Journal of Clinical Immunology

, Volume 25, Issue 1, pp 1–18

Fc Receptors and Their Role in Immune Regulation and Autoimmunity



The activation threshold of cells in the immune system is often tuned by cell surface molecules. The Fc receptors expressed on various hematopoietic cells constitute critical elements for activating or downmodulating immune responses and combines humoral and cell-mediated immunity. Thus, Fc receptors are the intelligent sensors of the immune status in the individual. However, impaired regulation by Fc receptors will lead to unresponsiveness or hyperreactivity to foreign as well as self-antigens. Murine models for autoimmune disease indicate the indispensable roles of the inhibitory Fc receptor in the suppression of such disorders, whereas activating-type FcRs are crucial for the onset and exacerbation of the disease. The development of many autoimmune diseases in humans may be caused by impairment of the human Fc receptor regulatory system. This review is aimed at providing a current overview of the mechanism of Fc receptor-based immune regulation and the possible scenario of how autoimmune disease might result from their dysfunction.


Fc receptor immunoregulation homeostasis autoimmunity polymorphisms 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anolik J, Sanz I: B cells in human and murine systemic lupus erythematosus. Curr Opin Rheumatol 16:505–512, 2004Google Scholar
  2. 2.
    Firestein GS: The T cell cometh: Interplay between adaptive immunity and cytokine networks in rheumatoid arthritis. J Clin Invest 114:471–474, 2004Google Scholar
  3. 3.
    Tivol EA, Borriello F, Schweitzer AN, Lynch WP, Bluestone JA, Sharpe AH: Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. Immunity 3:541–547, 1995Google Scholar
  4. 4.
    Nishimura H, Okazaki T, Tanaka Y, Nakatani K, Kara M, Matsumori A, Sasayama S, Mizoguchi A, Hiai H, Minato N, Honjo T: Autoimmune dilated cardiomyopathy in PD-1 receptor-deficient mice. Science 291:319–322, 2001PubMedGoogle Scholar
  5. 5.
    Sakaguchi N, Takahashi T, Hata H, Nomura T, Tagami T, Yamazaki S, Sakihama T, Matsutani T, Negishi I, Nakatsuru S, Sakaguchi S: Altered thymic T-cell selection due to a mutation of the ZAP-70 gene causes autoimmune arthritis in mice. Nature 426:454–460, 2003Google Scholar
  6. 6.
    Biassoni R, Cantoni C, Marras D, Giron-Michel J, Falco M, Moretta L, Dimasi N: Human natural killer cell receptors: Insights into their molecular function and structure. J Cell Mol Med 7:376–387, 2003Google Scholar
  7. 7.
    Ravetch JV, Lanier LL: Immune inhibitory receptors. Science 290: 84–89, 2000CrossRefPubMedGoogle Scholar
  8. 8.
    Ravetch JV, Kinet JP: Fc receptors. Annu Rev Immunol 9:457–492, 1991PubMedGoogle Scholar
  9. 9.
    Gavin A, Hulett M, Hogarth PM: Molecular basis for the interaction of Fc receptors with immunoglobulins. In The Immunoglobulin Receptors and Their Physiological and Pathological Roles in Immunity, JGJ van de Winkel, PM Hogarth (eds). Great Britain, Kluwer Academic, 1998, pp 11–35Google Scholar
  10. 10.
    Takai T. Roles of Fc receptors in autoimmunity. Nat Rev Immunol 2:580–592, 2002Google Scholar
  11. 11.
    Stefanescu RN, Olferiv M, Liu Y, Pricop L: Inhibitory Fc gamma receptors: From gene to disease. J Clin Immunol 24:315–326, 2004Google Scholar
  12. 12.
    Monteiro RC, van De Winkel JG: IgA Fc receptors. Annu Rev Immunol 21:177–204, 2003Google Scholar
  13. 13.
    Kitamura T, Garofalo RP, Kamijo A, Hammond DK, Oka JA, Caflisch CR, Shenoy M, Casola A, Weigel PH, Goldblum RM: Human intestinal epithelial cells express a novel receptor for IgA. J Immunol 164:5029–5034, 2000Google Scholar
  14. 14.
    Barratt J, Greer MR, Pawluczyk IZ, Allen AC, Bailey EM, Buck KS, Feehally J: Identification of a novel Fca receptor expressed by human mesangial cells. Kidney Int 57:1936–1948, 2000Google Scholar
  15. 15.
    Mota G, Manciulea M, Cosma E, Popescu I, Hirt M, Jensen-Jarolim E, Calugaru A, Galatiuc C, Regalia T, Tamandl D, Spittler A, Boltz-Nitulescu G: Human NK cells express Fc receptors for IgA which mediate signal transduction and target cell killing. Eur J Immunol 33:2197–2205, 2003Google Scholar
  16. 16.
    Shibuya A, Sakamoto N, Shimizu Y, Shibuya K, Osawa M, Hiroyama T, Eyre HJ, Sutherland GR, Endo Y, Fujita T, Miyabayashi T, Sakano S, Tsuji T, Nakayama E, Phillips JH, Lanier LL, Nakauchi H: Fcα/μ receptor mediates endocytosis of IgM-coated microbes. Nat Immunol 1:441–446, 2000Google Scholar
  17. 17.
    Sakamoto N, Shibuya K, Shimizu Y, Yotsumoto K, Miyabayashi T, Sakano S, Tsuji T, Nakayama E, Nakauchi H, Shibuya A: A novel Fc receptor for IgA and IgM is expressed on both hematopoietic and non-hematopoietic tissues. Eur J Immunol 31:1310–1316, 2001Google Scholar
  18. 18.
    Shimizu Y, Honda S, Yotsumoto K, Tahara-Hanaoka S, Eyre HJ, Sutherland GR, Endo Y, Shibuya K, Koyama A, Nakauchi H, Shibuya A: Fca/(i receptor is a single gene-family member closely related to polymeric immunoglobulin receptor encoded on Chromosome 1. Immunogenetics 53:709–711, 2001Google Scholar
  19. 19.
    Davis RS, Wang Y-H, Kubagawa H, Cooper MD: Identification of a family of Fc receptor homologs with preferential B cell expression. Proc Natl Acad Sci USA 98:9772–9777, 2001CrossRefGoogle Scholar
  20. 20.
    Hatzivassiliou G, Miller I, Takizawa J, Palanisamy N, Rao PH, Lida S, Tagawa S, Taniwaki M, Russo J, Neri A, Cattoretti G, Clynes R, Mendelsohn C, Chaganti RS, Dalla-Favera R: IRTA1 and IRTA2, novel immunoglobulin superfamily receptors expressed in B cells and involved in chromosome Iq21 abnormalities in B cell malignancy. Immunity 14:277–289, 2001Google Scholar
  21. 21.
    Davis RS, Dennis G, Jr Odom MR, Gibson AW, Kimberly RP, Burrows PD, Cooper MD: Fc receptor homologs: Newest members of a remarkably diverse Fc receptor gene family. Immunol Rev 190:123–136, 2002CrossRefGoogle Scholar
  22. 22.
