Journal of Atmospheric Chemistry

, Volume 75, Issue 4, pp 335–355 | Cite as

Trace ambient levels of particulate mercury and its sources at a rural site near Delhi

  • Anita Kumari
  • Umesh KulshresthaEmail author


Atmospheric particle-bound mercury levels were measured in PM10 aerosols (HgP) at a rural site (Mahasar, Haryana) during winter 2014–15 and summer 2015. The PM10 HgP was determined by using Differential Pulse Anodic Stripping Voltammetry through standard addition methods while the trace metals were determined by using an Atomic Absorption Spectroscopy. The mass concentrations of HgP varied from 591 to 1533 pg/m3 with an average of 1009 ± 306 pg/m3 during the winter, while the mass concentrations of HgP varied from 43 to 826 pg/m3 with an average of 320 ± 228 pg/m3 during the summer. However, it is difficult to assess whether these levels are harmful or not because there is no standard value available as National Ambient Air Quality Standard. The higher concentrations of HgP during winters were possibly due to favourable local meteorological conditions for the stagnation of particulate matter in the lower atmosphere and the increased emissions from existing natural or anthropogenic sources, regional sources and long-range transportation. Relatively low concentrations of HgP during summer might be due to increased mixing heights as well as scavenging effect because some light to heavy rain events were observed during summer time sampling. However, among other metals determined, the concentration of HgP was the lowest during both the seasons. The study may be useful in assessing the health impacts of PM10 HgP and other metals.


Atmospheric mercury Voltammetry Trace metals Source apportionment Rural 



This study was supported by UGC-UPA II project (Project ID 149). Financial assistance from DST-PURSE is also acknowledged for this work. Author Anita Kumari acknowledges the award of Shyama Prasad Mukherjee (SPM) Fellowship from Council of Scientific and Industrial Research (CSIR) of India. We would also like to thank anonymous reviewers for their valuable suggestions for improvement of this manuscript.


