Advertisement

Journal of Atmospheric Chemistry

, Volume 76, Issue 1, pp 73–88 | Cite as

Seasonal variations and source apportionment of water-soluble inorganic ions in PM2.5 in Nanjing, a megacity in southeastern China

  • Xiaoyu Zhang
  • Xin ZhaoEmail author
  • Guixiang Ji
  • Rongrong Ying
  • Yanhong Shan
  • Yusuo Lin
Article
  • 319 Downloads

Abstract

Daily PM2.5 samples were collected in Nanjing, a megacity in southeastern China, for a period of one-half of a month during every season from 2014~2015. Mass concentrations of nine water soluble inorganic ions (F, Cl, SO42−, NO3, Na+, NH4+, K+, Mg2+ and Ca2+) were determined using ion chromatography to identify the chemical characteristics and potential sources of PM2.5. The mass concentrations of daily PM2.5 ranged from 31.0 to 242.9 μg m−3, with an annual average and standard deviation of 94.4 ± 31.1 μg m−3. The highest seasonal average of PM2.5 concentrations was observed during winter (108.5 ± 31.8 μg m−3), and the lowest average was observed during summer (85.0 ± 22.6 μg m−3). The annual average concentration of total water soluble inorganic ions was 39.82 μg m−3, accounting for 44.4% of the PM2.5. The seasonal variation in water soluble inorganic ions in PM2.5 reached its maximum during autumn and reached its minimum during spring. Sulfate, nitrate and ammonium were the dominant water soluble inorganic species, with their combined proportion of 82.0% of the total water soluble inorganic ions and 36.8% of the fine particles. Seasonal variations in aerosol acidity and chemical forms of secondary inorganic ions were discussed. The average ratio of NO3/SO42− was 0.95. According to the results of principal component analysis, secondary sources, burning processes, and airborne dust were the dominant potential sources of PM2.5 in Nanjing.

Keywords

Fine particles Water soluble inorganic ions Seasonal variation Principal component analysis Nanjing 

Notes

Acknowledgements

This work was supported by the Major Special Program of the Ministry of Ecology and Environmental of China (GYZX180104), Basic Research Business Fees of Central-Level Public Welfare Research Institutes Project (GYZX170204), and the National Natural Science Foundation of China (No.201406116).

