Journal of Atmospheric Chemistry

, Volume 76, Issue 2, pp 89–113 | Cite as

Assessment of polar organic aerosols at a regional background site in southern Africa

  • Wanda Booyens
  • Johan P. Beukes
  • Pieter G. Van ZylEmail author
  • Jose Ruiz-Jimenez
  • Matias Kopperi
  • Marja-Liisa Riekkola
  • Miroslav Josipovic
  • Ville Vakkari
  • Lauri Laakso


A recent paper reported GCxGC-TOFMS analysis used for the first time in southern Africa to tentatively characterise and semi-quantify ~1000 organic compounds in aerosols at Welgegund – a regional background atmospheric monitoring station. Ambient polar organic aerosols characterised are further explored in terms of temporal variations, as well as the influence of meteorology and sources. No distinct seasonal pattern was observed for the total number of polar organic compounds tentatively characterised and their corresponding semi-quantified concentrations (sum of the normalised response factors, ∑NRFs). However, the total number of polar organic compounds and ∑NRFs between late spring and early autumn seemed relatively lower compared to the period from mid-autumn to mid-winter, while there was a period during late winter and early spring with significantly lower total number of polar organic compounds and ∑NRFs. Relatively lower total number of polar organic compounds and corresponding ∑NRFs were associated with fresher plumes from a source region relatively close to Welgegund. Meteorological parameters indicated that wet removal during late spring to early autumn also contributed to lower total numbers of polar organics and associated ∑NRFs. Increased anticyclonic recirculation and more pronounced inversion layers contributed to higher total numbers of polar organic species and ∑NRFs from mid-autumn to mid-winter, while the influence of regional biomass burning during this period was also evident. The period with significantly lower total number of polar organic compounds and ∑NRFs was attributed to fresh open biomass burning plumes occurring within proximity of Welgegund, consisting mainly of volatile organic compounds and non-polar hydrocarbons. Multiple linear regression substantiated that the temporal variations in polar organic compounds were related to a combination of the factors investigated in this study.


Particulate matter Organic compounds Welgegund GCxGC-TOFMS Biomass burning Multiple linear regression 



The authors wish to acknowledge Diederik and Jackie Hattingh and their family who are the owners of the commercial farm on which the Welgegund measurement station is situated. V. Vakkari is a beneficiary of an AXA Research Fund postdoctoral grant.


  1. Alade, O.L.: Characteristics of Particulate Matter over the South African Industrialized Highveld. University of the Witwatersrand, Dissertation MSc (2010)Google Scholar
  2. Alam, M.S., West, C.E., Scarlett, A.G., Rowland, S.J., Harrison, R.M.: Application of 2D-GCMS reveals many industrial chemicals in airborne particulate matter. Atmos. Environ. 65, 101–111 (2013)CrossRefGoogle Scholar
