Advertisement

Journal of Atmospheric Chemistry

, Volume 76, Issue 1, pp 1–20 | Cite as

Dissolved organic carbon in summer precipitation and its wet deposition flux in the Mt. Yulong region, southeastern Tibetan Plateau

  • Hewen Niu
  • Shichang KangEmail author
  • Xiaofei Shi
  • Guotao Zhang
  • Shijin Wang
  • Tao Pu
Article
  • 450 Downloads

Abstract

Dissolved organic carbon (DOC) is an important organic pollutant in the air-water carbon cycle system, potentially influencing the global climate. In this study, 204 rainwater samples from five sampling stations in the Mt. Yulong region were synchronously collected from June to September in 2014. We comprehensively investigated the sources and wet deposition of DOC in summer precipitation. The average concentrations of DOC at five stations ranged from 0.74 to 1.31 mg L−1. The mass absorption efficiency (MAE) of rainwater DOC evaluated at 365 nm was 0.43 ± 0.32 m2 g−1. Backward trajectory analyses indicated that the southwest advection air parcel accounting for 46% of precipitation events, while the corresponding average concentration of rainwater DOC was 1.25 ± 0.56 mg C L−1. In addition to the local or regional contribution, large amount of atmospheric pollutants were transported from South Asia and Southeast Asia to the Mt. Yulong region, both of which had exerted great influence on the regional atmospheric environment. For the first time, the annual wet deposition of DOC in the Mt. Yulong region was estimated and determined to be 1.99 g C m−2 year−1. This is significant because the deposition of DOC on glaciers has great influence on surface albedo of snow and glacier melt. This study can bridge the gap of rainwater DOC research between the Mt. Yulong region and the southeast of Tibetan Plateau (TP), which has significant implications for better understanding the relationship of DOC deposition and glacial shrink in the TP.

Keywords

Dissolved organic carbon Mt. Yulong Rainfall Wet deposition 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (41601071, 41721091, 41630754). The independent program of SKLCS (SKLCS-ZZ-2018) and Key Research Program for Frontier Sciences of Chinese Academy of Sciences (QYZDJ-SSW-DQC039). The “Light of West China” Program (Y62992), and China Postdoctoral Science Foundation (2016 T90963, 2015 M582725). The authors gratefully acknowledge the NOAA Air Resources Laboratory (ARL) for the provision of the HYSPLIT transport model and/or READY website (http://ready.arl.noaa.gov) used in this publication. We also express our sincere appreciations to Editor-in-Chief Elliot L. Atlas, and another anonymous reviewer for their constructive comments on our paper.

Supplementary material

10874_2019_9385_MOESM1_ESM.doc (674 kb)
ESM 1 (DOC 674 kb)
10874_2019_9385_MOESM2_ESM.doc (164 kb)
ESM 2 (DOC 164 kb)