References

  1. Aikawa, M., Hiraki, T., Suzuki, M., Tamaki, M., Kasahara, M.: Separate chemical characterizations of fog water, aerosol, and gas before, during, and after fog events near an industrialized area in Japan. Atmos. Environ. 41, 1950–1959 (2007)CrossRefGoogle Scholar
  2. An, J.L., Cao, Q.M., Zou, J.N., Wang, H.L., Duan, Q., Shi, Y.Z., Chen, C., Wang, J.X.: Seasonal variation in water-soluble ions in airborne particulate deposition in the suburban Nanjing area, Yangtze River Delta, China, during haze days and normal days. Arch. Environ. Contam. Toxicol. 74, 1–15 (2018)CrossRefGoogle Scholar
  3. Arimoto, R., Duce, R.A., Savoie, D.L., Prospero, J.M., Talbot, R., Cullen, J.D., Tomza, U., Lewis, N.F., Jay, B.J.: Relationships among aerosol constituents from Asia and the North Pacific during PEM-West A. J. Geophys. Res. Atmos. 101, 2011–2023 (1996)CrossRefGoogle Scholar
  4. Begam, G.R., Vachaspati, C.V., Ahammed, Y.N., Kumar, K.R., Reddy, R.R., Sharma, S.K., Saxena, M., Mandal, T.K.: Seasonal characteristics of water-soluble inorganic ions and carbonaceous aerosols in total suspended particulate matter at a rural semi-arid site, Kadapa (India). Environ. Sci. Pollut. Res. 24, 1719–1734 (2017)CrossRefGoogle Scholar
  5. Chen, T.F., Chang, K.H., Tsai, C.Y.: Modeling direct and indirect effect of long range transport on atmospheric PM2.5 levels. Atmos. Environ. 89, 1–9 (2014)CrossRefGoogle Scholar
  6. Chow, J.C., Fujita, E.M., Watson, J.G., Lu, Z.Q., Lawson, D.R., Asbaugh, L.L.: Evaluation of filter-based aerosol measurements during the 1987 Southern California air-quality study. Environ. Monit. Assess. 30, 49–80 (1994)CrossRefGoogle Scholar
  7. Contini, D., Cesari, D., Genga, A., Siciliano, M., Ielpo, P., Guascito, M.R., Conte, M.: Source apportionment of size-segregated atmospheric particles based on the major water-soluble components in Lecce (Italy). Sci. Total Environ. 472, 248–261 (2014)CrossRefGoogle Scholar
  8. Deng, J.J., Zhang, Y.R., Hong, Y.W., Xu, L.L., Chen, Y.T., Du, W.J., Chen, J.S.: Optical properties of PM2.5 and the impacts of chemical compositions in the coastal city Xiamen in China. Sci. Total. Environ. 557, 665–675 (2016a)CrossRefGoogle Scholar
  9. Deng, X.L., Shi, C.E., Wu, B.W., Yang, Y.J., Jin, Q., Wang, H.L., Zhu, S., Yu, C.X.: Characteristics of the water-soluble components of aerosol particles in Hefei, China. J. Environ. Sci. 42, 32–40 (2016b)CrossRefGoogle Scholar
  10. Deshmukh, D.K., Deb, M.K., Suzuki, Y., Kouvarakis, G.N.: Water-soluble ionic composition of PM2.5-10 and PM2.5 aerosols in the lower troposphere of an industrial city Raipur, the eastern Central India. Air Qual. Atmos. Health. 6, 95–110 (2013)CrossRefGoogle Scholar
  11. Huang, T., Chen, J., Zhao, W.T., Cheng, J.X., Cheng, S.G.: Seasonal variations and correlation analysis of water-soluble inorganic ions in PM2.5 in Wuhan, 2013. Atmosphere 7, (2016).  https://doi.org/10.3390/atmos7040049
  12. Jiang, N., Yin, S.S., Guo, Y., Li, J.Y., Kang, P.R., Zhang, R.Q., Tang, X.Y.: Characteristics of mass concentration, chemical composition, source apportionment of PM2.5 and PM10 and health risk assessment in the emerging megacity in China. Atmos. Pollut. Res. 9, 309–321 (2018)CrossRefGoogle Scholar
  13. Kleeman, M.J., Schauer, J.J., Cass, G.R.: Size and composition distribution of fine particulate matter emitted from motor vehicles. Environ. Sci. Technol. 34, 1132–1142 (2000)CrossRefGoogle Scholar
