Advertisement

A one year study of functionalised medium-chain carboxylic acids in atmospheric particles at a rural site in Germany revealing seasonal trends and possible sources

  • M. Teich
  • D. van Pinxteren
  • H. HerrmannEmail author
Article
  • 163 Downloads

Abstract

This study presents a yearlong data set of 28 medium-chain functionalised carboxylic acids (C5 to C10) in atmospheric aerosol particles (PM10) from a German rural measurement station, which is analysed to obtain seasonal trends and evidences for possible sources of these rarely studied compounds. The analysed carboxylic acids were divided into four main groups: (I) functionalised aliphatic monocarboxylic acids, (II) functionalised aromatic monocarboxylic acids, (III) non-functionalised and functionalised aliphatic dicarboxylic acids, and (IV) aromatic dicarboxylic acids. A concentration maximum in summer was observed for aliphatic carboxylic acids, indicating mainly photochemical formation processes. For example, the highest mean summer concentrations were observed for 4-oxopentanoic acid (4.1 ng m−3) in group I and for adipic acid (10.3 ng m−3) in group III. In contrast, a concentration maximum in winter occurred for aromatic carboxylic acids, hinting at anthropogenic sources like residential heating. The highest mean winter concentrations were observed for 4-hydroxybenzoic acid (2.4 ng m−3) in group II and for phthalic acid (5.8 ng m−3) in group IV. For the annual mean concentrations, highest values were found for adipic acid and 4-oxopimelic acids with 7.8 ng m−3 and 6.1 ng m−3, respectively. The concentrations of oxodicarboxylic acids exceeded those of their corresponding unsubstituted form. Accordingly, straight-chain dicarboxylic acids might act as precursor compounds for their respective oxygenated forms. Similarly, unsubstituted monocarboxylic acids are possible precursors for functionalised aliphatic monocarboxylic acids. The present study contributes to the speciation of organic content on a molecular level of atmospheric particles, as well as giving hints for possible sources for these carboxylic acids.

Keywords

Organic acids Atmospheric particles Liquid-phase microextraction Seasonal variation 

Notes

Acknowledgements

This work was supported by the German Research Foundation (DFG) under contract HE 3086/11-1. The authors would like to thank Gerald Spindler and Konrad Müller for providing data of OC and EC concentrations as well as concentrations of water-soluble ions, respectively. Moreover, we thank Laura Frank for language correction. The work of the technical staff in the laboratories of TROPOS is also acknowledged.

Supplementary material

10874_2019_9390_MOESM1_ESM.pdf (576 kb)
ESM 1 (PDF 576 kb)