References

  1. Al-Khashman, O.A.: Ionic composition of wet precipitation in the Petra region, Jordan. Atmos. Res. 78, 1–12 (2005)Google Scholar
  2. Anderson, C.H., Dibb, J.E., Griffin, R.J.: Atmospheric water-soluble organic carbon measurements at summit, Greenland. Atmos. Environ. 42, 5612–5621 (2008)Google Scholar
  3. Andreae, M.O., Merlet, P.: Emission of trace gases and aerosols from biomass burning. Glob. Biogeochem. Cycles. 15(4), 955–966 (2001)Google Scholar
  4. Avery Jr., G.B., Willey, J.D., Kieber, R.J.: Carbon isotopic characterization of dissolved organic carbon in rainwater: terrestrial and marine influences. Atmos. Environ. 40(39), 7539–7545 (2006)Google Scholar
  5. Campos, M.L.A.M., Nogueira, R.F.P., Dametto, P.R.: Dissolved organic carbon in rainwater: glassware decontamination and sample preservation and volatile organic carbon. Atmos. Environ. 41(39), 8924–8931 (2007)Google Scholar
  6. Cao, J., Tie, X., Xu, B., Zhao, Z.Z., Zhu, C.S., Li, G., Liu, S.: Measuring and modeling black carbon (BC) contamination in the SE Tibetan Plateau. J. Atmos. Chem. 67, 45–60 (2010).  https://doi.org/10.1007/s10874-011-9202-5 Google Scholar
  7. Chen, Y., Bond, T.C.: Light absorption by organic carbon from wood combustion. Atmos. Chem. Phys. 9(5), 1773–1787 (2010)Google Scholar
  8. Cheng, Y., He, K.B., Zheng, M., Duan, F.K., Du, Z.Y., Ma, Y.L., Tan, J.H., Yang, F.M., Liu, J.M., Weber, R.J., Bergin, M.H., Russell, A.G.: Mass absorption efficiency of elemental carbon and water-soluble organic carbon in Beijing, China. Atmos. Chem. Phys. 11, 11497–11510 (2011).  https://doi.org/10.5194/acp-11-11497-2011 Google Scholar
  9. Coelho, C.H., Francisco, J.G., Nogueira, R.F.P.: Dissolved organic carbon in rainwater from areas heavily impacted by sugar cane burning. Atmos. Environ. 42(30), 7115–7121 (2008)Google Scholar
  10. Cong, Z.Y., Kawamura, K., Kang, S.C.: Penetration of biomass-burning emissions from South Asia through the Himalayas: new insights from atmospheric organic acids. Sci. Rep. 5, 9580 (2015)Google Scholar
  11. Dong, Z.W., Li, Z.Q., Ross, E., Wu, L.H., Zhou, P.: Temporal characteristics of mineral dust particles in precipitation of Urumqi River valley in Tian Shan, China: a comparison of alpine site and rural site. Atmos. Res. 101, 294–306 (2011)Google Scholar
  12. Ervens, B., Turpin, B.J., Weber, R.J.: Secondary organic aerosol formation in cloud droplets and aqueous particles (aqSOA): a review of laboratory, field and model studies. Atmos. Chem. Phys. 11, 11069–11102 (2011)Google Scholar
  13. Ervens, B., Wang, Y., Eagar, J., et al.: Dissolved organic carbon (DOC) and select aldehydes in cloud and fog water: the role of the aqueous phase in impacting trace gas budgets. Atmos. Chem. Phys. 13(10), 5117–5135 (2012)Google Scholar
  14. Evans, C.D., Monteith, D.T., Cooper, D.M.: Long-term increases in surface water dissolved organic carbon: observations, possible causes and environmental impacts. Environ. Pollution. 137(1), 55–71 (2005)Google Scholar
  15. Gioda, A., Reyes-Rodríguez, G.J., Santos-Figueroa, G.: Speciation of water-soluble inorganic, organic, and total nitrogen in a background marine environment: Cloud water, rainwater, and aerosol particles. J. Geophys. Res-Atmos. 116(D5), (2011)Google Scholar
