Journal of Atmospheric Chemistry

, Volume 75, Issue 3, pp 271–283 | Cite as

A comprehensive study on the surface chemistry of particulate matter collected from Jeddah, Saudi Arabia

  • Asim Jilani
  • Syed Zajif HussainEmail author
  • Mohd Hafiz Dzarfan Othman
  • Usama Zulfiqar
  • Muhammad Bilal Shakoor
  • Imran Ullah Khan
  • Javed Iqbal
  • Attieh A. Al-Ghamdi
  • Ahmed Alshahrie


In this work, the X-ray Photoelectron Spectroscopy (XPS) technique is utilized to analyze the surface chemical composition of particulate matter (PM) which was collected from various locations at Jeddah, Saudi Arabia. The main elements found on the surface of PM are carbon (C), oxygen (O) and silicon (Si) with combined percentage of 89.4–94.9 while traces of nitrogen (N), calcium (Ca), aluminum (Al), sodium (Na), chlorine (Cl), manganese (Mg), and sulfur (S) were also present. The analyzed XPS chemical state of C, O and Si was further used to determine their bonding with other elements occurring over the surface of PM. Carbon was found in the form of carbides (18.86%), fluorides (2.39%) and carbonates (78.75%); oxygen was observed as oxides (21.05%) and hydroxides (73.42%) of other metals; and silicon was detected as silicones (12.16%), nitrides (82.53%) and silicates (5.25%). The particle size of a PM is also of great concern for health issues, and thus has been investigated by the Field Emission Scanning Electron Microscope (FESEM). The Energy Dispersive X-ray Spectroscopy (EDS) was employed for cross verification of detected elements by XPS.


Particulate matter (PM) X-rays photoelectron spectroscopy (XPS) Field emission scanning Electron microscope (FESEM) Surface chemical state Energy dispersive spectroscopy (EDS) 



The authors gratefully acknowledge the financial support from the Ministry of Higher Education Malaysia under the Higher Institution Centre of Excellence Scheme (Project Number: R.J090301.7846.4 J201), Universiti Teknologi Malaysia under the Research University Grant Tier 1 (Project number: Q.J130000.2546.12H25) and Nippon Sheet Glass Foundation for Materials Science and Engineering under Overseas Research Grant Scheme (Project number:R.J130000.7346.4B218). The authors would also like to thank Research Management Centre, Universiti Teknologi Malaysia for the technical support.