References

  1. Alves, C.A., Gonçalves, C., Evtyugina, M., Pio, C.A., Mirante, F., Puxbaum, H.: Particulate organic compounds emitted from experimental wildland fires in a Mediterranean ecosystem. Atmos. Environ. 44, 2750–2759 (2010).  https://doi.org/10.1016/j.atmosenv.2010.04.029 CrossRefGoogle Scholar
  2. Bikkina, S., Kawamura, K., Miyazaki, Y.: Latitudinal distributions of atmospheric dicarboxylic acids, oxocarboxylic acids, and α-dicarbonyls over the western North Pacific: sources and formation pathways. J. Geophys. Res. Atmos. 120, 5010–5035 (2015).  https://doi.org/10.1002/2014JD022235 CrossRefGoogle Scholar
  3. Boreddy, S.K.R., Kawamura, K., Tachibana, E.: Long-term (2001–2013) observations of water-soluble dicarboxylic acids and related compounds over the western North Pacific: trends, seasonality and source apportionment. Sci. Rep. 7, (2017a)(a). doi: https://doi.org/10.1038/s41598-017-08745-w, 8518
  4. Boreddy, S.K.R., Mochizuki, T., Kawamura, K., Bikkina, S., Sarin, M.M.: Homologous series of low molecular weight (C 1 -C 10 ) monocarboxylic acids, benzoic acid and hydroxyacids in fine-mode (PM 2.5 ) aerosols over the bay of Bengal: influence of heterogeneity in air masses and formation pathways. Atmos. Environ. 167, 170–180 (2017b)(b). doi: https://doi.org/10.1016/j.atmosenv.2017.08.008
  5. Boucher, O., Randall, D., Artaxo, P., Bretherton, C., Feingold, G., Forster, P., Kerminen, V.-M., Kondo, Y., Liao, H., Lohmann, U., Rasch, P., Satheesh, S.K., Sherwood, S., Stevens, B., Zhang, X.Y.: Clouds and aerosols. In: Climate Change 2013: the Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge and New York (2013)Google Scholar
  6. Cao, F., Zhang, S.-C., Kawamura, K., Liu, X., Yang, C., Xu, Z., Fan, M., Zhang, W., Bao, M., Chang, Y., Song, W., Liu, S., Lee, X., Li, J., Zhang, G., Zhang, Y.-L.: Chemical characteristics of dicarboxylic acids and related organic compounds in PM2.5 during biomass-burning and non-biomass-burning seasons at a rural site of Northeast China. Environ. Pollut. 231, 654–662 (2017).  https://doi.org/10.1016/j.envpol.2017.08.045 CrossRefGoogle Scholar
  7. Chan, A.W.H., Kautzman, K.E., Chhabra, P.S., Surratt, J.D., Chan, M.N., Crounse, J.D., Wennberg, P.O., Flagan, R.C., Seinfeld, J.H.: Secondary organic aerosol formation from photooxidation of naphthalene and alkylnaphthalenes: implications for oxidation of intermediate volatility organic compounds (IVOCs). Atmos. Chem. Phys. 9, 3049–3060 (2009).  https://doi.org/10.5194/acp-9-3049-2009 CrossRefGoogle Scholar
  8. Chebbi, A., Carlier, P.: Carboxylic acids in the troposphere, occurrence, sources, and sinks: a review. Atmos. Environ. 30, 4233–4249 (1996).  https://doi.org/10.1016/1352-2310(96)00102-1 CrossRefGoogle Scholar
  9. Dabek-Zlotorzynska, E., Aranda-Rodriguez, R., Graham, L.: Capillary electrophoresis determinative and GC-MS confirmatory method for water-soluble organic acids in airborne particulate matter and vehicle emission. J. Sep. Sci. 28, 1520–1528 (2005).  https://doi.org/10.1002/jssc.200400053 CrossRefGoogle Scholar
  10. Deshmukh, D.K., Kawamura, K., Deb, M.K.: Dicarboxylic acids, ω-oxocarboxylic acids, α-dicarbonyls, WSOC, OC, EC, and inorganic ions in wintertime size-segregated aerosols from Central India: sources and formation processes. Chemosphere. 161, 27–42 (2016).  https://doi.org/10.1016/j.chemosphere.2016.06.107 CrossRefGoogle Scholar