    Davis RS, Stephan RP, Chen CC, Dennis G, Jr Cooper MD: Differential B cell expression of mouse Fc receptor homologs. Int Immunol 16:1343–1353, 2004Google Scholar
  23. 23.
    Rigby LJ, Epa VC, Mackay GA, Hulett MD, Sutton BJ, Gould HJ, Hogarth PM: Domain one of the high affinity IgE receptor, Fc∈RI, regulates binding to IgE through its interface with domain two. J Biol Chem 275:9664–9672, 2000Google Scholar
  24. 24.
    Rigby LJ, Trist H, Snider J, Hulett MD, Hogarth PM, Rigby LJ, Epa VC: Monoclonal antibodies and synthetic peptides define the active site of FcγRI and a potential receptor antagonist. Allergy 55:609–619, 2000Google Scholar
  25. 25.
    Sondermann P, Huber R, Oosthuizen V, Jacob U: The 3.2-Å crystal structure of the human IgGl Fc fragment-FcγRIII complex. Nature 406:267–273, 2000Google Scholar
  26. 26.
    Woof JM, Burton DR: Human antibody-Fc receptor interactions illuminated by crystal structures. Nat Rev Immunol 4:89–99, 2004Google Scholar
  27. 27.
    Kimura T, Kihara H, Bhattacharyya S, Sakamoto H, Appella E, Siraganian RP: Downstream signaling molecules bind to different phosphorylated immunoreceptor tyrosine-based activation motif (ITAM) peptides of the high affinity IgE receptor. J Biol Chem 271:27962–27968, 1996Google Scholar
  28. 28.
    Burshtyn DN, Yang W, Yi T, Long EO: A novel phosphotyrosine motif with a critical amino acid at position -2 for the SH2 domain-mediated activation of the tyrosine phosphatase SHP-1. J Biol Chem 272:13066–13072, 1997Google Scholar
  29. 29.
    Vély F, Olivero S, Olcese L, Moretta A, Damen JE, Liu L, Krystal G, Cambier JC, Dae ron M, Vivier E: Differential association of phosphatases with hematopoietic coreceptors bearing immunoreceptor tyrosine-based inhibition motifs. Eur J Immunol 27:1994–2000, 1997Google Scholar
  30. 30.
    Takai T, Ono M, Hikida M, Ohmori H, Ravetch JV: Augmented humoral and anaphylactic responses in FcγRII-deficient mice. Nature 379:346–349, 1996CrossRefPubMedGoogle Scholar
  31. 31.
    Ravetch JV, Clynes RA: Divergent roles for Fc receptors and complement in vivo. Annu Rev Immunol 16:421–432, 1998Google Scholar
  32. 32.
    Ravetch JV, Bolland S: IgG Fc receptors. Annu Rev Immunol 19:275–290, 2001Google Scholar
  33. 33.
    Nakajima H, Samaridis J, Angman L, Colonna M: Human myeloid cells express an activating ILT receptor (ILT1) that associates with Fc receptor y-chain. J Immunol 162:5–8, 1999Google Scholar
  34. 34.
    Takai T, Ono M: Activating and inhibitory nature of the murine paired immunoglobulin-like receptor family. Immun Rev 181:215–222, 2001Google Scholar
  35. 35.
    Boylan B, Chen H, Rathore V, Paddock C, Salacz M, Friedman KD, Curtis BR, Stapleton M, Newman DK, Kahn ML, Newman PJ: Anti-GPVI-associated ITP: An acquired platelet disorder caused by autoantibody-mediated clearance of the GPVI/FcRγ-chain complex from the human platelet surface. Blood 104:1350–1355, 2004Google Scholar
  36. 36.
    Moretta L, Moretta A: Unravelling natural killer cell function: Triggering and inhibitory human NK receptors. EMBO J 23:255–259, 2004CrossRefGoogle Scholar
  37. 37.
    Amigorena S, Bonnerot C: Fc receptor signaling and trafficking: A connection for antigen processing. Immun Rev 172:279–284, 1999Google Scholar
  38. 38.
    Regnault A, Lankar D, Lacabanne V, Rodriguez A, Thery C, Rescigno M, Saito T, Verbeek S, Bonnerot C, Ricciardi-Castagnoli P, Amigorena S: Fcγ receptor-mediated induction of dendritic cell maturation and major histocompatibility complex class I-restricted antigen presentation after immune complex internalization. J Exp Med 189:371–380, 1999Google Scholar
  39. 39.
    Machy P, Serre K, Leserman L: Class I-restricted presentation of exogenous antigen acquired by Fcγ receptor-mediated endocytosis is regulated in dendritic cells. Eur J Immunol 30:848–857, 2000Google Scholar
  40. 40.
    Hamano Y, Arase H, Saisho H, Saito T: Immune complex and Fc receptor-mediated augmentation of antigen presentation for in vivo Th cell responses. J Immunol 164: 6113–6119, 2000Google Scholar
  41. 41.
    Fridman WH, Bonnerot C, Daeron M, Amigorena S, Teillaud JL, Sautes C: Structural bases of Fcγ receptor functions. Immun Rev 125:49–76, 1992Google Scholar
  42. 42.
    Akiyama K, Ebihara S, Yada A, Matsumura K, Aiba S, Nukiwa T, Takai T: Targeting of apoptotic tumor cells to Fcγ receptors provides efficient and versatile vaccination against tumors by dendritic cells. J Immunol 170:1641–1648, 2003Google Scholar
  43. 43.
    Yada A, Ebihara S, Matsumura K, Akiyama K, Aiba S, Takai T: Contribution of Fcγ receptors to antigen presentation and elicitation of humoral response in vivo. Cell Immunol 225:21–32, 2003Google Scholar
  44. 44.
    Gil-Torregrosa BC, Lennon-Dumenil AM, Kessler B, Guermonprez P, Ploegh HL, Fruci D, van Endert P, Amigorena S: Control of cross-presentation during dendritic cell maturation. Eur J Immunol 34:398–407, 2004Google Scholar
  45. 45.
    Tobar JA, González PA, Kalergis AM: Salmonella escape from antigen presentation can be overcome by targeting bacteria to Fcγ receptors on dendritic cells. J Immunol 173:4058–4065, 2004Google Scholar
  46. 46.
    Tkaczyk C, Villa I, Peronet R, David B, Mecheri S: Fc∈RI-mediated antigen endocytosis turns interferon-γ-treated mouse mast cells from inefficient into potent antigen-presenting cells. Immunology 97:333–340, 1999Google Scholar
  47. 47.
    Reich K, Heine A, Hugo S, Blaschke V, Middel P, Kaser A, Tilg H, Blaschke S, Gutgesell C, Neumann C: Engagement of the Fc∈RI stimulates the production of IL-16 in Langerhans cell-like dendritic cells. J Immunol 167:6321–6329, 2001Google Scholar
  48. 48.
    Novak N, Valenta R, Bohle B, Laffer S, Haberstok J, Kraft S, Bieber T: Fc∈RI engagement of Langerhans cell-like dendritic cells and inflammatory dendritic epidermal cell-like dendritic cells induces chemotactic signals and different T-cell phenotypes in vitro. J Allergy Clin Immunol 113:949–957, 2004Google Scholar
  49. 49.