  1. Aneja, V.P., Pillai, P.R., Isherwood, A., Morgan, P., Aneja, S.P.: Particulate matter pollution in the coal-producing regions of the Appalachian Mountains: integrated ground-based measurements and satellite analysis. J. Air Waste Manage. Assoc. 67(4), 421–430 (2017)CrossRefGoogle Scholar
  2. Cazier, F., Dewaele, D., Delbende, A., Nouali, H., Garçon, G., Verdin, A., Courcot, D., Bouhsina, S., Shirali, P.: Sampling analysis and characterization of particles in the atmosphere of rural, urban and industrial areas. Procedia Environ Sci. 4, 218–227 (2011)CrossRefGoogle Scholar
  3. Chastain, J., King, R.C., Moulder, J.: Handbook of X-Ray Photoelectron Spectroscopy: a Reference Book of Standard Spectra for Identification and Interpretation of XPS Data. Physical Electronics Eden Prairie, MN (1995)Google Scholar
  4. D'Almeida, G.A., Koepke, P., Shettle, E.P.: Atmospheric Aerosols: Global Climatology and Radiative Characteristics. A Deepak Pub (1991)Google Scholar
  5. Dinar, E., Taraniuk, I., Graber, E., Anttila, T., Mentel, T.F., Rudich, Y.: Hygroscopic growth of atmospheric and model humic-like substances. In: Journal of Geophysical Research: Atmospheres 112(D5), vol. 112, (2007)Google Scholar
  6. ElAssouli, S.M., AlQahtani, M.H., Milaat, W.: Genotoxicity of air borne particulates assessed by comet and the Salmonella mutagenicity test in Jeddah, Saudi Arabia. Int. J. Environ. Res. Public Health. 4(3), 216–223 (2007)CrossRefGoogle Scholar
  7. Faude, F., Goschnick, J.: XPS, SIMS and SNMS applied to a combined analysis of aerosol particles from a region of considerable air pollution in the upper Rhine valley. Fresenius J. Anal. Chem. 358(1–2), 67–72 (1997)CrossRefGoogle Scholar
  8. González, L.T., Rodríguez, F.L., Sánchez-Domínguez, M., Cavazos, A., Leyva-Porras, C., Silva-Vidaurri, L., Askar, K.A., Kharissov, B., Chiu, J.V., Barbosa, J.A.: Determination of trace metals in TSP and PM 2.5 materials collected in the metropolitan area of Monterrey, Mexico: a characterization study by XPS, ICP-AES and SEM-EDS. Atmos. Res. 196, 8–22 (2017)CrossRefGoogle Scholar
  9. Haley, S.M., Tappin, A.D., Bond, P.R., Fitzsimons, M.F.: A comparison of SEM-EDS with ICP-AES for the quantitative elemental determination of estuarine particles. Environ. Chem. Lett. 4(4), 235–238 (2006)CrossRefGoogle Scholar
  10. Hutton, B.M., Williams, D.E.: Assessment of X-ray photoelectron spectroscopy for analysis of particulate pollutants in urban air. Analyst. 125(10), 1703–1706 (2000)CrossRefGoogle Scholar
  11. Jeong, J.-H., Shon, Z.-H., Kang, M., Song, S.-K., Kim, Y.-K., Park, J., Kim, H.: Comparison of source apportionment of PM 2.5 using receptor models in the main hub port city of East Asia: Busan. Atmos. Environ. 148, 115–127 (2017)CrossRefGoogle Scholar
  12. Jilani, A., Iqbal, J., Rafique, S., Abdel-wahab, M.S., Jamil, Y., Al-Ghamdi, A.A.: Morphological, optical and X-ray photoelectron chemical state shift investigations of ZnO thin films. Optik (Munich, Ger.). 127(16), 6358–6365 (2016)Google Scholar
  13. Jin, Y., Hong, S.H., Li, D., Shim, W.J., Lee, S.S.: Distribution of persistent organic pollutants in bivalves from the northeast coast of China. Mar. Pollut. Bull. 57(6), 775–781 (2008)CrossRefGoogle Scholar
  14. Kadi, M.W.: Elemental spatiotemporal variations of Total suspended particles in Jeddah City. Sci. World J. 2014, 1–7 (2014)CrossRefGoogle Scholar
  15. Kendall, M., Hutton, B.M., Tetley, T.D., Nieuwenhuijsen, M.J., Wigzell, E., Jones, F.H.: Investigation of fine atmospheric particle surfaces and lung lining fluid interactions using XPS. Appl. Surf. Sci. 178(1), 27–36 (2001)CrossRefGoogle Scholar
  16. Khodeir, M., Shamy, M., Alghamdi, M., Zhong, M., Sun, H., Costa, M., Chen, L.-C., Maciejczyk, P.: Source apportionment and elemental composition of PM 2.5 and PM 10 in Jeddah City, Saudi Arabia. Atmos. Pollut. Res. 3(3), 331–340 (2012)CrossRefGoogle Scholar