  11. Fruekilde, P., Hjorth, J., Jensen, N.R., Kotzias, D., Larsen, B.: Ozonolysis at vegetation surfaces: a source of acetone, 4-oxopentanal, 6-methyl-5-hepten-2-one, and geranyl acetone in the troposphere. Atmos. Environ. 32, 1893–1902 (1998).  https://doi.org/10.1016/S1352-2310(97)00485-8 CrossRefGoogle Scholar
  12. Fu, P., Kawamura, K.: Diurnal variations of polar organic tracers in summer forest aerosols: a case study of a Quercus and Picea mixed forest in Hokkaido, Japan. Geochem. J. 45, 297–308 (2011).  https://doi.org/10.2343/geochemj.1.0123 CrossRefGoogle Scholar
  13. Glasius, M., Lahaniati, M., Calogirou, A., Di Bella, D., Jensen, N.R., Hjorth, J., Kotzias, D., Larsen, B.R.: Carboxylic acids in secondary aerosols from oxidation of cyclic monoterpenes by ozone. Environ. Sci. Technol. 34, 1001–1010 (2000).  https://doi.org/10.1021/es990445r CrossRefGoogle Scholar
  14. Gowda, D., Kawamura, K., Tachibana, E.: Identification of hydroxy- and keto-dicarboxylic acids in remote marine aerosols using gas chromatography/quadruple and time-of-flight mass spectrometry: identification of hydroxy- and keto-dicarboxylic acids by GC/TOFMS. Rapid Commun. Mass Spectrom. 30, 992–1000 (2016).  https://doi.org/10.1002/rcm.7527 CrossRefGoogle Scholar
  15. Graham, B.: Water-soluble organic compounds in biomass burning aerosols over Amazonia1. Characterization by NMR and GC-MS. J. Geophys. Res. 107, (2002).  https://doi.org/10.1029/2001JD000336
  16. Hamilton, J., Webb, P., Lewis, A., Reviejo, M.: Quantifying small molecules in secondary organic aerosol formed during the photo-oxidation of toluene with hydroxyl radicals. Atmos. Environ. 39, 7263–7275 (2005).  https://doi.org/10.1016/j.atmosenv.2005.09.006 CrossRefGoogle Scholar
  17. Harrison, M.A.J., Barra, S., Borghesi, D., Vione, D., Arsene, C., Iulian Olariu, R.: Nitrated phenols in the atmosphere: a review. Atmos. Environ. 39, 231–248 (2005).  https://doi.org/10.1016/j.atmosenv.2004.09.044 CrossRefGoogle Scholar
  18. Hatakeyama, S., Ohno, M., Weng, J., Takagi, H., Akimoto, H.: Mechanism for the formation of gaseous and particulate products from ozone-cycloalkene reactions in air. Environ. Sci. Technol. 21, 52–57 (1987).  https://doi.org/10.1021/es00155a005 CrossRefGoogle Scholar
  19. He, L.-Y., Hu, M., Huang, X.-F., Yu, B.-D., Zhang, Y.-H., Liu, D.-Q.: Measurement of emissions of fine particulate organic matter from Chinese cooking. Atmos. Environ. 38, 6557–6564 (2004).  https://doi.org/10.1016/j.atmosenv.2004.08.034 CrossRefGoogle Scholar
  20. Herrmann, H., Tilgner, A., Barzaghi, P., Majdik, Z., Gligorovski, S., Poulain, L., Monod, A.: Towards a more detailed description of tropospheric aqueous phase organic chemistry: CAPRAM 3.0. Atmos. Environ. 39, 4351–4363 (2005).  https://doi.org/10.1016/j.atmosenv.2005.02.016 CrossRefGoogle Scholar
  21. Herrmann, H., Schaefer, T., Tilgner, A., Styler, S.A., Weller, C., Teich, M., Otto, T.: Tropospheric aqueous-phase chemistry: kinetics, mechanisms, and its coupling to a changing gas phase. Chem. Rev. 115, 4259–4334 (2015).  https://doi.org/10.1021/cr500447k CrossRefGoogle Scholar
  22. Ho, K.F., Cao, J.J., Lee, S.C., Kawamura, K., Zhang, R.J., Chow, J.C., Watson, J.G.: Dicarboxylic acids, ketocarboxylic acids, and dicarbonyls in the urban atmosphere of China. J. Geophys. Res. 112, (2007).  https://doi.org/10.1029/2006JD008011