  1. Arora, A., Kumari, A., Kulshrestha, U.: Respirable mercury particulates and other chemical constituents in festival aerosols in Delhi. Curr. World Environ. 13(1), 03–14 (2018)Google Scholar
  2. Balaram Krishna, M.V., Karunasagar, D., Arunachalam, J.: Study of mercury pollution near a thermometer factory using lichens and mosses. Environ. Pollut. 124, 357–360 (2003)Google Scholar
  3. Blanchard, P., Froude, F.A., Martin, J.B., Dryfhout-Clark, H., Woods, J.T.: Four years of continuous total gaseous mercury (TGM) measurements at sites in Ontario, Canada. Atmos. Environ. 36, 3735–3743 (2002)Google Scholar
  4. Bonfil, Y., Brand, M., Kirowa-Eisner, E.: Trace determination of mercury by anodic stripping voltammetry at the rotating gold electrode. Anal. Chim. Acta. 424(1), 65–76 (2000)Google Scholar
  5. Buldini, P.L., Cavalli, S., Mevoli, A., Lal Sharma, J.: Ion chromatographic and voltammetric determination of heavy and transition metals in honey. Food Chem. 73, 487–495 (2001)Google Scholar
  6. Buzica, D., Gerboles, M., Borowiak, A., Trincherini, P., Passarella, R., Pedroni, V.: Comparison of voltammetry and inductively coupled plasma-mass spectrometry for the determination of heavy metals in PM10 airborne particulate matter. Atmos. Environ. 40(25), 4703–4710 (2006)Google Scholar
  7. Central Pollution Control Board (CPCB). New Delhi, (2001). Accessed 23 July 2018
  8. Chand, D., Jaffe, D., Prestbo, E., Swartzendruber, P.C., Hafner, W., Weiss-Penzias, P., Kato, S., Takami, A., Hatakeyama, S., Kajii, Y.: Reactive and particulate mercury in the Asian marine boundary layer. Atmos. Environ. 42, 7988–7996 (2008)Google Scholar
  9. Cheng, I., Zhang, L., Blanchard, P., Dalziel, J., Tordon, R.: Concentration-weighted trajectory approach to identifying potential sources of speciated atmospheric mercury at an urban coastal site in Nova Scotia. Canada. Atmos. Chem. Phys. 13, 6031–6048 (2013)Google Scholar
  10. Choi, H.D., Huang, J., Mondal, S., Holsen, T.M.: Variation in concentrations of three mercury (hg) forms at a rural and a suburban site in New York state. Sci. Total Environ. 448, 96–106 (2013)Google Scholar
  11. Dirilgen, N., Dogan, F., Ozbal, H.: Anodic stripping voltammetry: arsenic determination in ancient bone samples. Anal. Lett. 39(1), 127–143 (2006)Google Scholar
  12. Dockery, D.W., Pope, C.A.: Acute respiratory effects of particulate air pollution. Auun. Rev. Publ. Health. 15, 107–132 (1994)Google Scholar
  13. Driscoll, C.T., Han, Y.J., Chen, C.Y., Evers, D.C., Lambert, K.F., Holsen, T.M., Kamman, N.C., Munson, R.K.: Mercury contamination in forest and freshwater ecosystems in the northeastern United States. Bioscience. 57, 17–28 (2007)Google Scholar
  14. Driscoll, C., Mason, R., Chan, H., Jacob, D., Pirrone, N.: Mercury as a global pollutant: sources, pathways, and effects. Environ. Sci. Technol. 47, 4967–4983 (2013)Google Scholar
  15. Duan, L., Cheng, N., Xiu, G., Wang, F., Chen, Y.: Characteristics and source appointment of atmospheric particulate mercury over East China Sea: implication on the deposition of atmospheric particulate mercury in marine environment. Environ. Pollut. 224, 26–34 (2017)Google Scholar
  16. Espinosa, A.J.F., Rodríguez, M.T., Barragán de la Rosa, F.J., Jiménez Sánchez, J.C.: Size distribution of metals in urban aerosols in Seville (Spain). Atmos. Environ. 35, 2595–2601 (2001)Google Scholar
  17. Fang, F., Wang, Q., Li, J.: Atmospheric particulate mercury concentration and its dry deposition flux in Changchun City, China. Sci. Total Environ. 281, 229–236 (2001)Google Scholar
  18. Farghaly, O.A., Ghandour, M.A.: Square-wave stripping voltammetry for direct determination of eight heavy metals in soil and indoor-airborne particulate matter. Environ. Res. 97, 229–235 (2005)Google Scholar