  3. Aurela, M., Beukes, J.P., Van Zyl, P.G., Vakkari, V., Teinilä, K., Saarikoski, S., Laakso, L.: The composition of ambient and fresh biomass burning aerosols at a savannah site, South Africa. S. Afr. J. Sci. 112(5/6), 2015-0223, 8 (2016). CrossRefGoogle Scholar
  4. Beukes, J.P., Vakkari, V., Van Zyl, P.G., Venter, A.D., Josipovic, M., Jaars, K., Tiitta, P., Kulmala, M., Worsnop, D., Pienaar, J.J., Virkkula, A., Laakso, L.: Source region plume characterisation of the interior of South Africa as observed at Welgegund. Clean Air Journal. 23(1), 7–10 (2013)Google Scholar
  5. Beukes, J.P., Venter, A.D., Josipovic, M., Van Zyl, P.G., Vakkari, V., Jaars, K., Dunn, M., Laakso, L.: Automated continuous air monitoring. In: Forbes, P. (ed.) Monitoring of Air Pollutants – Samling, Sample, Preparation and Analytical Techniques, vol. 70, pp. 183–208. Elsevier, Amsterdam (2015). ISBN: 9780444635532CrossRefGoogle Scholar
  6. Booyens, W., Van Zyl, P.G., Beukes, J.P., Ruiz-Jimenez, J., Kopperi, M., Riekkola, M.-L., Josipovic, M., Venter, A.D., Jaars, K., Laakso, L., Vakkari, V., Kulmala, M., Pienaar, J.J.: Size-resolved characterisation of organic compounds in atmospheric aerosols collected at Welgegund, South Africa. J. Atmos. Chem. 72, 43–64 (2015)CrossRefGoogle Scholar
  7. Chiloane, K.E., Beukes, J.P., Van Zyl, P.G., Maritz, P., Vakkari, V., Josipovic, M., Venter, A.D., Jaars, K., Tiitta, P., Kulmala, M., Wiedensohler, A., Liousse, C., Mkhatshwa, G.V., Ramandh, A., Laakso, L.: Spatial, temporal and source contribution assessments of BC over the northern interior of South Africa. Atmos. Chem. Phys. 17, 6177–6196 (2017). CrossRefGoogle Scholar
  8. Collett, K.S., Piketh, S.J., Ross, K.E.: An assessment of the atmospheric nitrogen budget on the South African Highveld. S. Afr. J. Sci. 106(5/6), (2010)Google Scholar
  9. Conradie, E.H., Van Zyl, P.G., Pienaar, J.J., Beukes, J.P., Galy-Lacaux, C., Venter, A.D., Mkhatshwa, G.V.: The chemical composition and fluxes of atmospheric wet deposition at four sites in South Africa. Atmos. Environ. 146, 113–131 (2016). CrossRefGoogle Scholar
  10. Geldenhuys, G., Rohwer, E.R., Naudé, Y., Forbes, P.B.C.: Monitoring of atmospheric gaseous and particulate polycyclic aromatic hydrocarbons in South African platinum mines utilising portable denuder sampling with analysis by thermal desorption-comprehensive gas chromatography-mass spectrometry. J. Chromatogr. A. 1380, 17–28 (2015)CrossRefGoogle Scholar
  11. Giannakaki, E., Van Zyl, P.G., Müller, D., Balis, D., Komppula, M.: Optical and microphysical characterization of aerosol layers over South Africa by means of multi-wavelength depolarization and Raman lidar measurements. Atmos. Chem. Phys. 16, 8109–8123 (2016). CrossRefGoogle Scholar
  12. Goldstein, A.H., Galbally, I.E.: Known and unexplored organic constituents in the Earth’s atmosphere. Environ. Sci. Technol. 41(5), 1514–1521 (2007)CrossRefGoogle Scholar
  13. Government Gazette Republic of South Africa: No. 28132. [Online] Available: (2005). Accessed 16 Oct 2013
  14. Government Gazette Republic of South Africa: No. 29864. [Online] Available: (2007). Accessed 16 Oct 2013