  23. Ho, K.F., Lee, S.C., Ho, S.S.H., Kawamura, K., Tachibana, E., Cheng, Y., Zhu, T.: Dicarboxylic acids, ketocarboxylic acids, α -dicarbonyls, fatty acids, and benzoic acid in urban aerosols collected during the 2006 campaign of air quality research in Beijing (CAREBeijing-2006). J. Geophys. Res. 115, (2010).  https://doi.org/10.1029/2009JD013304
  24. Iinuma, Y., Brüggemann, E., Gnauk, T., Müller, K., Andreae, M.O., Helas, G., Parmar, R., Herrmann, H.: Source characterization of biomass burning particles: the combustion of selected European conifers, African hardwood, savanna grass, and German and Indonesian peat. J. Geophys. Res. 112, (2007).  https://doi.org/10.1029/2006JD007120
  25. Jacob, D.: Heterogeneous chemistry and tropospheric ozone. Atmos. Environ. 34, 2131–2159 (2000).  https://doi.org/10.1016/S1352-2310(99)00462-8 CrossRefGoogle Scholar
  26. Kawamura, K., Bikkina, S.: A review of dicarboxylic acids and related compounds in atmospheric aerosols: molecular distributions, sources and transformation. Atmos. Res. 170, 140–160 (2016).  https://doi.org/10.1016/j.atmosres.2015.11.018 CrossRefGoogle Scholar
  27. Kawamura, K., Gagosian, R.B.: Mid-chain ketocarboxylic acids in the remote marine atmosphere: distribution patterns and possible formation mechanisms. J. Atmos. Chem. 11, 107–122 (1990).  https://doi.org/10.1007/BF00053670 CrossRefGoogle Scholar
  28. Kawamura, K., Ikushima, K.: Seasonal changes in the distribution of dicarboxylic acids in the urban atmosphere. Environ. Sci. Technol. 27, 2227–2235 (1993)CrossRefGoogle Scholar
  29. Kawamura, K., Sakaguchi, F.: Molecular distributions of water soluble dicarboxylic acids in marine aerosols over the Pacific Ocean including tropics. J. Geophys. Res. Atmos. 104, 3501–3509 (1999).  https://doi.org/10.1029/1998JD100041 CrossRefGoogle Scholar
  30. Kawamura, K., Steinberg, S., Kaplan, I.R.: Homologous series of C1-C10 monocarboxylic acids and C1-C6 carbonyls in Los Angeles air and motor vehicle exhausts. Atmos. Environ. 34, 4175–419117 (2000)CrossRefGoogle Scholar
  31. Kawamura, K., Imai, Y., Barrie, L.: Photochemical production and loss of organic acids in high Arctic aerosols during long-range transport and polar sunrise ozone depletion events. Atmos. Environ. 39, 599–614 (2005).  https://doi.org/10.1016/j.atmosenv.2004.10.020 CrossRefGoogle Scholar
  32. Kawamura, K., Kasukabe, H., Barrie, L.A.: Secondary formation of water-soluble organic acids and α -dicarbonyls and their contributions to total carbon and water-soluble organic carbon: photochemical aging of organic aerosols in the Arctic spring. J. Geophys. Res. 115, (2010).  https://doi.org/10.1029/2010JD014299
  33. Kawamura, K., Hoque, M.M.M., Bates, T.S., Quinn, P.K.: Molecular distributions and isotopic compositions of organic aerosols over the western North Atlantic: dicarboxylic acids, related compounds, sugars, and secondary organic aerosol tracers. Org. Geochem. 113, 229–238 (2017).  https://doi.org/10.1016/j.orggeochem.2017.08.007 CrossRefGoogle Scholar
  34. Kitanovski, Z., Grgić, I., Veber, M.: Characterization of carboxylic acids in atmospheric aerosols using hydrophilic interaction liquid chromatography tandem mass spectrometry. Journal of Chromatography A 1218(28), 4417–4425 (2011).Google Scholar
  35. Kitanovski, Z., Grgić, I., Vermeylen, R., Claeys, M., Maenhaut, W.: Liquid chromatography tandem mass spectrometry method for characterization of monoaromatic nitro-compounds in atmospheric particulate matter. J. Chromatogr. A. 1268, 35–43 (2012).  https://doi.org/10.1016/j.chroma.2012.10.021 CrossRefGoogle Scholar