  17. Kim, S.-Y., Song, I.: National-scale exposure prediction for long-term concentrations of particulate matter and nitrogen dioxide in South Korea. Environ. Pollut. 226, 21–29 (2017)CrossRefGoogle Scholar
  18. Kim, B.-H., Kim, C.H., Yang, K.S., Lee, B.C., Woo, H.-G.: Electron beam irradiation effect on the photocatalytic activity of TiO2 on carbon nanofibers. J. Nanosci. Nanotechnol. 11(2), 1438–1442 (2011)CrossRefGoogle Scholar
  19. Lee, Y.S., Cho, T.H., Lee, B.K., Rho, J.S., An, K.H., Lee, Y.H.: Surface properties of fluorinated single-walled carbon nanotubes. J. Fluor. Chem. 120(2), 99–104 (2003)CrossRefGoogle Scholar
  20. Li, P., Xin, J., Wang, Y., Wang, S., Shang, K., Liu, Z., Li, G., Pan, X., Wei, L., Wang, M.: Time-series analysis of mortality effects from airborne particulate matter size fractions in Beijing. Atmos. Environ. 81, 253–262 (2013)CrossRefGoogle Scholar
  21. Liang, Y., Huang, Y., Zhang, H., Lan, L., Zhao, M., Gong, M., Chen, Y., Wang, J.: Interactional effect of cerium and manganese on NO catalytic oxidation. Environ. Sci. Pollut. Res. 24(10), 9314–9324 (2017)CrossRefGoogle Scholar
  22. Pachauri, T., Singla, V., Satsangi, A., Lakhani, A., Kumari, K.M.: SEM-EDX characterization of individual coarse particles in Agra, India. Aerosol and Air Qual. Res. 13(2), 523–536 (2013)CrossRefGoogle Scholar
  23. Pant, P., Harrison, R.M.: Estimation of the contribution of road traffic emissions to particulate matter concentrations from field measurements: a review. Atmos. Environ. 77, 78–97 (2013)CrossRefGoogle Scholar
  24. Pant, P., Shi, Z., Pope, F.D., Harrison, R.M.: Characterization of traffic-related particulate MatterEmissions in a road tunnel in Birmingham, UK: trace metals and organic molecular markers. Aerosol Air Qual. Res. 17(1), 117–130 (xlvi (2017)CrossRefGoogle Scholar
  25. Paradossi, G., Pellegretti, P., Trucco, A.: Ultrasound Contrast Agents: Targeting and Processing Methods for Theranostics. Springer Science & Business Media (2010)Google Scholar
  26. Rai, P.K.: Biomagnetic Monitoring of Particulate Matter. Elsevier Science (2016)Google Scholar
  27. Rana, M.M., Sulaiman, N., Sivertsen, B., Khan, M.F., Nasreen, S.: Trends in atmospheric particulate matter in Dhaka, Bangladesh, and the vicinity. Environ. Sci. Pollut. Res. 23(17), 17393–17403 (2016)CrossRefGoogle Scholar
  28. Ribeiro, J.P., Vicente, E.D., Alves, C., Querol, X., Amato, F., Tarelho, L.A.: Characteristics of ash and particle emissions during bubbling fluidised bed combustion of three types of residual forest biomass. Environ. Sci. Pollut. Res. 24(11), 10018–10029 (2017)CrossRefGoogle Scholar
  29. Richardson, M.: Risk Reduction: Chemicals and Energy into the 21st Century. CRC Press (2002)Google Scholar
  30. Salahinejad, E., Farsani, R.E., Tayebi, L.: Synergistic galvanic-pitting corrosion of copper electrical pads treated with electroless nickel-phosphorus/immersion gold surface finish. Eng. Fail. Anal. 77, 138–145 (2017)CrossRefGoogle Scholar
  31. Santibáñez-Andrade, M., Quezada-Maldonado, E.M., Osornio-Vargas, Á., Sánchez-Pérez, Y., García-Cuellar, C.M.: Air pollution and genomic instability: the role of particulate matter in lung carcinogenesis. Environ. Pollut. 229, 412–422 (2017)CrossRefGoogle Scholar
  32. Sharma, A., Mandal, T., Sharma, S., Shukla, D., Singh, S.: Relationships of surface ozone with its precursors, particulate matter and meteorology over Delhi. J. Atmos. Chem. 1–24 (2016)Google Scholar
  33. Shaughnessy, W.J., Venigalla, M.M., Trump, D.: Health effects of ambient levels of respirable particulate matter (PM) on healthy, young-adult population. Atmos. Environ. 123, 102–111 (2015)CrossRefGoogle Scholar