  16. Grannas, A.M., Shepson, P.B., Filley, T.R.: Photochemistry and nature of organic matter in Arctic and Antarctic snow. Glob. Biogeochem. Cycles. 18(1), 117–127 (2004)Google Scholar
  17. Gu, C.: Springer series in statistics: smoothing spline ANOVA models (Second edition), Springer New York Heidelberg Dordrecht London, ISSN 0172-7397, pages 6–7 (2013),  https://doi.org/10.1007/978-1-4614-5369-7
  18. Guenther, A.: Seasonal and spatial variations in natural volatile organic compound emissions. Ecol. Appl. 7(1), 34–45 (1997).  https://doi.org/10.2307/2269405 Google Scholar
  19. Gueorguieva, R., Krystal, J.H.: Move over ANOVA progress in analyzing repeated-measures data and its reflection in papers published in the archives of general psychiatry. Arch. Gen. Psychiatry. 61(3), 310–317 (2004).  https://doi.org/10.1001/archpsyc.61.3.310 Google Scholar
  20. Guillermo, M.M., Matteo, R., Stefania, G., Lara, G., Marco, P., Stefano, D., Sandro, F., Maria, C.F.: On the water-soluble organic nitrogen concentration and mass size distribution during the fog season in the Po Valley, Italy. Sci. Total Environ. 485-486, 103–109 (2014)Google Scholar
  21. Han, C., Liu, Y.C., Ma, J.Z., He, H.: Key role of organic carbon in the sunlight-enhanced atmospheric aging of soot by O2. Proc. Natl. Acad. Sci. U. S. A. 109(52), 21250–21255 (2012)Google Scholar
  22. He, Y.Q., Pu, T., Li, Z.X.: Climate change and its effect on annual runoff in Lijiang basin-Mt. Yulong region, China. J. Earth Sci. 21(2), 137–147 (2010)Google Scholar
  23. Hecobian, A., Zhang, X., Zheng, M., Frank, N., Edgerton, E.S., Weber, R.J.: Water-soluble organic aerosol material and the light-absorption characteristics of aqueous extracts measured over the southeastern United States. Atmos. Chem. Phys. 10, 5965–5977 (2010).  https://doi.org/10.5194/acp-10-5965-2010 Google Scholar
  24. Hu, Z.F., Kang, S.C., Yan, F.P., Zhang, Y.L.: Dissolved organic carbon fractionation accelerates glacier-melting: a case study in the northern Tibetan Plateau. Sci. Total Environ. 627, 579–585 (2018)Google Scholar
  25. Huang, Y., Wang, Y., Zhang, L., et al.: Long-term trend of chemical composition of wet atmospheric precipitation during 1986-2006 at Shenzhen City, China. Atmos. Environ. 42(16), 3740–3750 (2008)Google Scholar
  26. Jacobson, M.Z.: Studying the effects of aerosols on vertical photolysis rate coefficient and temperature profiles over an urban air shed. J. Geophys. Res. Atmos. 103(D9), 10593–10604 (1998)Google Scholar
  27. Jacobson, M.Z.: Global direct radiative forcing due to multicomponent anthropogenic and natural aerosols. J. Geophys. Res.-Atmos. 106(D2), 1551–1568 (2001)Google Scholar
  28. Ji, Z.M., Kang, S.C., Zhang, D.: Simulation of the anthropogenic aerosols over South Asia and their effects on Indian summer monsoon. Clim. Dyn. 36(9), 1633–1647 (2011)Google Scholar
  29. Jurado, E., Jaward, F.M., Lohmann, R.: Atmospheric dry deposition of persistent organic pollutants to the Atlantic and inferences for the global oceans. Environ. Sci Technol. 38, 5505–5513 (2004)Google Scholar
  30. Jurado, E., Jaward, F., Lohmann, R., Jones, K.C., Simó, R., Dachs, J.: Wet deposition of persistent organic pollutants to the global oceans. Environ. Sci Technol. 39(8), 2426–2435 (2005)Google Scholar