  36. Kristensen, K., Bilde, M., Aalto, P.P., Petäjä, T., Glasius, M.: Denuder/filter sampling of organic acids and organosulfates at urban and boreal forest sites: gas/particle distribution and possible sampling artifacts. Atmos. Environ. 130, 36–53 (2016).  https://doi.org/10.1016/j.atmosenv.2015.10.046 CrossRefGoogle Scholar
  37. Kubátová, A., Vermeylen, R., Claeys, M., Cafmeyer, J., Maenhaut, W.: Organic compounds in urban aerosols from gent, Belgium: characterization, sources, and seasonal differences. J. Geophys. Res. Atmos. 107, ICC 5-1-ICC 5-12, ICC 5-1–ICC 5-12 (2002).  https://doi.org/10.1029/2001JD000556 CrossRefGoogle Scholar
  38. Kundu, S., Kawamura, K., Andreae, T.W., Hoffer, A., Andreae, M.O.: Molecular distributions of dicarboxylic acids, ketocarboxylic acids and α-dicarbonyls in biomass burning aerosols: implications for photochemical production and degradation in smoke layers. Atmos. Chem. Phys. 17, 2209–2225 (2010).  https://doi.org/10.5194/acp-10-2209-2010 CrossRefGoogle Scholar
  39. Kunwar, B., Torii, K., Kawamura, K.: Springtime influences of Asian outflow and photochemistry on the distributions of diacids, oxoacids and α-dicarbonyls in the aerosols from the western North Pacific rim. Tellus B: Chemical and Physical Meteorology. 69, 1369341 (2017).  https://doi.org/10.1080/16000889.2017.1369341 CrossRefGoogle Scholar
  40. Li, Y., Yu, J.Z.: Simultaneous determination of mono- and dicarboxylic acids, ω-oxo-carboxylic acids, midchain ketocarboxylic acids, and aldehydes in atmospheric aerosol samples. Environ. Sci. Technol. 39, 7616–7624 (2005).  https://doi.org/10.1021/es050896d CrossRefGoogle Scholar
  41. Limbeck, A., Puxbaum, H., Otter, L., Scholes, M.C.: Semivolatilebehavior of dicarboxylic acids and other polar organic species at a rural background site (Nylsvley, RSA). Atmos. Environ. 35, 1853–1862 (2001).  https://doi.org/10.1016/S1352-2310(00)00497-0 CrossRefGoogle Scholar
  42. Limbeck, A., Kraxner, Y., Puxbaum, H.: Gas to particle distribution of low molecular weight dicarboxylic acids at two different sites in Central Europe (Austria). J. Aerosol Sci. 36, 991–1005 (2005).  https://doi.org/10.1016/j.jaerosci.2004.11.013 CrossRefGoogle Scholar
  43. Madronich, S., Flocke, S.: The role of solar radiation in atmospheric chemistry. In: Boule, P. (ed.) Environmental Photochemistry. The Handbook of Environmental Chemistry (Reactions and Processes), Vol 2 / 2L. Springer, Berlin, Heidelberg (1999).  https://doi.org/10.1007/978-3-540-69044-3_1 Google Scholar
  44. Matsunaga, S., Mochida, M., Kawamura, K.: High abundance of gaseous and particulate 4-oxopentanal in the forestal atmosphere. Chemosphere. 55, 1143–1147 (2004).  https://doi.org/10.1016/j.chemosphere.2003.10.004 CrossRefGoogle Scholar
  45. Mochida, M., Kawabata, A., Kawamura, K., Hatsushika, H., Yamazaki, K.: Seasonal variation and origins of dicarboxylic acids in the marine atmosphere over the western North Pacific. J. Geophys. Res. 108, (2003).  https://doi.org/10.1029/2002JD002355
  46. Narukawa, M.: Fine and coarse modes of dicarboxylic acids in the Arctic aerosols collected during the polar sunrise experiment 1997. J. Geophys. Res. 108, (2003).  https://doi.org/10.1029/2003JD003646
  47. Oros, D.R., Simoneit, B.R.: Identification and emission factors of molecular tracers in organic aerosols from biomass burning part 1. Temperate climate conifers. Appl. Geochem. 16, 1513–1544 (2001).  https://doi.org/10.1016/S0883-2927(01)00021-X CrossRefGoogle Scholar