    Shen L, van Egmond M, Siemasko K, Gao H, Wade T, Lang ML, Clark M, van De Winkel JG, Wade WF: Presentation of ovalbumin internalized via the immunoglobulin-A Fc receptor is enhanced through Fc receptor γ-chain signaling. Blood 97:205–213, 2001Google Scholar
  50. 50.
    Lang ML, Shen L, Gao H, Cusack WF, Lang GA, Wade WF: Fca receptor cross-linking causes translocation of phosphatidylinositol-dependent protein kinase 1 and protein kinase B a to MHC class II peptide-loading-like compartments. J Immunol 166:5585–5593, 2001Google Scholar
  51. 51.
    Chen YW, Lang ML, Wade WF: Protein kinase C-a and -8 are required for FcaR (CD89) trafficking to MHC class II compartments and FcaR-mediated antigen presentation. Traffic 5:577–594, 2004Google Scholar
  52. 52.
    Heyman B: Regulation of antibody responses via antibodies, complement, and Fc receptors. Annu Rev Immunol 18:709–737, 2000Google Scholar
  53. 53.
    Yoshida M, Claypool SM, Wagner JS, Mizoguchi E, Mizoguchi A, Roopenian DC, Lencer WI, Blumberg RS: Human neonatal Fc receptor mediates transport of IgG into luminal secretions for delivery of antigens to mucosal dendritic cells. Immunity 20:769–783, 2004Google Scholar
  54. 54.
    Ober, RJ, Martinez, C, Lai, X, Zhou, J, Ward, ES: Exocytosis of IgG as mediated by the receptor FcRn: An analysis at the single-molecule level. Proc Natl Acad Sci USA 101:11076–11081, 2004Google Scholar
  55. 55.
    Ober RJ, Martinez C, Vaccaro C, Zhou J, Ward ES: Visualizing the site and dynamics of IgG salvage by the MHC class I-related receptor, FcRn. J Immunol 172:2021–2029, 2004Google Scholar
  56. 56.
    Simister NE, Mostov KE: An Fc receptor structurally related to MHC class I antigens. Nature 337:184–187, 1989Google Scholar
  57. 57.
    Ahouse JJ, Hagerman CL, Mittal P, Gilbert DJ, Copeland NG, Jenkins NA, Simister NE: Mouse MHC class I-like Fc receptor encoded outside the MHC. J Immunol 151:6076–6088, 1993Google Scholar
  58. 58.
    Roopenian DC, Christiansen GJ, Sproule TJ, Brown AC, Akilesh S, Jung N, Petkova S, Avanessian L, Choi EY, Shaffer DJ, Eden PA, Anderson CL: The MHC class I-like IgG receptor controls perinatal IgG transport, IgG homeostasis, and fate of IgG-Fc-coupled drugs. J Immunol 170:3528–3533, 2003Google Scholar
  59. 59.
    Wines BD, Gavin A, Powell MS, Steinitz M, Buchanan RR, Mark Hogarth P: Soluble FcγRIIa inhibits rheumatoid factor binding to immune complexes. Immunology 109:246–254, 2003Google Scholar
  60. 60.
    Durum SK, Lee C-K, Geiman TM, Murphy WJ, Muegge K: CD 16 cross-linking blocks rearrangement of the TCRβ locus and development of αβ T cells and induces development of NK cells from thymic progenitors. J Immunol 161:3325–3329, 1998Google Scholar
  61. 61.
    de Andres B, Mueller AL, Verbeek S, Sandor M, Lynch RG: A regulatory role for Fcγ receptors CD16 and CD32 in the development of murine B cells. Blood 92:2823–2829, 1998Google Scholar
  62. 62.
    Kato I, Takai T, Kudo A: FcγRIIB negatively regulates the pre-BCR signaling for apoptosis. J Immunol 168:629–634, 2002Google Scholar
  63. 63.
    Pearse RN, Kawabe T, Bolland S, Guinamard R, Kurosaki T, Ravetch JV: SHIP recruitment attenuates FcγRIIB-induced B cell apoptosis. Immunity 10:753–760, 1999Google Scholar
  64. 64.
    Rao SP, Vora KA, Manser T: Differential expression of the inhibitory IgG Fc receptor FcγRIIB on germinal center cells: Implications for selection of high-affinity B cells. J Immunol 169:1859–1868, 2002Google Scholar
  65. 65.
    Brauweiler AM, Cambier JC: Autonomous SHIP-dependent FcγR signaling in pre-B cells leads to inhibition of cell migration and induction of cell death. Immunol Lett 92:75–81, 2004Google Scholar
  66. 66.
    Ashman RF, Peckham D, Stunz LL: Fc receptor off-signal in the B cell involves apoptosis. J Immunol 157:5–11, 1996Google Scholar
  67. 67.
    Ono M, Okada H, Bolland S, Yanagi S, Kurosaki T, Ravetch JV: Deletion of SHIP or SHP-1 reveals two distinct pathways for inhibitory signaling. Cell 90:293–301, 1997Google Scholar
  68. 68.
    Aydar Y, Wu J, Song J, Szakal AK, Tew JG: FcγRII expression on follicular dendritic cells and immunoreceptor tyrosine-based inhibition motif signaling in B cells. Eur J Immunol 34:98–107, 2004Google Scholar
  69. 69.
    Camilleri-Broët S, Cassard L, Broët P, Delmer A, Touneau AL, Diebold J, Fridman WH, Molina TJ, Sautes-Fridman, C: FcγRIIB is differentially expressed during B cell maturation and in B-cell lymphomas. Br J Haematol 124:55–62, 2004Google Scholar
  70. 70.
    Damle RN, Ghiotto F, Valetto A, Valetto A, Albesiano E, Fais F, Yan XJ, Sison CP, Allen SL, Kolitz J, Schulman P, Vinciguerra VP, Budde P, Frey J, Rai KR, Ferrarini M, Chiorazzi N: B-cell chronic lymphocytic leukemia cells express a surface membrane phenotype of activated, antigen-experienced B lymphocytes. Blood 99:4087–4093, 2002Google Scholar
  71. 71.
    Gamberale R, Geffner JR, Sanjurjo J, Fernandez-Calotti PX, Arrosagaray G, Avalos JS, Giordano M: Expression of Fcγ receptors type II (FcγRII) in chronic lymphocytic leukemia B cells. Blood 102:2698–2699, 2003Google Scholar
  72. 72.
    Takai T, Ravetch JV: Fc receptor genetics and the manipulation of genes in the study of FcR biology. In Immunoglobulin Receptors and Their Physiological and Pathological Roles in Immunity, JGJ van de Winkel, PM Hogarth (eds). Great Britain, Kluwer Academic, 1998, pp 37–48Google Scholar
  73. 73.
    Wang AV, Scholl PR, Geha RS: Physical and functional association of the high affinity immunoglobulin G receptor (FcγRI) with the kinases Hck and Lyn. J Exp Med 180:1165–1170, 1994Google Scholar
  74. 74.