  31. Kanakidou, M., Tsigaridis, K., Dentener, F.J., Crutzen, P.J.: Human activity enhanced formation of organic aerosols by biogenic hydrocarbon oxidation. J. Geophys. Res. 105(D7), 9243–9354 (2000)Google Scholar
  32. Kang, S.C., Mayewski, P.A., Qin, D.H.: Glaciochemical records from a Mt. Everest ice core: Relationship to atmospheric circulation over Asia. Atmos. Environ. 36, 3351–3361 (2002)Google Scholar
  33. Kang, S.C., Zhang, Y., Grigholm, B., Kaspari, S., Qin, D.H., Ren, J.W., Mayewski, P.A.: Variability of atmospheric dust loading over the central Tibetan Plateau based on ice core glaciochemistry. Atmos. Environ. 44, 2980–2989 (2010)Google Scholar
  34. Kawamura, K., Kaplan, I.R.: Compositional change of organic matter in rainwater during precipitation events. Atmos. Environ. 20(3), 527–535 (1986)Google Scholar
  35. Kieber, R.J., Peake, B., Willey, J.D.: Dissolved organic carbon and organic acids in coastal New Zealand rainwater. Atmos. Environ. 36(21), 3557–3563 (2002)Google Scholar
  36. Kirillova, E.N., Andersson, A., Han, J., Lee, M., Gustafsson, Ö.: Sources and light absorption of water-soluble organic carbon aerosols in the outflow from northern China. Atmos. Chem. Phys. 14, 1413–1422 (2014a)Google Scholar
  37. Kirillova, E.N., Andersson, A., Tiwari, S., Srivastava, A.K., Bisht, D.S., Gustafsson, Ö.: Water-soluble organic carbon aerosols during a full New Delhi winter: isotope-based source apportionment and optical properties. J. Geophys. Res. Atmos. 119, 3476–3485 (2014b)Google Scholar
  38. Kirillova, E.N., Marinoni, A., Bonasoni, P., Vuillermoz, E., Facchini, M.C., Fuzzi, S., Decesari, S.: Light absorption properties of brown carbon in the high Himalayas. J. Geophys. Res. Atmos. 121, 9621–9639 (2016).  https://doi.org/10.1002/2016JD025030 Google Scholar
  39. Kiss, G., Tombacz, E., Varga, B., Alsberg, T., Persson, L.: Estimation of the average molecular weight of humic-like substances isolated from fine atmospheric aerosol. Atmos. Environ. 37, 3783–3794 (2003)Google Scholar
  40. Lambe, A.T., Cappa, C.D., Massoli, P., Onasch, T.B., Forestieri, S.D.: Relationship between oxidation level and optical properties of secondary organic aerosol. Environ. Sci. Technol. 47, 6349–6357 (2013)Google Scholar
  41. Legrand, M., Preunkert, S., Jourdain, B., Guilhermet, J., Alekhina, J.R.: Water-soluble organic carbon in snow and ice deposited at Alpine, Greenland, and Antarctic sites: a critical review of available data and their atmospheric relevance. Clim. Past. 9, 2195–2211 (2013a)Google Scholar
  42. Legrand, M., Preunkert, S., May, B., Guilhermet, J., Hoffman, H.: Major 20th century changes of the content and chemical speciation of organic carbon archived in Alpine ice cores: implications for the long-term change of organic aerosol over Europe. J. Geophys. Res. Atmos. 118, 3879–3890 (2013b)Google Scholar
  43. Li, C.L., Yan, F.P., Kang, S.C.: Concentration, sources, and flux of dissolved organic carbon of precipitation at Lhasa city, the Tibetan Plateau. Environ. Sci. Pollut. Res. 23(13), 1–7 (2016a)Google Scholar
  44. Li, C.L., et al.: Sources of black carbon to the Himalayan-Tibetan Plateau glaciers. Nat. Commun. 7, 12574 (2016b).  https://doi.org/10.1038/ncomms12574 Google Scholar