  48. Pavuluri, C.M., Kawamura, K., Mihalopoulos, N., Swaminathan, T.: Laboratory photochemical processing of aqueous aerosols: formation and degradation of dicarboxylic acids, oxocarboxylic acids and α-dicarbonyls. Atmos. Chem. Phys. 15, 7999–8012 (2015).  https://doi.org/10.5194/acp-15-7999-2015 CrossRefGoogle Scholar
  49. Pietrogrande, M.C., Bacco, D., Visentin, M., Ferrari, S., Poluzzi, V.: Polar organic marker compounds in atmospheric aerosol in the Po Valley during the Supersito campaigns — part 1: low molecular weight carboxylic acids in cold seasons. Atmos. Environ. 86, 164–175 (2014). doi: https://doi.org/10.1016/j.atmosenv.2013.12.022van Pinxteren, D., Fomba, K.W., Spindler, G., Müller, K., Poulain, L., Iinuma, Y., Löschau, G., Hausmann, A., Herrmann, H.: Regional air quality in Leipzig, Germany: detailed source apportionment of size-resolved aerosol particles and comparison with the year 2000. Faraday Discuss. 189, 291–315 (2016). doi: https://doi.org/10.1039/C5FD00228A
  50. Ray, J., McDow, S.R.: Dicarboxylic acid concentration trends and sampling artifacts. Atmos. Environ. 39, 7906–7919 (2005).  https://doi.org/10.1016/j.atmosenv.2005.09.024 CrossRefGoogle Scholar
  51. Rogge, W.F., Hildemann, L.M., Mazurek, M.A., Cass, G.R., Simoneit, B.R.T.: Sources of fine organic aerosol. 5. Natural gas home appliances. Environ. Sci. Technol. 27, 2736–2744 (1993).  https://doi.org/10.1021/es00049a012 CrossRefGoogle Scholar
  52. Römpp, A., Winterhalter, R., Moortgat, G.K.: Oxodicarboxylic acids in atmospheric aerosol particles. Atmos. Environ. 40, 6846–6862 (2006).  https://doi.org/10.1016/j.atmosenv.2006.05.053 CrossRefGoogle Scholar
  53. Shakya, K.M., Griffin, R.J.: Secondary organic aerosol from photooxidation of polycyclic aromatic hydrocarbons. Environ. Sci. Technol. 44, 8134–8139 (2010).  https://doi.org/10.1021/es1019417 CrossRefGoogle Scholar
  54. Souza, S.: Low molecular weight carboxylic acids in an urban atmosphere: winter measurements in Sao Paulo City, Brazil. Atmos. Environ. 33, 2563–2574 (1999).  https://doi.org/10.1016/S1352-2310(98)00383-5 CrossRefGoogle Scholar
  55. Spindler, G., Brüggemann, E., Gnauk, T., Grüner, A., Müller, K., Herrmann, H.: A four-year size-segregated characterization study of particles PM10, PM2.5 and PM1 depending on air mass origin at Melpitz. Atmos. Environ. 44, 164–173 (2010).  https://doi.org/10.1016/j.atmosenv.2009.10.015 CrossRefGoogle Scholar
  56. Spindler, G., Grüner, A., Müller, K., Schlimper, S., Herrmann, H.: Long-term size-segregated particle (PM10, PM2.5, PM1) characterization study at Melpitz -- influence of air mass inflow, weather conditions and season. J. Atmos. Chem. 70, 165–195 (2013).  https://doi.org/10.1007/s10874-013-9263-8 CrossRefGoogle Scholar
  57. Stein, A.F., Draxler, R.R., Rolph, G.D., Stunder, B.J.B., Cohen, M.D., Ngan, F.: NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bull. Amer. Meteor. Soc. 96, 2059–2077 (2015).  https://doi.org/10.1175/BAMS-D-14-00110.1 CrossRefGoogle Scholar
  58. Stephanou, E.G., Stratlgakls, N.: Oxocarboxylic and a,w-dicarboxylic acids: Photooxidation products of biogenic unsaturated fatty acids present in urban aerosols. Environ. Sci. Technol. 27, 1403–1407 (1993).  https://doi.org/10.1021/es00044a016 CrossRefGoogle Scholar
