Journal of Clinical Immunology

, Volume 25, Issue 3, pp 254–264 | Cite as

Axon Reactive B Cells Clonally Expanded in the Cerebrospinal Fluid of Patients with Multiple Sclerosis

  • Yiping Zhang
  • Reng-Rong Da
  • Wenzhong Guo
  • Hui-Min Ren
  • Lutz G. Hilgenberg
  • Raymond A. Sobel
  • Wallace W. Tourtellotte
  • Martin A. Smith
  • Michael Olek
  • Sudhir Gupta
  • Richard T. Robertson
  • Rashed Nagra
  • Stanley Van Den Noort
  • Yufen Qin


Demyelination and axonal loss have been described as the histological hallmarks of inflammatory lesions of multiple sclerosis (MS) and are the pathological correlates of persistent disability. However, the immune mechanisms underlying axonal damage in MS remain unknown. Here, we report the use of single chain-variable domain fragments (scFv) from clonally expanded cerebrospinal fluid (CSF) B cells to show the role of an anti-axon immune response in the central nervous system (CNS) in MS. The cellular and subcellular distribution of the antigen(s) recognized by these CSF-derived clonal scFv antibodies (CSFC-scFv Abs) was studied by immunochemical staining of brain tissues obtained at autopsy from patients with MS. Immunochemistry showed specific binding of CSFC-scFv Abs to axons in acute MS lesions. The stained axons showed three major types of axonal pathological changes: 1) linear axons, axonal ovoid formation, and axonal transection were seen in the myelinated white matter adjacent to the lesion; 2) accumulation of axonal ovoid formations and Wallerian degeneration were seen at the border between demyelinated lesions and the adjacent white matter; and 3) Wallerian degeneration occurred at the center and edge of acute demyelinated lesions. These findings suggest a B cell axonal specific immune response in the CNS in MS.