  45. Li, C.L., Chen, P.F., Kang, S.C., Yan, F.P., Hu, Z.F., Qu, B., Sillanpää, M.: Concentrations and light absorption characteristics of carbonaceous aerosol in PM2.5 and PM10 of Lhasa city, the Tibetan Plateau. Atmos. Environ. 127, 340–346 (2016c)Google Scholar
  46. Li, C., Yan, F., Kang, S., Chen, P.F., Hu, Z.F., Han, X.W., Zahng, G.S.: Deposition and light absorption characteristics of precipitation dissolved organic carbon (DOC) at three remote stations in the Himalayas and Tibetan Plateau, China. Sci. Total Environ. 605–606, 1039–1046 (2017)Google Scholar
  47. Limbeck, A., Handler, M., Neuberger, B., Klatzer, B., Puxbaum, H.: Carbon-specific analysis of humic-like substances in atmospheric aerosol and precipitation samples. Anal. Chem. 77, 7288–7293 (2005)Google Scholar
  48. Liu, Y.M., Xu, J.Z., Li, X.F., Li, Y.: Storage of dissolved organic carbon in Chinese glaciers. J. Glaciol. 62(232), 402–406 (2016)Google Scholar
  49. Lüthi, Z.L., Skerlak, B., Kim, S.W., Lauer, A., Mues, A., Rupakheti, M., Kang, S.C.: Atmospheric brown clouds reach the Tibetan Plateau by crossing the Himalayas. Atmos. Chem. Phys. 14, 28105–28146 (2014)Google Scholar
  50. May, B., Wagenbach, D., Hoffmann, H., et al.: Constraints on the major sources of dissolved organic carbon in Alpine ice cores from radiocarbon analysis over the bomb-peak period. J. Geophys. Res.-Atmos. 118(8), 3319–3327 (2013)Google Scholar
  51. Meeker, L.D., Mayewski, P.A., and Bloomfield, P.: A new approach to glaciochemical time series analysis; in: ice Core studies of biogeochemical cycles(ed.) Delmas R J, NATOASI Series Springer, Berlin,130, 383–400 (1995)Google Scholar
  52. Moreira-Nordemann, L.M., Forti, M.C., Lascio, V.L.D.: Acidification in southeastern Brazil (1998)Google Scholar
  53. Nguyen, V.D., Merks, A.G.A., Valenta, P.: Atmospheric deposition of acid, heavy metals, dissolved organic carbon and nutrients in the Dutch Delta area in 1980-1986. Sci. Total Environ. 99(1), 77–91 (1990)Google Scholar
  54. Niu, H.W., He, Y.Q., Zhu, G.F., Du, J.K., Xin, H.J.: Environmental implications of the snow chemistry from Mt. Yulong, southeastern Tibetan Plateau. Quat. Int. 313–314(10), 168–178 (2013)Google Scholar
  55. Niu, H.W., He, Y.Q., Lu, X.X., Xin, H.J.: Chemical composition of rainwater in the Yulong Snow Mountain region, Southwestern China. Atmos. Res. 144(195–206), 195–206 (2014)Google Scholar
  56. Niu, H.W., He, Y.Q., Kang, S.C., Shi, X.Y., Pu, T.: Chemical compositions of snow from Mt. Yulong, southeastern Tibetan Plateau. J. Earth. Syst. Sci. 125(2), 403–416 (2016)Google Scholar
  57. Niu, H.W., Kang, S.C., Shi, X.F., et al.: Water-soluble elements in snow and ice on Mt. Yulong. Sci. Total Environ. 574, 889–900 (2017a)Google Scholar
  58. Niu, H.W., Kang, S.C., Zhang, Y.L., Shi, X.F.: Distribution of light-absorbing impurities in snow of glacier on Mt. Yulong, southeastern Tibetan Plateau. Atmos. Res. 197, 474–484 (2017b)Google Scholar
  59. Niu, H.W., Kang, S.C., Lu, X.X., et al.: Distributions and light absorption property of water soluble organic carbon in a typical temperate glacier, southeastern Tibetan Plateau. Tellus Ser. B Chem. Phys. Meteorol. 70(1), 1–15 (2018a).  https://doi.org/10.1080/16000889.2018.1468705 Google Scholar