  34. Shirmohammadi, F., Wang, D., Hasheminassab, S., Verma, V., Schauer, J.J., Shafer, M.M., Sioutas, C.: Oxidative potential of on-road fine particulate matter (PM 2.5) measured on major freeways of Los Angeles, CA, and a 10-year comparison with earlier roadside studies. Atmos. Environ. 148, 102–114 (2017)CrossRefGoogle Scholar
  35. Simonia, I., Nabiyev, S.: Nano-metric dust particles as a hardly detectable component of the interplanetary dust cloud. J. Astrophys. Astron. 36(3), 409–419 (2015)CrossRefGoogle Scholar
  36. Song, J., Peng, P.a., Huang, W.: Black carbon and kerogen in soils and sediments. 1. Quantification and characterization. Environ. Sci. Technol. 36(18), 3960–3967 (2002)CrossRefGoogle Scholar
  37. Streibel, T., Schnelle-Kreis, J., Czech, H., Harndorf, H., Jakobi, G., Jokiniemi, J., Karg, E., Lintelmann, J., Matuschek, G., Michalke, B.: Aerosol emissions of a ship diesel engine operated with diesel fuel or heavy fuel oil. Environ. Sci. Pollut. Res. 1–16 (2016)Google Scholar
  38. Tositti, L., Pieri, L., Brattich, E., Parmeggiani, S., Ventura, F.: Chemical characteristics of atmospheric bulk deposition in a semi-rural area of the Po Valley (Italy). J. Atmos. Chem. 1–25 (2017)Google Scholar
  39. Vione, D., Maurino, V., Minero, C., Pelizzetti, E., Harrison, M.A., Olariu, R.-I., Arsene, C.: Photochemical reactions in the tropospheric aqueous phase and on particulate matter. Chem. Soc. Rev. 35(5), 441–453 (2006)Google Scholar
  40. Wagner, C.D., Muilenberg, G.: Handbook of X-Ray Photoelectron Spectroscopy. Perkin-Elmer (1979)Google Scholar
  41. Wang, S., Hao, J.: Air quality management in China: issues, challenges, and options. J. Environ. Sci. 24(1), 2–13 (2012)CrossRefGoogle Scholar
  42. Wang, Z., Zhang, D., Liu, B., Li, Y., Chen, T., Sun, F., Yang, D., Liang, Y., Chang, M., Yang, L.: Analysis of chemical characteristics of PM2. 5 in Beijing over a 1-year period. J. Atmos. Chem. 73(4), 407–425 (2016)CrossRefGoogle Scholar
  43. Wawroś, A., Talik, E., Pastuszka, J.: Investigations of aerosols from Świe̢tochłowice, Pszczyna and Kielce by XPS method. J. Alloys Compd. 328(1), 171–174 (2001)CrossRefGoogle Scholar
  44. Wilkinson, K., Lundkvist, J., Seisenbaeva, G., Kessler, V.: New tabletop SEM-EDS-based approach for cost-efficient monitoring of airborne particulate matter. Environ. Pollut. 159(1), 311–318 (2011)CrossRefGoogle Scholar
  45. Willis, R., Blanchard, F., Conner, T.: Guidelines for the application of SEM/EDX analytical techniques to particulate matter samples. EPA, Washington. US. 88 (2002)Google Scholar
  46. Xu, L., Xie, X., Li, S.: Correlation analysis of the urban heat island effect and the spatial and temporal distribution of atmospheric particulates using TM images in Beijing. Environ. Pollut. 178, 102–114 (2013)CrossRefGoogle Scholar
  47. Xu, L.-Y., Yin, H., Xie, X.-D.: Health risk assessment of inhalable particulate matter in Beijing based on the thermal environment. Int. J. Environ. Res. Public Health. 11(12), 12368–12388 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Asim Jilani
    • 1
    • 2
  • Syed Zajif Hussain
    • 3
    Email author
  • Mohd Hafiz Dzarfan Othman
    • 1
  • Usama Zulfiqar
    • 3
  • Muhammad Bilal Shakoor
    • 4
  • Imran Ullah Khan
    • 1
  • Javed Iqbal
    • 2
  • Attieh A. Al-Ghamdi
    • 5
  • Ahmed Alshahrie
    • 2
  1. 1.Advanced Membrane Technology Research CentreUniversiti Teknologi MalaysiaJohor BahruMalaysia
  2. 2.Center of NanotechnologyKing Abdul Aziz UniversityJeddahSaudi Arabia
  3. 3.Department of Chemistry and Chemical Engineering, SBA School of Science & Engineering (SBASSE)Lahore University of Management Sciences (LUMS)LahorePakistan
  4. 4.Department of Environmental Sciences and EngineeringGovernment College University FaisalabadFaisalabadPakistan
  5. 5.Department of Physics, Faculty of ScienceUniversity of JeddahJeddahSaudi Arabia

Personalised recommendations