  19. Feeney, R., Kounaves, S.P.: Voltammetric measurements of arsenic in natural waters. Talanta. 58, 23–31 (2002)Google Scholar
  20. Feng, X.B., Shang, L.H., Wang, S.F., Tang, S.L., Zheng, W.: Temporal variation of total gaseous mercury in the air of Guiyang, China. J. Geophys. Res. 109, (2004)Google Scholar
  21. Fleming, E.J., Mack, E.E., Green, P.G., Nelson, D.C.: Mercury methylation from unexpected sources: molybdate-inhibited freshwater sediments and an iron-reducing bacterium. Appl. Environ. Microbiol. 72(1), 457–464 (2006)Google Scholar
  22. Fostier, A.H., Michelazzo, P.A.: Gaseous and particulate atmospheric mercury concentrations in the Campinas metropolitan region (São Paulo state, Brazil). J. Braz. Chem. Soc. 17, 886–894 (2006)Google Scholar
  23. Fu, X.W., Feng, X.B., Qiu, G.L., Shang, L.H., Zhang, H.: Speicated atmospheric mercury and its potential source in Guiyang, China. Atmos. Environ. 45, 4205–4212 (2011)Google Scholar
  24. Gratz, L.E., Keeler, G.J., Marsik, F.J., Barres, J.A., Dvonch, J.T.: Atmospheric transport of speciated mercury across southern Lake Michigan: influence from emission sources in the Chicago/Gary urban area. Sci. Total Environ. 448, 84–95 (2013)Google Scholar
  25. Guo, J., Kang, S., Huang, J., Zhang, Q., Rupakheti, M., Sun, S., Tripathee, L., Rupakheti, D., Panday, A.K., Sillanpää, M., Paudyal, R.: Characterizations of atmospheric particulate-bound mercury in the Kathmandu Valley of Nepal, South Asia. Sci. Total Environ. 579, 1240–1248 (2017)Google Scholar
  26. Han, Y.J., Kim, J.E., Kim, P.R., Kim, W.J., Yi, S.M., Seo, Y.S., Kim, S.H.: General trends of atmospheric mercury concentrations in urban and rural areas in Korea and characteristics of high concentration events. Atmos. Environ. 94, 754–764 (2014)Google Scholar
  27. Harikumar, P.S., Dhruvan, A., Sabna, V., Babitha, A.: Study on the leaching of mercury from compact fluorescent lamps using stripping voltammetry. J. Toxicol. Environ. Health Sci. 3(1), 008–013 (2011)Google Scholar
  28. Hong, Y., Chen, J., Deng, J., Tong, L., Xu, L., Niu, Z., Yin, L., Chen, Y., Hong, Z.: Pattern of atmospheric mercury speciation during episodes of elevated PM2.5 levels in a coastal city in the Yangtze River Delta, China. Environ. Pollut. 218, 259–268 (2016)Google Scholar
  29. Hu, Q.H., Kang, H., Li, Z., Wang, Y.S., Ye, P.P., Zhang, L.L., Yu, J., Yu, X.W., Sun, C., Xie, Z.Q.: Characterization of atmospheric mercury at a suburban site of Central China from winter time to springtime. Atmos. Pollut. Res. 5(4), 769–778 (2014)Google Scholar
  30. Huang, J., Kang, S., Guo, J., Zhang, Q., Cong, Z., Sillanpää, M., Zhang, G., Sun, S., Tripathee, L.: Atmospheric particulate mercury in Lhasa city, Tibetan plateau. Atmos. Environ. 142, 433–441 (2016)Google Scholar
  31. Jayasekher, T.: Aerosols near by a coal fired thermal power plant: chemical composition and toxic evaluation. Chemosphere. 75, 1525–1530 (2009)Google Scholar
  32. Jayasekher, T., Kumaresan, S., Radhika, S.L., Biju, B., Sindhu, M., Iyer, C.S.P.: Statistical analysis of the aerosol elemental composition in an Industrial Belt. Bull. Environ. Contam. Toxicol. 73, 53–58 (2004)Google Scholar
  33. Jiang, Y., Cizdziel, J.V., Lu, D.: Temporal patterns of atmospheric mercury species in northern Mississippi during 2011- 2012: influence of sudden population swings. Chemosphere. 93, 1694–1700 (2013)Google Scholar
  34. Johansson, K., Bergback, B., Tyler, G.: Impact of atmospheric long range transport of lead, mercury and cadmium on the Swedish forest environment. Water Air Soil Pollut. Focus. 1(3), 279–297 (2001)Google Scholar