    Ghazizadeh S, Bolen JB, Fleit HB: Physical and functional association of Src-related protein tyrosine kinases with FcγRII in monocytic THP-1 cells. J Biol Chem 269:8878–8884, 1994Google Scholar
  75. 75.
    Hillyard DZ, Jardine AG, McDonald KJ, Cameron AJ: Fluvastatin inhibits raft dependent Fcγ receptor signalling in human monocytes. Atherosclerosis 172:219–228, 2004Google Scholar
  76. 76.
    Lang ML, Chen YW, Shen L, Gao H, Lang GA, Wade TK, Wade WF: IgA Fc receptor (FcαR) cross-linking recruits tyrosine kinases, phosphoinositide kinases and serine/threonine kinases to glycolipid rafts. Biochem J 364:517–525, 2002Google Scholar
  77. 77.
    Shao D, Segal AW, Dekker LV: Lipid rafts determine efficiency of NADPH oxidase activation in neutrophils. FEBS Lett 550:101–106, 2003Google Scholar
  78. 78.
    Kyo S, Sada K, Qu X, Maeno K, Miah SM, Kawauchi-Kamata K, Yamamura H: Negative regulation of Lyn protein-tyrosine kinase by c-Cbl ubiquitin-protein ligase in Fc(RI-mediated mast cell activation. Genes Cells 8:825–836, 2003Google Scholar
  79. 79.
    Galandrini R, Tassi I, Mattia G, Lenti L, Piccoli M, Frati L, Santoni A: SH2-containing inositol phosphatase (SHIP-1) transiently translocates to raft domains and modulates CD16-mediated cytotoxicity in human NK cells. Blood 100:4581–4589, 2002Google Scholar
  80. 80.
    Pricop L, Redecha P, Teillaud JL, Frey J, Fridman WH, Sautes-Fridman C, Salmon JE: Differential modulation of stimulatory and inhibitory Fcγ receptors on human monocytes by Thl and Th2 cytokines. J Immunol 166:531–537, 2001Google Scholar
  81. 81.
    Kwiatkowska K, Sobota A: The clustered Fcγ receptor II is recruited to Lyn-containing membrane domains and undergoes phosphorylation in a cholesterol-dependent manner. Eur J Immunol 31:989–998, 2001Google Scholar
  82. 82.
    Ohyama N, Furuno T, Hirashima N, Nakanishi M: The effects of ITIM-bearing FcγRIIB on the nuclear shuttling of MAP kinase in RBL-2H3 cells. Immunol Lett 90:173–176, 2003Google Scholar
  83. 83.
    Kepley CL, Taghavi S, Mackay G, Zhu D, Morel PA, Zhang K, Ryan JJ, Satin LS, Zhang M, Pandolfi PP, Saxon A: Co-aggregation of FcγRII with Fc(RI on human mast cells inhibits antigen-induced secretion and involves SHIP-Grb2-Dok complexes. J Biol Chem 279:35139–35149, 2004Google Scholar
  84. 84.
    Muta T, Kurosaki T, Misulovin Z, Sanchez M, Nussenzweig MC, Ravetch JV: A 13-amino-acid motif in the cytoplasmic domain of FcγRIIB modulates B-cell receptor signalling. Nature 368:70–73, 1994Google Scholar
  85. 85.
    Ono M, Bolland S, Tempst P, Ravetch JV: Role of the inositol phosphatase SHIP in negative regulation of the immune system by the receptor FcγRIIB. Nature 383:263–266, 1996Google Scholar
  86. 86.
    Damen JE, Liu L, Rosten P, Humphries RK, Jefferson AB, Majerus PW, Krystal G: The 145-kDa protein induced to associate with She by multiple cytokines is an inositol tetraphosphate and phosphatidylinositol 3,4,5-trisphosphate 5-phosphatase. Proc Natl Acad Sci USA 93:1689–1693, 1996Google Scholar
  87. 87.
    Fong DC, Malbec O, Arock M, Cambier JC, Fridman WH, Dae ron M: Selective in vivo recruitment of the phosphatidylinositol phosphatase SHIP by phosphorylated FcγRIIB during negative regulation of IgE-dependent mouse mast cell activation. Immunol Lett 54:83–91, 1996Google Scholar
  88. 88.
    Gupta N, Scharenberg AM, Burshtyn DN, Wagtmann N, Lioubin MN, Rohrschneider LR, Kinet JP, Long EO: Negative signaling pathways of the killer cell inhibitory receptor and FcγRIIbl require distinct phosphatases. J Exp Med 186:473–478, 1997Google Scholar
  89. 89.
    Nakamura K, Brauweiler A, Cambier JC: Effects of Src homology domain 2 (SH2)-containing inositol phosphatase (SHIP), SH2-containing phosphotyrosine phosphatase (SHP)-l, and SHP-2 SH2 decoy proteins on FcγRIIB 1 -effector interactions and inhibitory functions. J Immunol 164:631–638, 2000Google Scholar
  90. 90.
    Scharenberg AM, El-Hillal O, Fruman DA, Beitz LO, Li Z, Lin S, Gout I, Cantley LC, Rawlings DJ, Kinet JP: Phosphatidylinositol-3,4,5-trisphosphate (PtdIns-3,4,5-P3)/Tec kinase-dependent calcium signaling pathway: A target for SHIP-mediated inhibitory signals. EMBO J 17:1961–1972, 1998Google Scholar
  91. 91.
    Fluckiger AC, Li Z, Kato RM, Wahl MI, Ochs HD, Longnecker R, Kinet JP, Witte ON, Scharenberg AM, Rawlings DJ: Btk/Tec kinases regulate sustained increases in intracellular Ca2+ following B-cell receptor activation. EMBO J 17:1973–1985, 1998Google Scholar
  92. 92.
    Holland S, Pearse RN, Kurosaki T, Ravetch JV: SHIP modulates immune receptor responses by regulating membrane association of Btk. Immunity 8:509–516, 1998Google Scholar
  93. 93.
    Liu Q, Oliveira-Dos-Santos AJ, Mariathasan S, Bouchard D, Jones J, Sarao R, Kozieradzki I, Ohashi PS, Penninger JM, Dumont DJ: The inositol polyphosphate 5-phosphatase Ship is a crucial negative regulator of B cell antigen receptor signaling. J Exp Med 188:1333–1342, 1998Google Scholar
  94. 94.
    Aman MJ, Lamkin TD, Okada H, Kurosaki T, Ravichandran KS: The inositol phosphatase SHIP inhibits Akt/PKB activation in B cells. J Biol Chem 273:33922–33928, 1998Google Scholar
  95. 95.
    Helgason CD, Kalberer CP, Damen JE, Chappel SM, Pineault N, Krystal G, Humphries RK: A dual role for Src homology 2 domain-containing inositol-5-phosphatase (SHIP) in immunity: Aberrant development and enhanced function of B lymphocytes in SHIP −/− mice. J Exp Med 191:781–794, 2000Google Scholar
  96. 96.