  60. Niu, H.W., Kang, S.C., Wang, H.L., et al.: Seasonal variation and light absorption property of carbonaceous aerosol in a typical glacier region of the southeastern Tibetan Plateau. Atmos. Chem. Phys. 18, 6441–6460 (2018b).  https://doi.org/10.5194/acp-18-6441-2018 Google Scholar
  61. Orlandini, S., Lamberti, A.: Effect of wind on precipitation intercepted by steep mountain slopes. J. Hydrol. Eng. 5(4), 346–354 (2000)Google Scholar
  62. Orlović-Leko, P., Plavšić, M., Bura-Nakić, E.: Organic matter in the bulk precipitations in Zagreb and Šibenik, Croatia. Atmos. Environ. 43(4), 805–811 (2009)Google Scholar
  63. Pan, Y.P.: Study on dissolved organic carbon in precipitation in northern China. Atmos. Environ. 44(19), 2350–2357 (2010)Google Scholar
  64. Park, S.S., Cho, S.Y., Bae, M.S.: Source identification of water-soluble organic aerosols at a roadway site using a positive matrix factorization analysis. Sci. Total Environ. 533, 410–421 (2015)Google Scholar
  65. Patrycja, S., Marcin, F., Jerzy, S.: Seasonal variations of dissolved organic carbon in precipitation over urban and forest sites in Central Poland. Environ. Sci. Pollut. Res. 22, 11087–11096 (2015)Google Scholar
  66. Pio, C.A., Legrand, M., Oliveira, T., Afonso, J., Santos, C., Caseiro, A., Fialho, P., Barata, F., Puxbaum, H., Kasper-Giebl, A., Preunkert, S., Schock, M.: Climatology of aerosol composition (organic versus inorganic) at non-urban sites on a westeast transect across Europe. J. Geophys. Res. 112, D23S02 (2007).  https://doi.org/10.1029/2006JD008038 Google Scholar
  67. Psichoudaki, M., Pandis, S.N.: Atmospheric aerosol water-soluble organic carbon measurement: a theoretical analysis. Environ. Sci. Technol. 47, 9791–9798 (2013)Google Scholar
  68. Raymond, P.: A.: the composition and transport of organic carbon in rainfall: insights from the natural (13C and 14C) isotopes of carbon. Geophys. Res. Lett. 32(14), 623–626 (2005)Google Scholar
  69. Seitzinger, S.P., Styles, R.M., Lauck, R.: Atmospheric pressure mass spectrometry: a new analytical chemical characterization method for dissolved organic matter in rainwater. Environ. Sci. Technol. 37(1), 131–137 (2003)Google Scholar
  70. Sempére, R., Kawamura, K.: Comparative distributions of dicarboxylic acids and related polar compounds in snow, rain and aerosols from urban atmosphere. Atmos. Environ. 28(3), 449–459 (1994)Google Scholar
  71. Shi, X.F., Niu, H.W., He, Y.Q.: Characteristics of rainwater chemistry in Lijiang-Yulong Snow Mountain. Environ. Chem. 36(5), 994–1002 (2017) (In Chinese)Google Scholar
  72. Singer, G.A., et al.: Biogeochemically diverse organic matter in Alpine glaciers and its downstream fate. Nat. Geosci. 5, 710–714 (2012)Google Scholar
  73. Soyol-Erdene, T.O., Han, Y., Lee, B., Huh, Y.: Sources and fluxes of Pt, Ir and REE in the Seoul metropolitan area through wet scavenging processes. Atmos. Environ. 45(11), 1970–1978 (2011)Google Scholar
  74. Stubbins, A., Dittmar, T.: Low volume quantification of dissolved organic carbon and dissolved nitrogen. Limnol. Oceanogr. 10, 347–352 (2012)Google Scholar
  75. Sumner, A.L., Shepson, P.B.: Snowpack production of formaldehyde and its effect on the Arctic troposphere. Nature. 398, 23–233 (1999)Google Scholar