  35. Karunasagar, D., Krishna, V.M., Anjaneyulu, Y., Arunachalam, J.: Studies of mercury pollution in a lake due to a thermometer factory situated in a tourist resort: Kodaikkanal, India. Environ. Pollut. 143, 153–158 (2006)Google Scholar
  36. Kim, S.H., Han, Y.J., Holsen, T.M., Yi, S.M.: Characteristics of atmospheric speciated mercury concentrations (TGM, hg(II) and hg(p)) in Seoul, Korea. Atmos. Environ. 43, 3267–3274 (2009)Google Scholar
  37. Kim, P.R., Han, Y.J., Holsen, T.M., Yi, S.M.: Atmospheric particulate mercury: concentrations and size distributions. Atmos. Environ. 61, 94–102 (2012)Google Scholar
  38. Koshle, A., Pervez, Y.F., Tiwari, R.P., Pervez, S.: Environmental pathways and distribution pattern of total mercury among soils and groundwater matrices around an integrated steel plant in India. J. Sci. Ind. Res. 67, 523–530 (2008)Google Scholar
  39. Kulshrestha, U.C., Rao, T.N., Azhaguvel, S., Kulshrestha, M.J.: Emissions and accumulation of metals in the atmosphere due to crackers and sparkles during Diwali festival in India. Atmos. Environ. 38(27), 4421–4425 (2004)Google Scholar
  40. Kulshrestha, M.J., Singh, R., Engardt, M.: Ambient and episodic levels of metals in PM10 aerosols and their source apportionment in Central Delhi, India. J. Hazard. Toxic Radioact. Waste. 20(4), A4014002 (2014)Google Scholar
  41. Kumari, A., Kumar, B., Manzoor, S., Kulshrestha, U.: Status of atmospheric mercury research in South Asia: a review. Aerosol Air Qual. Res. 15, 1092–1109 (2015)Google Scholar
  42. Kushwaha, R., Srivastava, A., Lai, H., Ghosh, B., Jain, V.K.: Particles size distribution of aerosols and associated metals, and source estimation in Delhi, India. Sustain. Environ. Res. 22(5), 317–325 (2012)Google Scholar
  43. Landis, M.S., Keeler, G.J.: Atmospheric mercury deposition to Lake Michigan during the Lake Michigan mass balance study. Environ. Sci. Technol. 36, 4518–4524 (2002)Google Scholar
  44. Li, J., Sommar, J., Wängberg, I., Lindqvist, O., Wei, S.Q.: Short-time variation of mercury speciation in the urban of Göteborg during GÖTE-2005. Atmos. Environ. 42(36), 8382–8388 (2008)Google Scholar
  45. Li, Y., Wang, Y., Li, Y., Li, T., Mao, H., Talbot, R., Nie, X., Wu, C., Zhao, Y., Hou, C., Wang, G.: Characteristics and potential sources of atmospheric particulate mercury in Jinan, China. Sci. Total Environ. 574, 1424–1431 (2017)Google Scholar
  46. Lindberg, S.E., Stratton, W.J.: Atmospheric mercury speciation: concentrations and behaviour of reactive gaseous mercury in ambient air. Environ. Sci. Technol. 32, 49–57 (1998)Google Scholar
  47. Liu, B., Keeler, G.J., Dvonch, J.T., Barres, J.A., Lynam, M.M., Marsik, F.J., Morgan, J.T.: Urban-rural differences in atmospheric mercury speciation. Atmos. Environ. 44, 2013–2023 (2010)Google Scholar
  48. Locatelli, C., Melucci, D.: Voltammetric determination of ultra-trace total mercury and toxic metals in meals. Food Chem. 130(2), 460–466 (2012)Google Scholar
  49. Locatelli, C., Torsi, G.: Analytical procedures for the simultaneous voltammetric determination of heavy metals in meals. Microchem. J. 75, 233–240 (2003)Google Scholar
  50. Lu, J., Schroeder, W.: Sampling and determination of particulate mercury in ambient air: a review. Water Air Soil Pollut. 112, 279–295 (1999)Google Scholar
  51. Mamani, M.C.V., Aleixo, L.M., Ferreira de Abreu, M., Rath, S.: Simultaneous determination of cadmium and lead in medicinal plants by anodic stripping voltammetry. J. Pharm. Biomed. Anal. 37, 709–713 (2005)Google Scholar
  52. Manolopoulos, H., Snyder, D.C., Schauer, J.J., Hill, J.S., Turner, J.R., Olson, M.L., Krabbenhoft, D.P.: Sources of speciated atmospheric mercury at a residential neighbourhood impacted by industrial sources. Environ. Sci. Technol. 41, 5626–5633 (2007)Google Scholar
