that can be precursors of dendritic cells. We tested whether the interaction of M. smegmatis with monocytes modulated their differentiation into dendritic cells. We found that M. smegmatis-infected monocytes differentiated into CD1aCCR7+ dendritic cells in the presence of GM-CSF and IL-4 and acquired a mature phenotype since they expressed CD83 molecules in the absence of maturation stimuli. Dendritic cells derived from M. smegmatis-infected monocytes stimulated with bacterial products, produced IL-10 and still retained the capacity to produce IL-12. Consequently, they polarized naïve T lymphocytes towards a mixed Th1/Th2 immune response inducing both IFN-γ and IL-4 production. These findings suggest that the exposure to environmental mycobacteria could modulate the differentiation of dendritic cells making them able to migrate into secondary lymphoid organs and modulate the adaptive immune response. This could explain one of the mechanisms by which environmental mycobacteria can influence the immune response to pathogenic species.

Key Words

M. smegmatis dendritic cells monocyte differentiation CD1a 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andersen P: TB vaccines: Progress and problems. Trends Immunol 22(3):160–168, 2001CrossRefPubMedGoogle Scholar
  2. 2.
    World Health Organization Report: Global tuberculosis control, W.H.O./CDS/TB/2001.287, 2001Google Scholar
  3. 3.
    Brandt L, Cunha JF, Olsen AW, Chilima B, Hirsch P, Appelberga R, Andersen P: Failure of Mycobacterium bovis BCG vaccine: Some species of environmental mycobacteria block multiplication and induction of protective immunity to tuberculosis Infect Immun 70(2):672–678, 2002CrossRefPubMedGoogle Scholar
  4. 4.
    Chihota VN, Nyazema NZ, Mashingaidze S, Mutandiro B: TB infection: An exploratory study of BCG protective properties and the possible role of environmental mycobacteria. Centr Afr J Med 44(6):145–148, 1998Google Scholar
  5. 5.
    Black GF, Dockrell HZ, Crampin AC, Floyd S, Weir RE, Bliss L, Sichall L, Mwaungulu L, Kanyongoloka H, Ngwira B, Warnodorff DK, Fine PEM: Pattern and implication of naturally acquired immune responses to environmental and tuberculosis mycobacterial antigens in northern Malawi. J Infect Dis 184:322–329, 2001CrossRefPubMedGoogle Scholar
  6. 6.
    Roach SK, Schorev JS: Differential regulation of the mitogen-activated protein kinases by pathogenic and non-pathogenic mycobacteria. Infect Immun 70(6):3040–3052, 2002CrossRefPubMedGoogle Scholar
  7. 7.
    Engele M, Stossel E, Castiglione K, Schwerdtner N, Wagner M: Induction of TNF in human alveolar macrophages as a potential evasion mechanism of virulent Mycobacterium tuberculosis. J Immunol 168(3):1328–1337, 2002PubMedGoogle Scholar
  8. 8.
    Falcone V, Bassey EB, Toniolo A, Conaldi PG, Collins FM: Differential release of tumor necrosis factor-alpha from murine peritoneal macrophages stimulated with virulent and avirulent species of mycobacteria. FEMS Immunol Med Microbiol 8(3):225–232, 1994CrossRefPubMedGoogle Scholar
  9. 9.
    Yadav M, Roach SK, Schorey JS: Increased mitogen-activated protein kinase activity and TNF-alpha production associated with Mycobacterium smegmatis—-but not Mycobacterium avium-infected macrophages requires prolonged stimulation of the calmodulin/calmodulin kinase and cyclic AMP/protein kinase A pathways. J Immunol 172(9):5588–5597, 2004PubMedGoogle Scholar
  10. 10.
    Faldt J, Dahlgren C, Ridell M: Difference in neutrophils cytokine production induced by pathogenic and non-pathogenic mycobacteria. APMIS 110(9):593–600, 2002CrossRefPubMedGoogle Scholar
  11. 11.
    Jiao X, Lo-Man R, Guermonprez P, Fiette L, Deriaud E, Burgaud S, Gicquel B, Winter N, Leclerc C: Dendritic cells are host cells for mycobacteria in vivo that trigger innate and acquired immunity. J Immunol 168(3):1294–1301, 2002PubMedGoogle Scholar
  12. 12.