    Tridandapani S, Kelley T, Pradhan M, Cooney D, Justement LB, Coggeshall KM: Recruitment and phosphorylation of SH2-containing inositol phosphatase and She to the B-cell Fcγ immunoreceptor tyrosine-based inhibition motif peptide motif. Mol Cell Biol 17:4305–4311, 1997Google Scholar
  97. 97.
    Tridandapani S, Chacko GW, Van Brocklyn JR, Coggeshall KM: Negative signaling in B cells causes reduced Ras activity by reducing Shc-Grb2 interactions. J Immunol 158:1125–1132, 1997Google Scholar
  98. 98.
    Tamir I, Stolpa JC, Helgason CD, Nakamura K, Bruhns P, Daeron M, Cambier JC: The RasGAP-binding protein p62dok is a mediator of inhibitory FcγRIIB signals in B cells. Immunity 12:347–358, 2000Google Scholar
  99. 99.
    Hashimoto A, Okada H, Jiang A, Kurosaki M, Greenberg S, Clark EA, Kurosaki T: Involvement of guanosine triphosphatases and phospholipase C-γ2 in extracellular signal-regulated kinase, c-Jun NH2-terminal kinase, and p38 mitogen-activated protein kinase activation by the B cell antigen receptor. J Exp Med 188:1287–1295, 1998Google Scholar
  100. 100.
    Yamanashi Y, Tamura T, Kanamori T, Yamane H, Nariuchi H, Yamamoto T, Baltimore D: Role of the rasGAP-associated docking protein p62dok in negative regulation of B cell receptor-mediated signaling. Genes Dev 14:11–16, 2000Google Scholar
  101. 101.
    Hippen KL, Buhl AM, d’Ambrosio D, Nakamura K, Persin C, Cambier JC: FcγRIIB 1 inhibition of BCR-mediated phosphoinositide hydrolysis and Ca2+ mobilization is integrated by CD 19 dephosphorylation. Immunity 7:49–58, 1997Google Scholar
  102. 102.
    Takai T, Li M, Sylvestre D, Clynes R, Ravetch JV: FcR γ chain deletion results in pleiotrophic effector cell defects. Cell 76:519–529, 1994Google Scholar
  103. 103.
    Clynes R, Ravetch JV: Cytotoxic antibodies trigger inflammation through Fc receptors. Immunity 3:21–26, 1995Google Scholar
  104. 104.
    Clynes R, Dumitru, C, Ravetch, JV: Uncoupling of immune complex formation and kidney damage in autoimmune glomerulonephritis. Science 279:1052–1054, 1998Google Scholar
  105. 105.
    Clynes R, Maizes JS, Guinamard R, Ono M, Takai T, Ravetch JV: Modulation of immune complex induced inflammation in vivo by the coordinate expression of activation and inhibitory Fc receptors. J Exp Med 189:179–186, 1999Google Scholar
  106. 106.
    Park SY, Ueda S, Ohno H, Hamano Y, Tanaka M, Shiratori T, Yamazaki T, Arase H, Arase N, Karasawa A, Sato S, Ledermann B, Kondo Y, Okumura K, Ra C, Saito T: Resistance of Fc receptor-deficient mice to fatal glomerulonephritis. J Clin Invest 102:1229–1238, 1998Google Scholar
  107. 107.
    Suzuki Y, Shirato I, Okumura K, Ravetch JV, Takai T, Tomino Y, Ra C: Distinct contribution of Fc receptors and angiotensin II-dependent pathways in anti-GBM glomerulonephritis. Kidney Int 54:1166–1174, 1998Google Scholar
  108. 108.
    Watanabe N, Akikusa B, Park SY, Ohno H, Fossati L, Vecchietti G, Gessner JE, Schmidt RE, Verbeek JS, Ryffel B, Iwamoto I, Izui S, Saito T: Mast cells induce autoantibody-mediated vasculitis syndrome through tumor necrosis factor production upon triggering Fcγ receptors. Blood 94:3855–3863, 1999Google Scholar
  109. 109.
    Hazenbos WLW, Gessner JE, Hofhuis FM, Kuipers H, Meyer D, Heijnen IA, Schmidt RE, Sandor M, Capel PJ, Dae ron M, van de Winkel JG, Verbeek JS: Impaired IgG-dependent anaphylaxis and Arthus reaction in FcγRIII (CD 16) deficient mice. Immunity 5:181–188, 1996Google Scholar
  110. 110.
    Hazenbos WLW, Heijnen IAFM, Meyer D, hofhuis FMA, de Lavalette CR, Schmidt RE, Capel PJA, van de Winkel JGJ, Gessner JE, van den Berg TK, Verbeek JS: Murine IgGl complexes trigger immune effector functions predominantly via FcγRIII (CD 16). J Immunol 161:3026–3032, 1998Google Scholar
  111. 111.
    Dombrowicz D, Flamand V, Brigman KK, Koller BH, Kinet J-P: Abolition of anaphylaxis by targeted disruption of the high affinity immunoglobulin E receptor a chain gene. Cell 75:969–976, 1993Google Scholar
  112. 112.
    Dombrowicz D, Flamand V, Miyajima I, Ravetch JV, Galli SJ, Kinet JP: Absence of Fc∈RI α chain results in upregulation of FcγRIII-dependent mast cell degranulation and anaphylaxis. Evidence of competition between Fc∈RI and FcγRIII for limiting amounts of FcR β and γ chain. J Clin Invest 99:915–925, 1997Google Scholar
  113. 113.
    Dombrowicz D, Lin S, Flamand V, Brini AT, Koller BH, Kinet JP: Allergy-associated FcRβ is a molecular amplifier of IgE- and IgG-mediated in vivo responses. Immunity 8:517–529, 1998Google Scholar
  114. 114.
    Barnes N, Gavin AL, Tan PS, Mottram P, Koentgen F, Hogarth PM: FcγRI-deficient mice show multiple alterations to inflammatory and immune responses. Immunity 16:379–389, 2002Google Scholar
  115. 115.
    Ioan-Facsinay A, de Kimpe SJ, Hellwig SM, van Lent PL, Hofhuis FM, van Ojik HH, Sedlik C, da Silveira SA, Gerber J, de Jong YF, Roozendaal R, Aarden LA, van den Berg WB, Saito T, Mosser D, Amigorena S, Izui S, van Ommen GJ, van Vugt M, van de Winkel JG, Verbeek JS: FcγRI (CD64) contributes substantially to severity of arthritis, hypersensitivity responses, and protection from bacterial infection. Immunity 16:391–402, 2002Google Scholar
  116. 116.
    Yamaguchi A, Katsuyama K, Nagahama K, Takai T, Aoki I, Yamanaka S: Possible role of autoantibody in the pathophysiology of GM2 gangliosidoses. J Clin Invest 113:200–208, 2004Google Scholar
  117. 117.
    Sylvestre DL, Ravetch JV: Fc receptors initiate the Arthus reaction: Redefining the inflammatory cascade. Science 265:1095–1098, 1994Google Scholar
  118. 118.
    Godau J, Heller T, Hawlisch H, Trappe M, Howells E, Best J, Zwirner J, Verbeek JS, Hogarth PM, Gerard C, Van Rooijen N, Klos A, Gessner JE, Kohl J: C5a initiates the inflammatory cascade in immune complex peritonitis. J Immunol 173:3437–3445, 2004Google Scholar
  119. 119.