  53. Mao, H., Talbot, R.: Speciated mercury at marine, coastal, and inland sites in New England - part 1: temporal variability. Atmos. Chem. Phys. 12, 5099–5112 (2012)Google Scholar
  54. Mao, H., Cheng, I., Zhang, L.: Current understanding of the driving mechanisms for spatiotemporal variations of atmospheric speciated mercury: a review. Atmos. Chem. Phys. 16(20), 12897–12924 (2016)Google Scholar
  55. Mason, R.P., Morel, F.M.M., Hemond, H.F.: The role of microorganisms in elemental 25 mercury formation in natural water. Water Air Soil Pollut. 80, 775–787 (1995)Google Scholar
  56. Metrohm: Determination of Mercury in Potable Water. VA Application Work AW UK4-0183-092007, Metrohm (2007). retrieved on July 23, 2018
  57. Moore, C.W., Obrist, D., Luria, M.: Atmospheric mercury depletion events at the Dead Sea: spatial and temporal aspects. Atmos. Environ. 69, 231–239 (2013)Google Scholar
  58. Morton-Bermea, O., Garza-Galindo, R., Hernández-Álvarez, E., Ordoñez-Godínez, S.L., Amador-Muñoz, O., Beramendi-Orosco, L., Miranda, J., Rosas-Pérez, I.: Atmospheric PM2.5 mercury in the metropolitan area of Mexico City. Bull. Environ. Contam. Toxicol. 100(4), 588–592 (2018)Google Scholar
  59. Nedeltcheva, T., Atanassova, M., Dimitrov, J., Stanislavova, L.: Determination of mobile form contents of Zn, cd, Pb and cu in soil extracts by combined stripping voltammetry. Anal. Chim. Acta. 528(2), 143–146 (2005)Google Scholar
  60. Nguyen, D.L., Kim, J.Y., Shim, S.G., Ghim, Y.S., Zhang, X.S.: Shipboard and ground measurements of atmospheric particulate mercury and total mercury in precipitation over the Yellow Sea region. Environ. Pollut. 219, 262–274 (2016)Google Scholar
  61. Nriagu, J.O.: A global assessment of natural sources of atmospheric trace metals. Nature. 338, 47–49 (1989)Google Scholar
  62. Pacyna, E.G., Pacyna, J.M., Sundseth, K., Munthe, J., Kindbom, K., Wilson, S., Steenhuisen, F., Maxson, P.: Global emission of mercury to the atmosphere from anthropogenic sources in 2005 and projections to 2020. Atmos. Environ. 44(20), 2487–2499 (2010)Google Scholar
  63. Pankow, J.F.: Review and comparative analysis of the theories on partitioning between the gas and aerosol particulate phases in the atmosphere. Atmos. Environ. 21, 2275–2283 (1987)Google Scholar
  64. Pervez, S., Koshle, A., Pervez, Y.: Study of spatiotemporal variation of atmospheric mercury and its human exposure around an integrated steel plant. India. Atmos. Chem. Phys. 10, 5535–5549 (2010)Google Scholar
  65. Pirrone, N., Cinnirella, S., Feng, X., Finkelman, R.B., Friedli, H.R., Leaner, J., Mason, R., Mukherjee, A.B., Stracher, G.B., Streets, D.G., Telmer, K.: Global mercury emissions to the atmosphere from anthropogenic and natural sources. Atmos. Chem. Phys. 10, 5951–5964 (2010)Google Scholar
  66. Pyta, H., Rogula-Kozłowska, W.: Determination of mercury in size-segregated ambient particulate matter using CVAAS. Microchem. J. 124, 76–81 (2016)Google Scholar
  67. Pyta, H., Rosik-Dulewska, C., Czaplicka, M.: Speciation of ambient mercury in the upper silesia region, Poland. Water Air Soil Pollut. 197, 233–240 (2008)Google Scholar
  68. Rutter, A.P., Schauer, J.J.: The effect of temperature on the gas-particle partitioning of reactive mercury in atmospheric aerosols. Atmos. Environ. 41, 8647–8657 (2007)Google Scholar
  69. Rutter, A.P., Snyder, D.C., Stone, E.A., Schauer, J.J., Gonzalez-Abraham, R., Molina, L.T., Márquez, C., Cárdenas, B., Foy, B.D.: In situ measurements of speciated atmospheric mercury and the identification of source regions in the Mexico City metropolitan area. Atmos. Chem. Phys. 9(1), 207–220 (2009)Google Scholar