Key Words

CSF B cell clonal expansion CSFC-scFv antibody axonal immunity multiple sclerosis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lucchinetti C, Bruck W, Parisi J, Scheithauer B, Rodriguez M, Lassmann H: Heterogeneity of multiple sclerosis lesions: Implications for the pathogenesis of demyelination. Ann Neurol 47:707–717, 2000CrossRefPubMedGoogle Scholar
  2. 2.
    Compston A, Coles A: Multiple sclerosis. Lancet 359:1221–1231, 2002CrossRefPubMedGoogle Scholar
  3. 3.
    Robinson WH, DiGennaro C, Hueber W, Haab BB, Kamachi M, Dean EJ, Fournel S, Fong D, Genovese MC, de Vegvar HE, Skriner K, Hirschberg DL, Morris RI, Muller S, Pruijn GJ, van Venrooij WJ, Smolen JS, Brown PO, Steinman L, Utz PJ: Autoantigen microarrays for multiplex characterization of autoantibody responses. Nat Med 8:295–301, 2002CrossRefPubMedGoogle Scholar
  4. 4.
    Chabas D, Baranzini SE, Mitchell D, Bernard CC, Rittling SR, Denhardt DT, Sobel RA, Lock C, Karpuj M, Pedotti R, Heller R, Oksenberg JR, Steinman L: The influence of the proinflammatory cytokine, osteopontin, on autoimmune demyelinating disease. Science 294:1731–1735, 2001CrossRefPubMedGoogle Scholar
  5. 5.
    Ben-Nun A, Wekerle H, Cohen IR: Vaccination against autoimmune encephalomyelitis with T-lymphocyte line cells reactive against myelin basic protein. Nature 292:60–61, 1981CrossRefPubMedGoogle Scholar
  6. 6.
    Schluesener HJ, Lider O, Sobel RA: Induction of hyperacute brain inflammation and demyelination by activated encephalitogenic T cells and a monoclonal antibody specific for a myelin/oligodendrocyte glycoprotein. Autoimmunity 2:265–273, 1989PubMedGoogle Scholar
  7. 7.
    Itoyama Y, Webster HD: Immunocytochemical study of myelin-associated glycoprotein (MAG) and basic protein (BP) in acute experimental allergic encephalomyelitis (EAE). J Neuroimmunol 3:351–364, 1982CrossRefPubMedGoogle Scholar
  8. 8.
    Tourtellotte W: On cerebrospinal fluid immunoglobulin-G (IgG) quotients in multiple sclerosis and other diseases. A review and a new formula to estimate the amount of IgG synthesized per day by the central nervous system. J Neurol Sci 10:279–304, 970CrossRefGoogle Scholar
  9. 9.
    Tibbling G, Link H, Ohman S: Principles of albumin and IgG analyses in neurological disorders. I. Establishment of reference values. Scand J Clin Lab Invest 37:385–390, 1977PubMedGoogle Scholar
  10. 10.
    Esiri MM: Immunoglobulin-containing cells in multiple-sclerosis plaques. Lancet 2:478, 1977CrossRefPubMedGoogle Scholar
  11. 11.
    Qin Y, Duquette P, Zhang Y, Talbot P, Poole R, Antel J: Clonal expansion and somatic hypermutation of V(H) genes of B cells from cerebrospinal fluid in multiple sclerosis. J Clin Invest 102:1045–1050, 1998PubMedGoogle Scholar
  12. 12.
    Owens GP, Kraus H, Burgoon MP, Smith-Jensen T, Devlin ME, Gilden DH: Restricted use of VH4 germline segments in an acute multiple sclerosis brain. Ann Neurol 43:236–243, 1998CrossRefPubMedGoogle Scholar
  13. 13.
    Qin Y, Duquette P, Zhang Y, Olek M, Da RR, Richardson J, Antel JP, Talbot P, Cashman NR, Tourtellotte WW, Wekerle H, Van Den Noort S: Intrathecal B-cell clonal expansion, an early sign of humoral immunity, in the cerebrospinal fluid of patients with clinically isolated syndrome suggestive of multiple sclerosis. Lab Invest 83:1081–1088, 2003CrossRefPubMedGoogle Scholar
  14. 14.
    Baranzini SE, Jeong MC, Butunoi C, Murray RS, Bernard CC, Oksenberg JR: B cell repertoire diversity and clonal expansion in multiple sclerosis brain lesions. J Immunol 163:5133–5144, 1999PubMedGoogle Scholar
  15. 15.
    Colombo M, Dono M, Gazzola P, Roncella S, Valetto A, Chiorazzi N, Mancardi GL, Ferrarini M: Accumulation of clonally related B lymphocytes in the cerebrospinal fluid of multiple sclerosis patients. J Immunol 164:2782–2789, 2000PubMedGoogle Scholar
  16. 16.
    Ritchie AM, Gilden DH, Williamson RA, Burgoon MP, Yu X, Helm K, Corboy JR, Owens GP: Comparative analysis of the CD19+ and CD138+ cell antibody repertoires in the cerebrospinal fluid of patients with multiple sclerosis. J Immunol 173:649–656, 2004PubMedGoogle Scholar
  17. 17.
    Owens GP, Ritchie AM, Burgoon MP, Williamson RA, Corboy JR, Gilden DH: Single-cell repertoire analysis demonstrates that clonal expansion is a prominent feature of the B cell response in multiple sclerosis cerebrospinal fluid. J Immunol 171:2725–2733, 2003PubMedGoogle Scholar
  18. 18.
    Saiki RK, Gelfand DH, Stoffel S, Scharf SJ, Higuchi R, Horn GT, Mullis KB, Erlich HA: Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239:487–491, 1988PubMedGoogle Scholar
  19. 19.
    Welschof M, Terness P, Kolbinger F, Zewe M, Dubel S, Dorsam H, Hain C, Finger M, Jung M, Moldenhauer G, et al.: Amino acid sequence based PCR primers for amplification of rearranged human heavy and light chain immunoglobulin variable region genes. J Immunol Methods 179:203–214, 1995CrossRefPubMedGoogle Scholar
  20. 20.
    Hanahan D: Techniques for transformation of E. coli. Washington DC, IRL, 1985, p 109Google Scholar
  21. 21.
    Tsumoto K, Nishimiya Y, Kasai N, Ueda H, Nagamune T, Ogasahara K, Yutani K, Tokuhisa K, Matsushima M, Kumagai I: Novel selection method for engineered antibodies using the mechanism of Fv fragment stabilization in the presence of antigen. Protein Eng 10:1311–1318, 1997CrossRefPubMedGoogle Scholar