  76. Voisin, D., Jaffrezo, J.L., Houdier, S., Barret, M., Cozic, J., King, M.D., et al.: Carbonaceous species and humic like substances (HULIS) in Arctic snowpack during OASIS field campaign in Barrow. J. Geophys. Res.-Atmos. 117(17), (2012)Google Scholar
  77. Wake, C.P., Mayewski, P.A., Xie, Z.C., et al.: Regional variation of monsoon and desert dust signals record in Asian glaciers. Geophys. Res. Lett. 20, 1411–1414 (1993)Google Scholar
  78. Whelpdale, D.M., Kaiser, M.S.: Global acid deposition assessment. World Meteorological Organization Report TD No. 777, WMO (1997)Google Scholar
  79. Willey, J.D., Kieber, R.J., Eyman, M.S.: Rainwater dissolved organic carbon: concentrations and global flux. Glob. Biogeochem. Cycles. 14(1), 139–148 (2000)Google Scholar
  80. Williams, M.R., Fisher, T.R., Melack, J.M.: Chemical composition and deposition of rain in the Central Amazon, Brazil. Atmos. Environ. 31(2), 207–217 (1997)Google Scholar
  81. Wu, G.M., Wan, X., Gao, S.P., Fu, P.Q., Yin, Y.G., Li, G., Zhang, G.S., Kang, S.C., Ram, K., Cong, Z.Y.: Humic-like substances (HULIS) in aerosols of central Tibetan Plateau (Nam Co, 4730 m asl): abundance, light absorption properties, and sources. Environ. Sci. Technol. 52(13), 7203–7211 (2018).  https://doi.org/10.1021/acs.est.8b01251 Google Scholar
  82. Yan, G., Kim, G.: Dissolved organic carbon in the precipitation of Seoul, Korea: Implications for global wet depositional flux of fossil-fuel derived organic carbon. Atmos. Environ. 59(9), 117–124 (2012)Google Scholar
  83. Yan, F., Kang, S., Li, C., Zhang, Y., Qin, X., Li, Y.: Concentration, sources and light absorption characteristics of dissolved organic carbon on a medium-sized valley glacier, northern Tibetan plateau. Cryosphere. 10, 2611–2621 (2016)Google Scholar
  84. Yao, T.D., Thompson, L.G.: Trends and features of climatic changes in the past 5000 years recorded by the Dunde ice core. Ann. Glaciol. 16, 21–24 (1992)Google Scholar
  85. Zafiriou, O.C., Gagosian, R.B., Peltzer, E.T.: Air-to-sea fluxes of lipids at Enewetak Atoll. J. Geophys. Res.-Atmos. 90(ND1), 2409–2423 (1985)Google Scholar
  86. Zhang, X.L., Lin, Y.H., Surratt, J.D., Zotter, P.: Light-absorbing soluble organic aerosol in Los Angeles and Atlanta: a contrast in secondary organic aerosol. Geophys. Res. Lett. 38, L21810 (2011).  https://doi.org/10.1029/2011GL049385 Google Scholar
  87. Zhang, Y.L., Kang, S.C., Li, C.L., et al.: Wet deposition of precipitation chemistry during 2005-2009 at a remote site (Nam Co Station) in central Tibetan Plateau. J. Atmos. Chem. 69(3), 187–200 (2012)Google Scholar
  88. Zhu, C.S., Cao, J.J., Huang, R.J., Shen, Z.X., Wang, Q.Y., Zhang, N.N.: Light absorption properties of brown carbon over the southeastern Tibetan Plateau. Sci. Total Environ. 625, 246–251 (2018)Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and ResourcesChinese Academy of SciencesLanzhouChina
  2. 2.College of Earth Environmental SciencesLanzhou UniversityLanzhouChina
  3. 3.Yulong Glacier and Environment Observation and Research StationLijiangChina
  4. 4.CAS Center for Excellence in Tibetan Plateau Earth SciencesBeijingChina
  5. 5.University of Chinese Academy of Sciences (UCAS)BeijingChina
  6. 6.Institute of Mountain Hazards and EnvironmentsChinese Academy of SciencesChengduChina

Personalised recommendations