    Hope JC, Thom ML, McCormick PA, Howard CJ: Interaction of antigen presenting cells with mycobacteria. Vet Immunol Immunopathol 100(3/4):187–195, 2004CrossRefPubMedGoogle Scholar
  13. 13.
    Marino S, Pawar S, Fuller CL, Reinhart TA, Flynn JL, Kirschner DE: Dendritic cell trafficking and antigen presentation in the human immune response to Mycobacterium tuberculosis. J Immunol 173(1):494–506, 2004PubMedGoogle Scholar
  14. 14.
    Ehlers S, Benini J, Held HD, Roeck C, Alber G, Uhlig S: Alphabeta T cell receptor-positive cells and interferon-gamma, but not inducible nitric oxide synthase, are critical for granuloma necrosis in a mouse model of mycobacteria-induced pulmonary immunopathology. J Exp Med 194(12):1847–1859, 2001CrossRefPubMedGoogle Scholar
  15. 15.
    Saunders BM, Frank AA, Orme IM, Cooper AM: CD4 is required for the development of a protective granulomatous response to pulmonary tuberculosis. Cell Immunol 216(1/2):65–72, 2002CrossRefPubMedGoogle Scholar
  16. 16.
    Chapuis F, Rosenzwajg M, Yagello M, Ekman M, Biberfeld P, Gluckman JC: Differentiation of human dendritic cells from monocytes in vitro. Eur J Immunol 27:431–441, 1997PubMedGoogle Scholar
  17. 17.
    Palucka KA, Tacquet N, Sancez-Chapuis F, Gluckman JC: Dendritic cells as the terminal stage of monocyte differentiation. J Immunol 160:4587–4595, 1998PubMedGoogle Scholar
  18. 18.
    Rotta G, Edwards EW, Sangaletti S, Bennett C, Ronzoni S, Colombo MP, Steinman RM, Randolf GJ, Rescigno M: Lipopolysaccharide or whole bacteria block the conversion of inflammatory monocytes into dendritic cells in vivo. J Exp Med 198(8):1253–1263, 2003CrossRefPubMedGoogle Scholar
  19. 19.
    Torosantucci A, Romagnoli G, Chiani P, Stringaro A, Crateri P, Mariotti S, Teloni R, Arancia G, Cassone A, Nisini R: Candida albicans yeast and germ tube forms interfere differently with human monocyte differentiation into dendritic cells: A novel dimorphism-dependent mechanism to escape the host’s immune response. Infect Immun 72(2):833–843, 2004CrossRefPubMedGoogle Scholar
  20. 20.
    Mariotti S, Teloni R, Iona E, Fattorini L, Giannoni F, Romagnoli G, Orefici G, Nisini R: Mycobacterium tuberculosis subverts the differentiation of human monocytes into dendritic cells. Eur J Immunol 32:3050–3058, 2002CrossRefPubMedGoogle Scholar
  21. 21.
    Mariotti S, Teloni R, Iona E, Fattorini L, Romagnoli G, Gagliardi MC, Orefici G, Nisini R: Mycobacterium tuberculosis diverts alpha interferon-induced monocyte differentiation from dendritic cells into immunoprivileged macrophage-like host cells. Infect Immun 72(8):4385–4392, 2004CrossRefPubMedGoogle Scholar
  22. 22.
    Martino A, Sacchi A, Sanarico N, Spadaio F, Ramoni C, Ciaramella A, Pucillo LP, Colizzi V, Vendetti S: Dendritic cells derived from BCG infected precursors induce Th2-like immune response. J Leukoc Biol 76:827–834, 2004CrossRefPubMedGoogle Scholar
  23. 23.
    Gagliardi MC, Teloni R, Mariotti S, Iona E, Pardini M, Fattorini L, Orefici G, Nisini R: Bacillus Calmette-Guerin shares with virulent Mycobacterium tuberculosis the capacity to subvert monocyte differentiation into dendritic cell: Implication for its efficacy as a vaccine preventing tuberculosis. Vaccine 22(29/30):3848–3857, 2004CrossRefPubMedGoogle Scholar
  24. 24.
    Chomorat P, Dantin C, Bennett L, Banchereau J, Palucka AK: TNF skews monocyte differentiation from macrophages to dendritic cells. J Immunol 171:2262–2269, 2003PubMedGoogle Scholar
  25. 25.