  70. Sakata, M., Marumoto, K.: Formation of atmospheric particulate mercury in the Tokyo metropolitan area. Atmos. Environ. 36, 239–246 (2002)Google Scholar
  71. Schleicher, N.J., Schäfer, J., Blanc, G., Chen, Y., Chai, F., Cen, K., Norra, S.: Atmospheric particulate mercury in the megacity Beijing: spatio-temporal variations and source apportionment. Atmos. Environ. 109, 251–261 (2015)Google Scholar
  72. Schroeder, W.H., Munthe, J.: Atmospheric mercury- an overview. Atmos. Environ. 32(5), 809–822 (1998)Google Scholar
  73. Selin, H.: Global environmental law and treaty-making on hazardous substances: the Minamata convention and mercury abatement. Glob. Environ. Polit. 14, 1–19 (2014)Google Scholar
  74. Shah, M.H., Shaheen, N., Jaffar, M.: Characterization, source identification and apportionment of selected metals in TSP in an urban atmosphere. Environ. Monit. Assess. 114, 573–587 (2006)Google Scholar
  75. Shannon, J.D., Voldner, E.C.: Modeling atmospheric concentrations of mercury and deposition to the Great Lakes. Atmos. Environ. 29, 1649–1661 (1995)Google Scholar
  76. Song, X.J., Cheng, I., Lu, J.: Annual atmospheric mercury species in downtown Toronto, Canada. J. Environ. Monit. 11, 660–669 (2009)Google Scholar
  77. Sprovieri, F., Pirrone, N., Ebinghaus, R., Kock, H., Dommergue, A.: A review of worldwide atmospheric mercury measurements. Atmos. Chem. Phys. 10, 8245–8265 (2010)Google Scholar
  78. US EPA: Mercury update: impact in fish advisories. U.S. Environmental Protection Agency, 15 Office of Water. 4305. EPA-823-F-01-011 (2001)Google Scholar
  79. Wang, Z., Zhang, X., Chen, Z., Zhang, Y.: Mercury concentrations in size-fractionated airborne particles at urban and suburban sites in Beijing, China. Atmos. Environ. 40, 2194–2201 (2006)Google Scholar
  80. Weigelt, A., Temme, C., Bieber, E., Schwerin, A., Schuetze, M., Ebinghaus, R., Kock, H.H.: Measurements of atmospheric mercury species at a German rural background site from 2009 to 2011–methods and results. Environ. Chem. 10(2), 102–110 (2013)Google Scholar
  81. Xiu, G.L., Cai, J., Zhang, W.Y., Zhang, D.N., Bueler, A., Lee, S.C., Shen, Y., Xu, L.H., Huang, X.J., Zhang, P.: Speciated mercury in size fractionated particles in shanghai ambient air. Atmos. Environ. 43, 3145–3154 (2009)Google Scholar
  82. Xu, L., Chen, J., Yang, L., Niu, Z., Tong, L., Yin, L., Chen, Y.: Characteristics and sources of atmospheric mercury speciation in a coastal city, Xiamen, China. Chemosphere. 119, 530–539 (2015)Google Scholar
  83. Zhang, F.W., Xu, L.L., Chen, J.S., Yu, Y.K., Niu, Z.C., Yin, L.Q.: Chemical compositions and extinction coefficients of PM2.5 in peri-urban of Xiamen, China, during June 2009–may 2010. Atmos. Res. 106, 150–158 (2012)Google Scholar
  84. Zhang, L., Wang, S.X., Wang, L., Hao, J.M.: Atmospheric mercury concentration and chemical speciation at a rural site in Beijing, China: implication of mercury emission sources. Atmos. Chem. Phys. 13, 10505–105169 (2013)Google Scholar
  85. Zhu, J., Wang, T., Talbot, R., Mao, H., Yang, X., Fu, C., Sun, J., Zhuang, B., Li, S., Han, Y., Xie, M.: Characteristics of atmospheric mercury deposition and size-fractionated particulate mercury in urban Nanjing, China. Atmos. Chem. Phys. 14(5), 2233–2244 (2014)Google Scholar
  86. Zielonka, U., Hlawiczka, S., Fudala, J., Wängberg, I., Munthe, J.: Seasonal mercury concentrations measured in rural air in southern Poland: contribution from local and regional coal combustion. Atmos. Environ. 39(39), 7580–7586 (2005)Google Scholar

Copyright information

© Springer Nature B.V. 2018
corrected publication 2018

Authors and Affiliations

  1. 1.School of Environmental ScienceJawaharlal Nehru UniversityNew DelhiIndia

Personalised recommendations