  22. 22.
    Shamsuddin AM, Harris CC: Improved enzyme immunoassays using biotin-avidin-enzyme complex. Arch Pathol Lab Med 107:514–517, 1983PubMedGoogle Scholar
  23. 23.
    Suzuki K, Andrews JM, Waltz JM, Terry RD: Ultrastructural studies of multiple sclerosis. Lab Invest 20:444–454, 1969PubMedGoogle Scholar
  24. 24.
    Ikuta F, Zimmerman HM: Distribution of plaques in seventy autopsy cases of multiple sclerosis in the United States. Neurology 26:26–28, 1976PubMedGoogle Scholar
  25. 25.
    Kornek B, Lassmann H: Axonal pathology in multiple sclerosis. A historical note. Brain Pathol 9:651–656, 1999PubMedGoogle Scholar
  26. 26.
    Matthews PM, De Stefano N, Narayanan S, Francis GS, Wolinsky JS, Antel JP, Arnold DL: Putting magnetic resonance spectroscopy studies in context: Axonal damage and disability in multiple sclerosis. Semin Neurol 18:327–336, 1998PubMedGoogle Scholar
  27. 27.
    Grimaud J, Barker GJ, Wang L, Lai M, MacManus DG, Webb SL, Thompson AJ, McDonald WI, Tofts PS, Miller DH: Correlation of magnetic resonance imaging parameters with clinical disability in multiple sclerosis: A preliminary study. J Neurol 246:961–967, 1999CrossRefPubMedGoogle Scholar
  28. 28.
    Fisher E, Rudick RA, Cutter G, Baier M, Miller D, Weinstock-Guttman B, Mass MK, Dougherty DS, Simonian NA: Relationship between brain atrophy and disability: An 8-year follow-up study of multiple sclerosis patients. Mult Scler 6:373–377, 2000CrossRefPubMedGoogle Scholar
  29. 29.
    Paolillo A, Pozzilli C, Gasperini C, Giugni E, Mainero C, Giuliani S, Tomassini V, Millefiorini E, Bastianello S: Brain atrophy in relapsing-remitting multiple sclerosis: Relationship with ‘black holes,’ disease duration and clinical disability. J Neurol Sci 174:85–91, 2000CrossRefPubMedGoogle Scholar
  30. 30.
    Pelletier J, Suchet L, Witjas T, Habib M, Guttmann CR, Salamon G, Lyon-Caen O, Cherif AA: A longitudinal study of callosal atrophy and interhemispheric dysfunction in relapsing-remitting multiple sclerosis. Arch Neurol 58:105–111, 2001CrossRefPubMedGoogle Scholar
  31. 31.
    MacLennan IC, Gray D: Antigen-driven selection of virgin and memory B cells. Immunol Rev 91:61–85, 1986PubMedGoogle Scholar
  32. 32.
    Berek C, Jarvis JM, Milstein C: Activation of memory and virgin B cell clones in hyperimmune animals. Eur J Immunol 17:1121–1129, 1987PubMedGoogle Scholar
  33. 33.
    Gray D, Skarvall H: B-cell memory is short-lived in the absence of antigen. Nature 336:70–73, 1988CrossRefPubMedGoogle Scholar
  34. 34.
    Jacob J, Kelsoe G: In situ studies of the primary immune response to (4-hydroxy-3-nitrophenyl)acetyl. II. A common clonal origin for periarteriolar lymphoid sheath-associated foci and germinal centers. J Exp Med 176:679–687, 1992CrossRefPubMedGoogle Scholar
  35. 35.
    Liu YJ, Johnson GD, Gordon J, MacLennan IC: Germinal centres in T-cell-dependent antibody responses. Immunol Today 13:17–21, 1992CrossRefPubMedGoogle Scholar
  36. 36.
    Siekevitz M, Kocks C, Rajewsky K, Dildrop R: Analysis of somatic mutation and class switching in naive and memory B cells generating adoptive primary and secondary responses. Cell 48:757–770, 1987CrossRefPubMedGoogle Scholar
  37. 37.
    Zhang M, Majid A, Bardwell P, Vee C, Davidson A: Rheumatoid factor specificity of a VH3-encoded antibody is dependent on the heavy chain CDR3 region and is independent of protein A binding. J Immunol 161:2284–2289, 1998PubMedGoogle Scholar
  38. 38.
    Jukes TH, King JL: Evolutionary nucleotide replacements in DNA. Nature 281:605–606, 1979PubMedGoogle Scholar
  39. 39.
    Barrios Y, Jirholt P, Ohlin M: Length of the antibody heavy chain complementarity determining region 3 as a specificity-determining factor. J Mol Recognit 17:332–338, 2004CrossRefPubMedGoogle Scholar
  40. 40.
    Olsen RJ, Mazlo J, Koepsell SA, McKeithan TW, Hinrichs SH: Minimal structural elements of an inhibitory anti-ATF1/CREB single-chain antibody fragment (scFv41.4). Hybrid Hybridomics 22:65–77, 2003CrossRefPubMedGoogle Scholar
  41. 41.
    Nashmi R, Fehlings MG: Changes in axonal physiology and morphology after chronic compressive injury of the rat thoracic spinal cord. Neuroscience 104:235–251, 2001CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • Yiping Zhang
    • 1
  • Reng-Rong Da
    • 1
  • Wenzhong Guo
    • 1
  • Hui-Min Ren
    • 1
  • Lutz G. Hilgenberg
    • 2
  • Raymond A. Sobel
    • 3
  • Wallace W. Tourtellotte
    • 4
  • Martin A. Smith
    • 2
  • Michael Olek
    • 1
  • Sudhir Gupta
    • 5
  • Richard T. Robertson
    • 2
  • Rashed Nagra
    • 4
  • Stanley Van Den Noort
    • 1
  • Yufen Qin
    • 1
    • 6
  1. 1.Department of NeurologyUniversity of CaliforniaIrvine
  2. 2.Department of Anatomy and NeurobiologyUniversity of CaliforniaIrvine
  3. 3.Department of PathologyStanford University School of MedicineStanford
  4. 4.Neurology Service VA Greater Los Angeles Healthcare System Los Angeles
  5. 5.Department of MedicineUniversity of CaliforniaIrvineCalifornia
  6. 6.Department of NeurologyUniversity of California IrvineIrvine

Personalised recommendations