    Ji H, Ohmura K, Mahmood U, Lee DM, Hofhuis FM, Boackle SA, Takahashi K, Holers VM, Walport M, Gerard C, Ezekowitz A, Carrol MC, Brenner M, Weissleder R, Verbeek JS, Duchatelle V, Degott C, Benoist C, Mathis D: Arthritis critically dependent on innate immune system players. Immunity 16:157–168, 2002Google Scholar
  120. 120.
    Shushakova N, Skokowa J, Schulman J, Baumann U, Zwirner J, Schmidt RE, Gessner JE: C5a anaphylatoxin is a major regulator of activating versus inhibitory FcγRs in immune complex-induced lung disease. J Clin Invest 110:1823–1830, 2002Google Scholar
  121. 121.
    Ravetch JV: AMI complement of receptors in immune complex diseases. J Clin Invest 110:1759–1761, 2002Google Scholar
  122. 122.
    Trcka J, Moroi Y, Clynes RA, Goldberg SM, Bergtold A, Perales MA, Ma M, Ferrone CR, Carroll MC, Ravetch JV, Houghton AN: Redundant and alternative roles for activating Fc receptors and complement in an antibody-dependent model of autoimmune vitiligo. Immunity 16:861–868, 2002Google Scholar
  123. 123.
    Ujike A, Ishikawa Y, Ono M, Yuasa T, Yoshino T, Fukumoto M, Ravetch JV, Takai T: Modulation of IgE-mediated systemic anaphylaxis by low affinity Fc receptors for IgG. J Exp Med 189:1573–1579, 1999Google Scholar
  124. 124.
    Schiller C, Janssen-Graalfs I, Baumann U, Schwerter-Strumpf K, Izui S, Takai T, Schmidt RE, Gessner JE: Mouse FcγRII is a negative regulator of FcγRIII in IgG immune complex triggered inflammation but not in autoantibody induced hemolysis. Eur J Immunol 30:481–490, 2000Google Scholar
  125. 125.
    Kleinau S, Martinsson P, Heyman B: Induction and suppression of collagen-induced arthritis is dependent on distinct Fcγ receptors. J Exp Med 191:1611–1616, 2000Google Scholar
  126. 126.
    Nakamura A, Nukiwa T, Takai T: Deregulation of peripheral B-cell development in enhanced severity of collagen-induced arthritis in FcγRIIB-deficient mice. J Autoimmun 20:227–236, 2003Google Scholar
  127. 127.
    Kalluri R: Goodpasture syndrome. Kidney Int 55:1120–1122, 1999Google Scholar
  128. 128.
    Savage CO, Pusey CD, Bowman C, Rees AJ, Lockwood CM: Antiglomerular basement membrane antibody mediated disease in the British Isles. Br Med J 292:1980–1984, 1996Google Scholar
  129. 129.
    Kouskoff V, Korganow AS, Duchatelle V, Degott C, Benoist C, Mathis D: Organ-specific disease provoked by systemic autoimmunity. Cell 87:811–822, 1996Google Scholar
  130. 130.
    Corr M, Grain B: The role of FcγR signaling in the K/B x N serum transfer model of arthritis. J Immunol 169:6604–6609, 2002Google Scholar
  131. 131.
    Blom AB, Radstake TR, Holthuysen AE, Sloetjes AW, Pesman GJ, Sweep FG, van de Loo FA, Joosten LA, Barrera P, van Lent PL, van den Berg WB: Increased expression of Fcγ receptors II and III on macrophages of rheumatoid arthritis patients results in higher production of tumor necrosis factor a and matrix metalloproteinase. Arthritis Rheum 48:1002–1014, 2003Google Scholar
  132. 132.
    Hepburn AL, Mason JC, Davies KA: Expression of Fcγ and complement receptors on peripheral blood monocytes in systemic lupus erythematosus and rheumatoid arthritis. Rheumatol (Oxford) 43:547–554, 2004Google Scholar
  133. 133.
    Tarzi RM, Cook HT: Role of Fcγ receptors in glomerulonephritis. Nephron Exp Nephrol 95:e7–el2, 2003Google Scholar
  134. 134.
    Reefman E, Dijstelbloem HM, Limburg PC, Kallenberg CG, Bijl M: Fcγ receptors in the initiation and progression of systemic lupus erythematosus. Immunol Cell Biol 81:382–389, 2003Google Scholar
  135. 135.
    Hanayama R, Tanaka M, Miyasaka K, Aozasa K, Koike M, Uchiyama Y, Nagata S: Autoimmune disease and impaired uptake of apoptotic cells in MFG-E8-deficient mice. Science 304:1147–1150, 2004Google Scholar
  136. 136.
    Bolland S, Ravetch JV: Spontaneous autoimmune disease in FcγRIIB-deficient mice results from strain-specific epistasis. Immunity 13:277–285, 2000Google Scholar
  137. 137.
    Yajima K, Nakamura A, Sugahara A, Takai T: FcγRIIB deficiency with Fas mutation is sufficient for the development of systemic autoimmune disease. Eur J Immunol 33:1020–1029, 2003Google Scholar
  138. 138.
    Jiang Y, Hirose S, Abe M, Sanokawa-Akakura R, Ohtsuji M, Mi X, Li N, Xiu Y, Zhang D, Shirai J, Hamano Y, Fujii H, Shirai T: Polymorphisms in IgG Fc receptor IIB regulatory regions associated with autoimmune susceptibility. Immunogenetics 51:429–435, 2000Google Scholar
  139. 139.
    Bolland S, Yim YS, Tus K, Wakeland EK, Ravetch JV: Genetic modifiers of systemic lupus erythematosus in FcγRIIB−/− mice. J Exp Med 195:1167–1174, 2002Google Scholar
  140. 140.
    Abdul-Majid K-B, Stefferl A, Bourquin C, Lassmann H, Linington C, Olsson T, Kleinau S, Harris RA: Fc receptors are critical for autoimmune inflammatory damage to the central nervous system in experimental autoimmune encephalomyelitis. Scan J Immunol 55:70–81, 2002Google Scholar
  141. 141.
    Szalai AJ, Barnum SR: Fc receptors and the common γ-chain in experimental autoimmune encephalomyelitis. J Neurosci Res 75:597–602, 2004Google Scholar
  142. 142.
    Duits AJ, Bootsma H, Derksen RH, Spronk PE, Kater L, Kallenberg CG, Capel PJ, Westerdaal NA, Spierenburg GT, Gmelig-Meyling FH, van de Winkel JGJ: Skewed distribution of IgG Fc receptor Ha (CD32) polymorphism is associated with renal disease in systemic lupus erythematosus patients. Arthritis Rheum 38:1832–1836, 1995Google Scholar
  143. 143.
    Salmon JE, Millard S, Schachter LA, Arnett FC, Ginzler EM, Gourley MF, Ramsey-Goldman R, Peterson MG, Kimberly RP: FcγRIIA alleles are heritable risk factors for lupus nephritis in African Americans. J Clin Invest 97:1348–1354, 1996Google Scholar
  144. 144.