  15. Hobbs, P.V., Sinha, P., Yokelson, R.J., Christian, T.J., Blake, D.R., Gao, S., Kirchstetter, T.W., Novakov, T., Pilewski, P.: Evolution of gases and particles from a savanna fire in South Africa. J. Geophys. Res. Atmos. 108(D13), 8485 (2003)Google Scholar
  16. Hummel, J., Strehmel, N., Selbig, J., Walther, D., Kopka, J.: Decision tree supported substructure prediction of metabolites from GC-MS profiles. Metabolomics. 6, 322–333 (2010)CrossRefGoogle Scholar
  17. Jaars, K., Beukes, J.P., Van Zyl, P.G., Venter, A.D., Josipovic, M., Pienaar, J.J., Vakkari, V., Aaltonen, H., Laakso, H., Kulmala, M., Tiitta, P., Guenther, A., Hellén, H., Laakso, L., Hakola, H.: Ambient aromatic hydrocarbon measurements at Welgegund. South Africa. Atmos. Chem. Phys. 14, 7075–7089 (2014). CrossRefGoogle Scholar
  18. Jaars, K., Van Zyl, P.G., Beukes, J.P., Hellén, H., Vakkari, V., Josipovic, M., Venter, A.D., Räsänen, M., Knoetze, L., Cilliers, D.P., Siebert, S.J., Kulmala, M., Rinne, J., Guenther, A., Laakso, L., Hakola, H.: Measurements of biogenic volatile organic compounds at a grazed savannah grassland agricultural landscape in South Africa. Atmos. Chem. Phys. 16, 15665–15688 (2016). CrossRefGoogle Scholar
  19. Jimenez, J.L., Canagaratna, M.R., Donahue, N.M., Prevot, A.S.H., Zhang, Q., Kroll, J.H., DeCarlo, P.F., Allan, J.D., Coe, H., Ng, N.L., Aiken, A.C., Docherty, K.S., Ulbrich, I.M., Grieshop, A.P., Robinson, A.L., Duplissy, J., Smith, J.D., Wilson, K.R., Lanz, V.A., Hueglin, C., Sun, Y.L., Tian, J., Laaksonen, A., Raatikainen, T., Rautiainen, J., Vaattovaara, P., Ehn, M., Kulmala, M., Tomlinson, J.M., Collins, D.R., Cubison, M.J., E, Dunlea, J., Huffman, J.A., Onasch, T.B., Alfarra, M.R., Williams, P.I., Bower, K., Kondo, Y., Schneider, J., Drewnick, F., Borrmann, S., Weimer, S., Demerjian, K., Salcedo, D., Cottrell, L., Griffin, R., Takami, A., Miyoshi, T., Hatakeyama, S., Shimono, A., Sun, J.Y., Zhang, Y.M., Dzepina, K., Kimmel, J.R., Sueper, D., Jayne, J.T., Herndon, S.C., Trimborn, A.M., Williams, L.R., Wood, E.C., Middlebrook, A.M., Kolb, C.E., Baltensperger, U., Worsnop, D.R.: Evolution of organic aerosols in the atmosphere. Science. 326, 1525–1529 (2009)CrossRefGoogle Scholar
  20. Kulmala, M., Asmi, A., Lappalainen, H.K., Baltensperger, U., Brenguier, J.-L., Facchini, M.C., et al.: General overview: European Integrated project on Aerosol Cloud Climate and Air Quality interactions (EUCAARI) – integrating aerosol research from nano to global scales. Atmos. Chem. Phys. 11, 13061–13143 (2011). CrossRefGoogle Scholar
  21. Laakso, L., Vakkari, V., Virkkula, A., Laakso, H., Backman, J., Kulmala, M., Beukes, J.P., van Zyl, P.G., Tiitta, P., Josipovic, M., Pienaar, J.J., Chiloane, K., Gilardoni, S., Vignati, E., Wiedensohler, A., Tuch, T., Birmili, W., Piketh, S., Collett, K., Fourie, G.D., Komppula, M., Lihavainen, H., de Leeuw, G., Kerminen, V.M.: South African EUCAARI measurements: seasonal variation of trace gases and aerosol optical properties. Atmos. Chem. Phys. 12, 1847–1864 (2012). CrossRefGoogle Scholar
  22. Lewis, A.C., Carslaw, N., Marriott, P.J., Kinghorn, R.M., Morrison, P., Lee, A.L., Bartle, K.D., Pilling, M.J.: A larger pool of ozone forming carbon compounds in urban atmospheres. Nature. 405, 778–781 (2000)CrossRefGoogle Scholar