  14. Li, X.R., Wang, Y.S., Guo, X.Q., Wang, Y.F.: Seasonal variation and source apportionment of organic and inorganic compounds in PM2.5 and PM10 particulates in Beijing, China. J. Environ. Sci. 25, 741–750 (2013a)CrossRefGoogle Scholar
  15. Li, X.R., Wang, L.L., Ji, D.S., Wen, T.X., Pan, Y.P., Sun, Y., Wang, Y.S.: Characterization of the size-segregated water-soluble inorganic ions in the Jing-Jin-Ji urban agglomeration: spatial/temporal variability, size distribution and sources. Atmos. Environ. 77, 250–259 (2013b)CrossRefGoogle Scholar
  16. Li, L., Yin, Y., Kong, S.F., Wen, B., Chen, K., Yuan, L., Li, Q.: Altitudinal effect to the size distribution of water soluble inorganic ions in PM at Huangshan, China. Atmos. Environ. 98, 242–252 (2014)CrossRefGoogle Scholar
  17. Liang, Z.B., Zhao, X.F., Chen, J.Y., Gao, L., Zhu, A.P., Wang, Z.W., Li, S.H., Shan, J.J., Long, Y.M., Yan, C., Zhang, K.: Seasonal characteristics of chemical compositions and sources identification of PM2.5 in Zhuhai, China. Environ. Geochem. Health. (2018).  https://doi.org/10.1007/s10653-018-0164-2
  18. Lin, Z.J., Tao, J., Chai, F.H., Fan, S.J., Yue, J.H., Zhu, L.H., Ho, K.F., Zhang, R.J.: Impact of relative humidity and particles number size distribution on aerosol light extinction in the urban area of Guangzhou. Atmos. Chem. Phys. 13, 1115–1128 (2013)CrossRefGoogle Scholar
  19. Liu, B.S., Wu, J.H., Zhang, J.Y., Wang, L., Yang, J.M., Liang, D.N., Dai, Q.L., Bi, X.H., Feng, Y.C., Zhang, Y.F., Zhang, Q.X.: Characterization and source apportionment of PM2.5 based on error estimation from EPA PMF 5.0 model at a medium city in China. Environ. Pollut. 222, 10–22 (2017)CrossRefGoogle Scholar
  20. Luo, Y.Y., Zhou, X.H., Zhang, J.Z., Xiao, Y., Wang, Z., Zhou, Y., Wang, W.X.: PM2.5 pollution in a petrochemical industry city of northern China: seasonal variation and source apportionment. Atmos. Res. 212, 285–295 (2018)CrossRefGoogle Scholar
  21. Masiol, M., Benetello, F., Harrison, R.M., Formenton, G., De Gaspari, F., Pavoni, B.: Spatial, seasonal trends and transboundary transport of PM2.5 inorganic ions in the Veneto region (northeastern Italy). Atmos. Environ. 117, 19–31 (2015)CrossRefGoogle Scholar
  22. Meng, C.C., Wang, L.T., Zhang, F.F., Wei, Z., Ma, S.M., Ma, X., Yang, J.: Characteristics of concentrations and water-soluble inorganic ions in PM2.5 in Handan City, Hebei province, China. Atmos. Res. 171, 133–146 (2016)CrossRefGoogle Scholar
  23. Ming, L.L., Jin, L., Li, J., Fu, P.Q., Yang, W.Y., Liu, D., Zhang, G., Wang, Z.F., Li, X.D.: PM2.5 in the Yangtze River Delta, China: chemical compositions, seasonal variations, and regional pollution events. Environ. Pollut. 223, 200–212 (2017)CrossRefGoogle Scholar
  24. Niu, X.Y., Cao, J.J., Shen, Z.X., Ho, S.S.H., Tie, X.X., Zhao, S.Y., Xu, H.M., Zhang, B.T., Huang, R.J.: PM2.5 from the Guanzhong plain: chemical composition and implications for emission reductions. Atmos. Environ. 147, 458–469 (2016)CrossRefGoogle Scholar
  25. Parinet, B., Lhote, A., Legube, B.: Principal component analysis: an appropriate tool for water quality evaluation and management-application to a tropical lake system. Ecol. Model. 178, 295–311 (2004)CrossRefGoogle Scholar
  26. Park, E.H., Heo, J., Hirakura, S., Hashizume, M., Deng, F.R., Kim, H., Yi, S.M.: Characteristics of PM(2.5 ) and its chemical constituents in Beijing, Seoul, and Nagasaki. Air. Qual. Atmos. Health. 11, 1167–1178 (2018)CrossRefGoogle Scholar