    Song YW, Han CW, Kang SW, Back HJ, Lee EB, Shin CH, Hahn BH, Tsao BP: Abnormal distribution of Fcγ receptor type Ha polymorphisms in Korean patients with systemic lupus erythematosus. Arthritis Rheum 41:421–426, 1998Google Scholar
  145. 145.
    Koene HR, Kleijer M, Swaak AJ, Sullivan KE, Bijl M, Petri MA, Kallenberg CG, Roos D, von dem Borne AE, de Haas, M: The FcγRIIIA-158F allele is a risk factor for systemic lupus erythematosus. Arthritis Rheum 41:1813–1818, 1998Google Scholar
  146. 146.
    Wu J, Edberg JC, Redecha PB, Bansal V, Guyre PM, Coleman K, Salmon JE, Kimberly RP: A novel polymorphism of FcγRIIIa (CD 16) alters receptor function and predisposes to autoimmune disease. J Clin Invest 100:1059–1070, 1997Google Scholar
  147. 147.
    Salmon JE, Kimberly RP, Gibofsky A, Fotino M: Defective mononuclear phagocyte function in systemic lupus erytehmatosus: Dissociation of Fc receptor-ligand binding and internalization. J Immunol 133:2525–2531, 1984Google Scholar
  148. 148.
    Steffensen R, Gulen T, Vanning K, Jersild C: FcγRIIIB polymorphism: Evidence that NA1/NA2 and SH are located in two closely linked loci and that the SH allele is linked to the NA1 allele in the Danish population. Transfusion 39:593–598, 1999Google Scholar
  149. 149.
    Kyogoku C, Tsuchiya N, Wu H, Tsao BP, Tokunaga K: Association of Fcγ receptor IIA, but not IIB and IIIA, polymorphisms with systemic lupus erythematosus: A family-based association study in Caucasians. Arthritis Rheum 50:671–673, 2004Google Scholar
  150. 150.
    Hatta Y, Tsuchiya N, Ohashi J, Matsushita M, Fujiwara K, Hagiwara K, Juji T, Tokunaga K: Association of Fcγ receptor IIIB, but not of Fcγ receptor IIA and IIIA, polymorphisms with systemic lupus erythematosus in Japanese. Genes Immun 1:53–60, 1999Google Scholar
  151. 151.
    Edberg JC, Wainstein E, Wu J, Csernok E, Sneller MC, Hoffman GS, Keystone EC, Gross WL, Kimberly RP: Analysis of FcγRII gene polymorphisms in Wegener’s granulomatosis. Exp Clin Immunogenet 14:183–195, 1997Google Scholar
  152. 152.
    Yasuda K, Sugita N, Yamamoto K, Kobayashi T, Yoshie H: Seven single nucleotide substitutions in human Fcγ receptor IIB gene. Tissue Antigens 58:339–342, 2001Google Scholar
  153. 153.
    Kyogoku C, Dijstelbloem HM, Tsuchiya N, Hatta Y, Kato H, Yamaguchi A, Fukazawa T, Jansen MD, Hashimoto H, van de Winkel JG, Kallenberg CG, Tokunaga K: Fcγ receptor gene polymorphisms in Japanese patients with systemic lupus erythematosus: Contribution of FCGR2B to genetic susceptibility. Arthritis Rheum 46:1242–1254, 2002Google Scholar
  154. 154.
    Li X, Wu J, Carter RH, Edberg JC, Su K, Cooper GS, Kimberly RP: A novel polymorphism in the Fcγ receptor IIB (CD32B) transmembrane region alters receptor signaling. Arthritis Rheum 48:3242–3252, 2003Google Scholar
  155. 155.
    Siriboonrit U, Tsuchiya N, Sirikong M, Kyogoku C, Bejrachandra S, Suthipinittharm P, Luangtrakool K, Srinak D, Thongpradit R, Fujiwara K, Chandanayingyong D, Tokunaga K: Association of Fcγ receptor IIb and IIIb polymorphisms with susceptibility to systemic lupus erythematosus in Thais. Tissue Antigens 61:374–383, 2003Google Scholar
  156. 156.
    Chu ZT, Tsuchiya N, Kyogoku C, Ohashi J, Qian YP, Xu SB, Mao CZ, Chu JY, Tokunaga K: Association of Fcγ receptor lib polymorphism with susceptibility to systemic lupus erythematosus in Chinese: A common susceptibility gene in the Asian populations. Tissue Antigens 63:21–27, 2004Google Scholar
  157. 157.
    Su K, Wu J, Edberg JC, Li X, Ferguson P, Cooper GS, Langefeld CD, Kimberly RP: A promoter haplotype of the immunoreceptor tyrosine-based inhibitory motif-bearing FcγRIIb alters receptor expression and associates with autoimmunity. I. Regulatory FCGR2B polymorphisms and their association with systemic lupus erythematosus. J Immunol 172:7186–7191, 2004Google Scholar
  158. 158.
    Su K, Li X, Edber Wu J, Ferguson P, Kimberly RP. A promoter haplotype of the immunoreceptor tyrosine-based inhibitory motif-bearing FcγRIIb alters receptor expression and associates with autoimmunity. II. Differential binding of GATA4 and Yin-Yang 1 transcription factors and correlated receptor expression and function. J Immunol 172:7192–7199, 2004Google Scholar
  159. 159.
    Iba riez C, Montoro-Ronsano JB: Intravenous immunoglobulin preparations and autoimmune disorders: Mechanism of action. Curr Pharm Biotech 4:239–247, 2003Google Scholar
  160. 160.
    Cines DB, Blanchette VS: Immune thrombocytopenic purpura. N Engl J Med 346:995–1008, 2002Google Scholar
  161. 161.
    Yuki N: Infectious origins of, and molecular mimicry in, Guillain-Barré and Fisher syndromes. Lancet Infect Dis 1:29–37, 2001Google Scholar
  162. 162.
    Durelli L, Isoardo G: High-dose intravenous immunoglobulin treatment of multiple sclerosis. Neurol Sci 23:S39–S48, 2002Google Scholar
  163. 163.
    Latov N, Chaudhry V, Koski CL, Lisak RP, Apatoff BR, Hahn AF, Howard JF, Jr: Use of intravenous y globulins in neuroimmunologic diseases. J Allergy Clin Immunol 108:S126–S132, 2001Google Scholar
  164. 164.
    Wiles CM, Brown P, Chapel H, Guerrini R, Hughes RA, Martin TD, McCrone P, Newsom-Davis J, Palace J, Rees JH, Rose MR, Scolding N, Webster AD: Intravenous immunoglobulin in neurological disease: A specialist review. J Neurol Neurosurg Psychiatry 72:440–448, 2002Google Scholar
  165. 165.
    Burns JC, Glode MP: Kawasaki syndrome. Lancet 364:533–544, 2004Google Scholar
  166. 166.
    Sewell WA, Jolles S: Immunomodulatory action of intravenous immunoglobulin. Immunology 107:387–393, 2002Google Scholar
  167. 167.