  23. Lourens, A.S., Beukes, J.P., Van Zyl, P.G., Fourie, G.D., Burger, J.W., Pienaar, J.J., Read, C.E., Jordaan, J.H.L.: Spatial and temporal assessment of gaseous pollutants in the Mpumalanga Highveld of South Africa. S. Afr. J. Sci. 107(1/2), 269, 8 (2011). CrossRefGoogle Scholar
  24. Lourens, A.S.M., Butler, T.M., Beukes, J.P., Van Zyl, P.G., Beirle, S., Wagner, T., Heue, K.-P., Pienaar, J.J., Fourie, G.D., Lawrence, M.G.: Re-evaluating the NO2 hotspot over the South African Highveld. S. Afr. J. Sci. 108(9/10), 1146, 6 (2012). Google Scholar
  25. Özel, M.Z., Ward, M.W., Hamilton, J.F., Lewis, A.C., Raventos-Duran, T., Harrison, R.M.: Analysis of organic nitrogen compounds in urban aerosol samples using GCxGC-TOF/MS. Aerosol Sci. Technol. 44, 109–116 (2010)CrossRefGoogle Scholar
  26. Petäjä, T., Vakkari, V., Pohja, T., Nieminen, T., Laakso, H., Aalto, P.P., Keronen, P., Siivola, E., Kerminen, V.-M., Kulmala, M., Laakso, L.: Transportable aerosol characterization trailer with trace gas chemistry: design, instruments and verification. Aerosol Air Qual. Res. 13, 421–435 (2013)CrossRefGoogle Scholar
  27. Pope, C.A., Burnett, R.T.: Lung cancer, cardiopulmonary mortality and long-term exposure to fine particulate air pollution. JAMA. 287(9), 1132–1141 (2002)CrossRefGoogle Scholar
  28. Pretorius, I., Piketh, S., Burger, R.: Emissions Management and Health Exposure: Should all Power Stations Be Treated Equal? Air Qual Atmos Health 11869 (2016)Google Scholar
  29. Räsänen, M., Aurela, M., Vakkari, V., Beukes, J. P, Tuovinen, J.-P., Van Zyl, P.G., Josipovic, M., Venter, A.D., Jaars, K., Siebert, S.J., Laurila, T., Rinne, J., Laakso, L.: Carbon balance of a grazed savanna grassland ecosystem in South Africa, Biogeosciences 14, 1039–1054 (2017).,
  30. Ruiz-Jimenez, J., Parshintsev, J., Laitinen, T., Hartonen, K., Riekkola, M.-L., Petäjä, T., Virkkula, A., Kulmala, M.: A complete methodology for the reliable collection, sample preparation, separation and determination of organic compounds in ultrafine 30 nm, 40 nm and 50 nm atmospheric aerosol particles. Anal. Methods. 3, 2501–2509 (2011a)CrossRefGoogle Scholar
  31. Ruiz-Jimenez, J., Parshintsev, J., Laitinene, T., Hartonen, K., Riekkola, M., Petäjä, T., Kulmala, M.: Comprehensive two-dimensional gas chromatography, a valuable technique for screening and semiquantification of different chemical compounds in ultrafine 30 nm and 50 nm aerosol particles. J. Environ. Monit. 13, 2994–3003 (2011b)CrossRefGoogle Scholar
  32. Skoog, D.A., West, D.M., Holler, F.J., Crouch, S.R.: Fundamentals of Analytical Chemistry, 9th edn. Brooks/Coles Cengage Learning, Belmont (2014)Google Scholar
  33. South Africa Environmental Outlook: Chapter 5: air quality. [online] Available: (2012). Accessed 13 March 2017
  34. Stein, A., Draxler, R.R., Rolph, G.D., Stunder, B.J., Cohen, M., Ngan, F.: NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. B. Am. Meteorol. Soc. 96, 2059–2077 (2015)CrossRefGoogle Scholar