  27. Robarge, W.P., Walker, J.T., McCulloch, R.B., Murray, G.: Atmospheric concentrations of ammonia and ammonium at an agricultural site in the Southeast United States. Atmos. Environ. 36, 1661–1674 (2002)CrossRefGoogle Scholar
  28. Rupp, G.: Aerosol dynamics and health: strategies to reduce exposure and harm foreword. Biomarkers. 14, 3–4 (2009)CrossRefGoogle Scholar
  29. Saxena, Mohit., Sharma, A., Sen, A., Saxena, P., Saraswati, Y., Mandal, T.K., Sharma, S.K., Sharma, C.: Water soluble inorganic species of PM10 and PM2.5 at an urban site of Delhi, India: seasonal variability and sources. Atmos. Res. 184, 112–125 (2017)Google Scholar
  30. Shen, Z.X., Cao, J.J., Arimoto, R., Han, Z.W., Zhang, R.J., Han, Y.M., Liu, S.X., Okuda, T., Nakao, S., Tanaka, S.: Ionic composition of TSP and PM2.5 during dust storms and air pollution episodes at Xi'an, China. Atmos. Environ. 43, 2911–2918 (2009)CrossRefGoogle Scholar
  31. Sun, Z.Q., Mu, Y.J., Liu, Y.J., Shao, L.Y.: A comparison study on airborne particles during haze days and non-haze days in Beijing. Sci. Total Environ. 456, 1–8 (2013)CrossRefGoogle Scholar
  32. Szigeti, T., Ovari, M., Dunster, C., Kelly, F.J., Lucarelli, F., Zaray, G.: Changes in chemical composition and oxidative potential of urban PM2.5 between 2010 and 2013 in Hungary. Sci. Total. Environ. 518, 534–544 (2015)CrossRefGoogle Scholar
  33. Tian, Y.Z., Shi, G.L., Han, S.Q., Zhang, Y.F., Feng, Y.C., Liu, G.R., Gao, L.J., Wu, J.H., Zhu, T.: Vertical characteristics of levels and potential sources of water-soluble ions in PM10 in a Chinese megacity. Sci. Total Environ. 447, 1–9 (2013)CrossRefGoogle Scholar
  34. Tian, M., Wang, H.B., Chen, Y., Zhang, L.M., Shi, G.M., Liu, Y., Yu, J.Y., Zhai, C.Z., Wang, J., Yang, F.M.: Highly time-resolved characterization of water-soluble inorganic ions in PM2.5 in a humid and acidic mega city in Sichuan Basin, China. Sci. Total Environ. 580, 224–234 (2017)CrossRefGoogle Scholar
  35. Tolis, E.I., Saraga, D.E., Lytra, M.K., Papathanasiou, A.C., Bougaidis, P.N., Prekas-Patronakis, O.E., Ioannidis, I.I., Bartzis, J.G.: Concentration and chemical composition of PM2.5 for a one-year period at Thessaloniki, Greece: a comparison between city and port area. Atmos. Environ. 113, 197–207 (2015)CrossRefGoogle Scholar
  36. Vedal, S., Hannigan, M.P., Dutton, S.J., Miller, S.L., Milford, J.B., Rabinovitch, N., Kim, S.Y., Sheppard, L.: The Denver aerosol sources and health (DASH) study: overview and early findings. Atmos. Environ. 43, 1666–1673 (2009)CrossRefGoogle Scholar
  37. Verma, S.K., Deb, M.K., Suzuki, Y., Tsai, Y.I.: Ion chemistry and source identification of coarse and fine aerosols in an urban area of eastern Central India. Atmos. Res. 95, 65–76 (2010)CrossRefGoogle Scholar
  38. Wang, G.H., Wang, H., Yu, Y.J., Gao, S.X., Feng, J.F., Gao, S.T., Wang, L.S.: Chemical characterization of water-soluble components of PM10 and PM2.5 atmospheric aerosols in five locations of Nanjing, China. Atmos. Environ. 37, 2893–2902 (2003)CrossRefGoogle Scholar
  39. Wang, H.L., Zhu, B., Shen, L.J., Kang, H.Q.: Size distributions of aerosol and water-soluble ions in Nanjing during a crop residual burning event. J. Environ. Sci. 24, 1457–1465 (2012)CrossRefGoogle Scholar
  40. Wang, H.L., Zhu, B., Shen, L.J., Xu, H.H., An, J.L., Xue, G.Q., Cao, J.F.: Water-soluble ions in atmospheric aerosols measured in five sites in the Yangtze River Delta, China: size-fractionated, seasonal variations and sources. Atmos. Environ. 123, 370–379 (2015)CrossRefGoogle Scholar