    Chomorat P, Banchereau J, Davoust J, Palucka AK: IL-6 switches the differentiation of monocytes from dendritic cells to macrophages. Nat Immunol 1:510–514, 2000CrossRefPubMedGoogle Scholar
  26. 26.
    Delneste Y, Charbonnier P, Herbault N, Magistrelli G, Caron G, Bonnefoy JY, Jeannine P: Interferon-gamma switches monocyte differentiation from dendritic cells to macrophages. Blood 101(1):143–150, 2003CrossRefPubMedGoogle Scholar
  27. 27.
    Sturgill-Kosziycki S, Schlesinger PH, Chakraborty P, Haddix HL, Folk K, Allen RD, Gluck SL, Heuser J, Russel DL: Lack of acidification in Mycobacterium phagosomes produced by exclusion of the vesicular protein-ATPase. Science 263:678–681, 1994PubMedGoogle Scholar
  28. 28.
    Via LE, Deretic D, Ulmer RJ, Hibler SN, Huber LA, Deretic VA: Arrest of mycobacterial phagosome maturation is caused by a block in vesicle fusion between stages controlled by rab5 and rab7. J Biol Chem 272:13326–13331, 1997CrossRefPubMedGoogle Scholar
  29. 29.
    Zumla A, Grange J: Infection and disease caused by environmental mycobacteria. Curr Opin Pulm Med 8(3):166–172, 2002CrossRefPubMedGoogle Scholar
  30. 30.
    Prasad R, Yadav G: Identification of a 75 kDa highly immunodominant antigen from Mycobacterium smegmatis and cross-reactivity with other species. Indian J Exp Biol 39(3):255–262, 2001PubMedGoogle Scholar
  31. 31.
    Banchereau J, Steinman R: Dendritic cells and the control of the immunity. Nature 392:245–252, 1998PubMedGoogle Scholar
  32. 32.
    Banchereau J, Briere F, Caux C: Immunobiology of dendritic cells. Annu Rev Immunol 18:767–811, 2000PubMedGoogle Scholar
  33. 33.
    Lanzavecchia A, Sallusto F: Regulation of T cell immunity by dendritic cells. Cell 106:263–276, 2001CrossRefPubMedGoogle Scholar
  34. 34.
    Wakeham J, Wang J, Magram J, Croitoru K, Harkness R, Dumm P, Zganiacz A, Xing Z: Lack of both type 1 and 2 cytokines, tissue inflammatory response, and immune protection during pulmonary infection by Mycobacterium bovis bacillus Calmette-Guerin in IL-12-deficient mice. J Immunol 160:6101–6111, 1998PubMedGoogle Scholar
  35. 35.
    Nigou J, Zelle-Rieser C, Gilleron M, Thurnher M, Puzo G: Mannosylated lipoarabinomannans inhibit IL-12 production by human dendritic cells: Evidence for a negative signal delivered through the mannose receptor. J Immunol 166:7477–7485, 2001PubMedGoogle Scholar
  36. 36.
    Altare F, Durando A, Lammas JF, Emile F, Lamhamedi S, Le Deist F, Drysdale P, Jouanguy E, Doffinger R, Bernaudin F, Jeppsson O, Gollob JA, Meinl E, Segal AW, Fisher A, Kumararatne D, Casanova JL: Impairment of mycobacterial immunity in human interleukine-12 receptor deficiency. Science 280:1432–1435, 1998CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • Angelo Martino
    • 1
  • Alessandra Sacchi
    • 1
  • Elisabetta Volpe
    • 2
  • Chiara Agrati
    • 1
  • Rafaella De Santis
    • 1
  • Leopoldo Paolo Pucillo
    • 1
  • Vittorio Colizzi
    • 4
  • Silvia Vendetti
    • 1
    • 3
    • 5
  1. 1.National Institute for Infectious Diseases “Lazzaro Spallanzani,”RomeItaly
  2. 2.Institute of Neurobiology and Molecular MedicineNational Research CouncilRomeItaly
  3. 3.Department of InfectiousParasitic and Immune-Mediated Diseases, Istituto Superiore di SanitàRomeItaly
  4. 4.Department of BiologyUniversity of Tor VergataRomeItaly
  5. 5.Department of InfectiousParasitic and Immune-Mediated Diseases, Istituto Superiore di SanitàRomeItaly

Personalised recommendations