  59. Stieger, B., Spindler, G., Fahlbusch, B., Müller, K., Grüner, A., Poulain, L., Thöni, L., Seitler, E., Wallasch, M., Herrmann, H.: Measurements of PM10 ions and trace gases with the online system MARGA at the research station Melpitz in Germany – a five-year study. J. Atmos. Chem. (2017).  https://doi.org/10.1007/s10874-017-9361-0
  60. Teich, M., van Pinxteren, D., Wang, M., Kecorius, S., Wang, Z., Müller, T., Močnik, G., Herrmann, H.: Contributions of nitrated aromatic compounds to the light absorption of water-soluble and particulate brown carbon in different atmospheric environments in Germany and China. Atmos. Chem. Phys. 17, 1653–1672 (2017).  https://doi.org/10.5194/acp-17-1653-2017 CrossRefGoogle Scholar
  61. van Pinxteren, D., Herrmann, H.: Determination of functionalised carboxylic acids in atmospheric particles and cloud water using capillary electrophoresis/mass spectrometry. J. Chromatogr. A. 1171, 112–123 (2007).  https://doi.org/10.1016/j.chroma.2007.09.021 CrossRefGoogle Scholar
  62. van Pinxteren, D., Teich, M., Herrmann, H.: Hollow fibre liquid-phase microextraction of functionalised carboxylic acids from atmospheric particles combined with capillary electrophoresis/mass spectrometric analysis. J. Chromatogr. A. 1267, 178–188 (2012).  https://doi.org/10.1016/j.chroma.2012.06.097 CrossRefGoogle Scholar
  63. van Pinxteren, D., Neusüß, C., Herrmann, H.: On the abundance and source contributions of dicarboxylic acids in size-resolved aerosol particles at continental sites in Central Europe. Atmos. Chem. Phys. 14, 3913–3928 (2014).  https://doi.org/10.5194/acp-14-3913-2014 CrossRefGoogle Scholar
  64. van Pinxteren, D., Fomba, K.W., Spindler, G., Müller, K., Poulain, L., Iinuma, Y., Löschau, G., Hausmann, A., Herrmann, H.: Regional air quality in Leipzig, Germany: detailed source apportionment of size-resolved aerosol particles and comparison with the year 2000. Faraday Discuss. 189, 291–315 (2016).  https://doi.org/10.1039/C5FD00228A
  65. Yassaa, N., YoucefMeklati, B., Cecinato, A., Marino, F.: Particulate n-alkanes, n-alkanoic acids and polycyclic aromatic hydrocarbons in the atmosphere of Algiers City area. Atmos. Environ. 35, 1843–1851 (2001).  https://doi.org/10.1016/S1352-2310(00)00514-8 CrossRefGoogle Scholar
  66. Yokouchi, Y., Ambe, Y.: Characterization of polar organics in airborne particulate matter. Atmos. Environ. (1967). 20, 1727–1734 (1986).  https://doi.org/10.1016/0004-6981(86)90121-6 CrossRefGoogle Scholar
  67. Yu, S.: Role of organic acids (formic, acetic, pyruvic and oxalic) in the formation of cloud condensation nuclei (CCN): a review. Atmos. Res. 53, 185–217 (2000).  https://doi.org/10.1016/S0169-8095(00)00037-5 CrossRefGoogle Scholar
  68. Yue, Z., Fraser, M.P.: Polar organic compounds measured in fine particulate matter during TexAQS 2000. Atmos. Environ. 38, 3253–3261 (2004).  https://doi.org/10.1016/j.atmosenv.2004.03.014 CrossRefGoogle Scholar
  69. Zhang, Y.Y., Müller, L., Winterhalter, R., Moortgat, G.K., Hoffmann, T., Pöschl, U.: Seasonal cycle and temperature dependence of pinene oxidation products, dicarboxylic acids and nitrophenols in fine and coarse air particulate matter. Atmos. Chem. Phys. 15, 7859–7873 (2010).  https://doi.org/10.5194/acp-10-7859-2010 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Atmospheric Chemistry Department (ACD)Leibniz Institute for Tropospheric Research (TROPOS)LeipzigGermany
  2. 2.Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and EngineeringFudan UniversityShanghaiChina

Personalised recommendations