  41. Wang, H.L., An, J.L., Cheng, M.T., Shen, L.J., Zhu, B., Li, Y., Wang, Y.S., Duan, Q., Sullivan, A., Xia, L.: One year online measurements of water-soluble ions at the industrially polluted town of Nanjing, China: sources, seasonal and diurnal variations. Chemosphere. 148, 526–536 (2016)CrossRefGoogle Scholar
  42. Wang, W.F., Yua, J., Cui, Y., He, J., Xue, P., Cao, W., Ying, H.M., Gao, W.K., Yan, Y.C., Hu, B., Xin, J.Y., Wang, L.L., Liu, Z.R., Sun, Y., Ji, D.S., Wang, Y.S.: Characteristics of fine particulate matter and its sources in an industrialized coastal city, Ningbo, Yangtze River Delta, China. Atmos. Res. 203, 105–117 (2018)CrossRefGoogle Scholar
  43. Xiang, P., Zhou, X.M., Duan, J.C., Tan, J.H., He, K.B., Yuan, C., Ma, Y.L., Zhang, Y.X.: Chemical characteristics of water-soluble organic compounds (WSOC) in PM2.5 in Beijing, China: 2011–2012. Atmos. Res. 183, 104–112 (2017)CrossRefGoogle Scholar
  44. Xu, H.M., Cao, J.J., Chow, J.C., Huang, R.J., Shen, Z.X., Chen, L.W.A., Ho, K.F., Watson, J.G.: Inter-annual variability of wintertime PM2.5 chemical composition in Xi’an, China: evidences of changing source emissions. Sci. Total Environ. 545-546, 546–555 (2016)CrossRefGoogle Scholar
  45. Xu, J.S., Xu, M.X., Snape, C., He, J., Behera, S.N., Xu, H.H., Ji, D.S., Wang, C.J., Yu, H., Xiao, H., Jiang, Y.J., Qi, B., Du, R.G.: Temporal and spatial variation in major ion chemistry and source identification of secondary inorganic aerosols in northern Zhejiang Province, China. Chemosphere. 179, 316–330 (2017)CrossRefGoogle Scholar
  46. Yang, H., Yu, J.Z., Ho, S.S.H., Xu, J.H., Wu, W.S., Wan, C.H., Wang, X.D., Wang, X.R., Wang, L.S.: The chemical composition of inorganic and carbonaceous materials in PM2.5 in Nanjing, China. Atmos. Environ. 39, 3735–3749 (2005)CrossRefGoogle Scholar
  47. Yin, L.Q., Niu, Z.C., Chen, X.Q., Chen, J.S., Zhang, F.W., Xu, L.L.: Characteristics of water-soluble inorganic ions in PM2.5 and PM2.5-10 in the coastal urban agglomeration along the Western Taiwan Strait region, China. Environ. Sci. Pollut. Res. 21, 5141–5156 (2014)CrossRefGoogle Scholar
  48. Zhang, F., Wang, Z.W., Cheng, H.R., Lv, X.P., Gong, W., Wang, X.M., Zhang, G.: Seasonal variations and chemical characteristics of PM2.5 in Wuhan, Central China. Sci. Total. Environ. 518, 97–105 (2015)Google Scholar
  49. Zhang, Y.R., Zhang, H.L., Deng, J.J., Du, W.J., Hong, Y.W., Xu, L.L., Qiu, Y.Q., Hong, Z.Y., Wu, X., Ma, Q.L., Yao, J., Chen, J.S.: Source regions and transport pathways of PM2.5 at a regional background site in East China. Atmos. Environ. 167, 202–211 (2017)CrossRefGoogle Scholar
  50. Zhang, Y.Y., Jia, Y., Li, M., Hou, L.A.: The characterization of water-soluble inorganic ions in PM2.5 during a winter period in Xi’an, China. Environ. Forensic. 19, 166–171 (2018)CrossRefGoogle Scholar
  51. Zhao, J.P., Zhang, F.W., Xu, Y., Chen, J.S.: Characterization of water-soluble inorganic ions in size-segregated aerosols in coastal city, Xiamen. Atmos. Res. 99, 546–562 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Xiaoyu Zhang
    • 1
  • Xin Zhao
    • 1
    Email author
  • Guixiang Ji
    • 1
  • Rongrong Ying
    • 1
  • Yanhong Shan
    • 1
  • Yusuo Lin
    • 1
  1. 1.Nanjing Institute of Environmental ScienceMinistry of Ecology and EnvironmentNanjingChina

Personalised recommendations