  35. Strydom, S., Savage, M.J.: A spatio-temporal analysis of fires in South Africa. S. Afr. J. Sci. 112(11/12), 489 (2016)CrossRefGoogle Scholar
  36. Swap, R.J., Annegarn, H.J., Suttles, J.T., King, M.D., Platnick, S., Privette, J.L., Scholes, R.J.: Africa burning: a thematic analysis of the Southern African regional science initiative (SAFARI 2000). J. Geophys. Res. Atmos. 108(D13), 8465 (2003)CrossRefGoogle Scholar
  37. Tiitta, P., Vakkari, V., Josipovic, M., Croteau, P., Beukes, J.P., Van Zyl, P.G., Josipovic, M., Venter, A.D., Jaars, K., Pienaar, J.J., Ng, N.L., Canagaratna, M.R., Jayne, J.T., Kerminen, V.-M., Kokkola, H., Kulmala, M., Laaksonen, A., Worsnop, D.R., Laakso, L.: Chemical composition, main sources and temporal variability of PM1 aerosols in southern African grassland. Atmos. Chem. Phys. 14, 1909–1927 (2014). CrossRefGoogle Scholar
  38. Vakkari, V., Kerminen, V.-M., Beukes, J.P., Tiitta, P., Van Zyl, P.G., Josipovic, M., Venter, A.D., Jaars, K., Worsnop, D.R., Kulmala, M., Laakso, L.: Rapid changes in biomass burning aerosols by atmospheric oxidation. Geophys. Res. Lett. 41, 2644–2651 (2014). CrossRefGoogle Scholar
  39. Vakkari, V., Tiitta, P., Jaars, K., Croteau, P., Beukes, J.P., Josipovic, M., Kerminen, V.-M., Kulmala, M., Venter, A.D., Van Zyl, P.G., Worsnop, D.R., Laakso, L.: Reevaluating the contribution of sulfuric acid and the origin of organic compounds in atmospheric nanoparticle growth. Geophys. Res. Lett. 42, 10486–10493 (2015). CrossRefGoogle Scholar
  40. Venter, A.D., Vakkari, V., Beukes, J.P., Van Zyl, P.G., Laakso, H., Mabaso, D., Tiitta, P., Josipovic, M., Kulmala, M., Pienaar, J.J., Laakso, L.: An air quality assessment in the industrialised western Bushveld Igneous Complex, South Africa. S. Afr. J. Sci. 108(9/10), 1059, 10 (2012). CrossRefGoogle Scholar
  41. Venter, A.D., Van Zyl, P.G., Beukes, J.P., Josipovic, M., Jaars, K., Booyens, W., Vakkari, V., Laakso, L., Kulmala, M.: Size-resolved characteristics of inorganic ionic species in atmospheric aerosols at a regional background site on the South African Highveld. J. Atmos. Chem. 75(3), 285–304 (2018). CrossRefGoogle Scholar
  42. Welthagen, W., Schnelle-Kreis, J., Zimmermann, R.: Search criteria and rules for comprehensive two-dimensional gas chromatography-time-of-flight-mass spectrometry analysis of airborne particulate matter. J. Chromatogr. A. 1019, 233–249 (2003)CrossRefGoogle Scholar
  43. Wichmann, J., Voyi, K.V.V.: Impact of cooking and heating fuel use on acute respiratory health of preschool children in South Africa. South Afr. J. Epidemiol. Infect. 21(2), 48–54 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Wanda Booyens
    • 1
  • Johan P. Beukes
    • 1
  • Pieter G. Van Zyl
    • 1
    Email author
  • Jose Ruiz-Jimenez
    • 2
  • Matias Kopperi
    • 2
  • Marja-Liisa Riekkola
    • 2
  • Miroslav Josipovic
    • 1
  • Ville Vakkari
    • 3
  • Lauri Laakso
    • 1
    • 3
  1. 1.Unit for Environmental Science and ManagementNorth-West UniversityPotchefstroomSouth Africa
  2. 2.Department of ChemistryUniversity of HelsinkiHelsinkiFinland
  3. 3.Finnish Meteorological InstituteHelsinkiFinland

Personalised recommendations