    Sinclair NRStC: Fc-signalling in the modulation of immune responses by passive antibody. Scand J Immunol 53:322–330, 2001Google Scholar
  168. 168.
    Teeling JL, Jansen-Hendriks T, Kuijpers TW, de Haas M, van de Winkel JG, Hack CE, Bleeker WK: Therapeutic efficacy of intravenous immunoglobulin preparations depends on the immunoglobulin G dimers: Studies in experimental immune thrombocytopenia. Blood 98:1095–1099, 2001Google Scholar
  169. 169.
    Samuelsson A, Towers T, Ravetch JV: Anti-inflammatory activity of IVIG mediated through the inhibitory Fc receptor. Science 291:484–486, 2001CrossRefPubMedGoogle Scholar
  170. 170.
    Lin S-Y, Kinet J-P: Giving inhibitory receptors a boost. Science 291:445–446, 2001Google Scholar
  171. 171.
    Crow AR, Song S, Freedman J, Helgason CD, Humphries RK, Siminovitch KA, Lazarus AH: IVIg-mediated amelioration of murine ITP via FcγRIIB is independent of SHIP 1, SHP-1 and Btk activity. Blood 102:558–560, 2003Google Scholar
  172. 172.
    Crow AR, Song S, Freedman J, Helgason CD, Humphries RK, Siminovitch KA, Lazarus AH: SHP up or SHIP out. Blood 103:1974, 2004Google Scholar
  173. 173.
    van Mirre E, Teeling JL, van der Meer JW, Bleeker WK, Hack CE: Monomeric IgG in intravenous Ig preparations is a functional antagonist of FcγRII and FcγRIIIb. J Immunol 173:332–339, 2004Google Scholar
  174. 174.
    Bruhns P, Samuelsson A, Pollard JW, Ravetch JV: Colony-stimulating factor-1-dependent macrophages are responsible for IVIG protection in antibody-induced autoimmune disease. Immunity 18:573–581, 2003Google Scholar
  175. 175.
    Akilesh S, Petkova S, Sproule TJ, Shaffer DJ, Christiansen GJ, Roopenian D: The MHC class I-like Fc receptor promotes immorally mediated autoimmune disease. J Clin Invest 113:1328–1333, 2004Google Scholar
  176. 176.
    Siraganian RP: Mast cell signal transduction from the high-affinity IgE receptor. Curr Opin Immunol 15:639–646, 2003Google Scholar
  177. 177.
    Tax WJM, Willems HW, Reekers PPM, Capel PJA, Koene RAP: Polymorphism in mitogenic effect of IgGl monoclonal antibodies against T3 antigen on human T cells. Nature 304:445–447, 1983Google Scholar
  178. 178.
    Lalezari P: Nomenclature for neutrophil-specific antigens. Transfusion 42:1396–1397, 2002Google Scholar
  179. 179.
    Vedeler CA, Raknes G, Myhr KM, Nyland H: IgG Fc-receptor polymorphisms in Guillain-Barré syndrome. Neurology 55:705–707, 2000Google Scholar
  180. 180.
    Koene HR, Kleijer M, Swaak AJ, Sullivan KE, Bijl M, Petri MA, Kallenberg CG, Roos D, von dem Borne AE, de Haas M: The FcγRIIIA-158F allele is a risk factor for systemic lupus erythematosus. Arthritis Rheum 41:1813–1818, 1998Google Scholar
  181. 181.
    Wu J, Edberg JC, Redecha PB, Bansal V, Guyre PM, Coleman K, Salmon JE, Kimberly RP: A novel polymorphism of FcγRIIIa (CD 16) alters receptor function and predisposes to autoimmune disease. J Clin Invest 100:1059–1070, 1997Google Scholar
  182. 182.
    Nieto A, Caliz R, Pascual M, Mataran L, Garcia S, Martin J: Involvement of Fcγ receptor IIIA genotypes in susceptibility to rheumatoid arthritis. Arthritis Rheum 43:735–739, 2000Google Scholar
  183. 183.
    Yuasa T, Kubo S, Yoshino T, Ujike A, Matsumura K, Ono M, Ravetch JV, Takai T: Deletion of FcγRIIB renders H-2b mice susceptible to collagen-induced arthritis. J Exp Med 189:187–194, 1999Google Scholar
  184. 184.
    Nakamura A, Yuasa T, Ujike A, Ono M, Nukiwa T, Ravetch JV, Takai T: Fcγ receptor IIB-deficient mice develop Goodpasture’s syndrome upon immunization with type IV collagen: A novel murine model for autoimmune glomerular basement membrane disease. J Exp Med 191:899–906, 2000CrossRefPubMedGoogle Scholar
  185. 185.
    Clatworthy MR, Smigh, KGC: FcγRIIb balances efficient pathogen clearance and the cytokine-mediated consequences of sepsis. J Exp Med 199:717–723, 2004Google Scholar
  186. 186.
    Yu P, Kosco-Vilbois M, Richards M, Kohler G, Lamers MC: Negative feedback regulation of IgE synthesis by murine CD23. Nature 369:753–756, 1994CrossRefPubMedGoogle Scholar
  187. 187.
    Israel EJ, Wilsker DF, Hayes KC, Schoenfeld D, Simister NE: Increased clearance of IgG in mice that lack β2-microglobulin: Possible protective role of FcRn. Immunology 89:573–578, 1996Google Scholar
  188. 188.
    Christiansen GJ, Brooks W, Vekasi S, Manolfi EA, Niles J, Roopenian SL, Roths JB, Rothlein R, Roopenian DC: β2-Microglobulin-deficient mice are protected from hypergammaglobulinemia and have defective antibody responses because of increased IgG catabolism. J Immunol 159:4781–4792, 1997Google Scholar
  189. 189.
    Shimada S, Kawaguchi-Miyashita M, Kushiro A, Sato T, Nanno M, Sako T, Matsuoka Y, Sudo K, Tagawa Y, Iwakura Y, Ohwaki M: Generation of polymeric immunoglobulin receptor-deficient mouse with marked reduction of secretory IgA. J Immunol 163:5367–5373, 1999Google Scholar
  190. 190.
    Myhr KM, Raknes G, Nyland H, Vedeler C: Imunoglobulin G Fc-receptor (FcγR) IIA and IIIB polymorphisms related to disability in MS. Neurology 52:1771–1776, 1999Google Scholar
  191. 191.
    de Haas M, Kleijer M, van Zwieten R, Roos D, von dem Borne AE: Neutrophil FcγRIIIb deficiency, nature, and clinical consequences: A study of 21 individuals from 14 families. Blood 86:2403–2413, 1995Google Scholar
  192. 192.
    van de Winkel JG, de Wit TP, Ernst LK, Capel PJ, Ceuppens JL: Molecular basis for a familial defect in phagocyte expression of IgG receptor I (CD64). J Immunol 154:2896–2903, 1995Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Department of Experimental Immunology and CREST Program of Japan Science and Technology AgencyInstitute of Development, Aging and Cancer, Tohoku UniversitySendaiJapan
  2. 2.Department of Experimental ImmunologyInstitute of Development, Aging and Cancer, Tohoku UniversitySendaiJapan

Personalised recommendations