Journal of Atmospheric Chemistry

, Volume 75, Issue 3, pp 247–270 | Cite as

Insignificant impact of freezing and compaction on iron solubility in natural snow

  • Pami Mukherjee
  • Mihaela Glamoclija
  • Yuan Gao


To explore the freezing effect on iron (Fe) solubility in natural environments, especially in Polar regions, event based freshly fallen snow samples were collected at Newark, New Jersey on the US East Coast for two consecutive winter seasons (2014–2015 and 2015–2016). These samples were analyzed for the concentrations of soluble iron (Fesol) using UV-Vis Spectroscopy and filterable iron (Fefil) and total iron (Fetot) using Atomic Absorption Spectroscopy. The average fractional solubility of the Fesol (the portion that passes through a 0.22 μm pore-size filter) with respect to the total Fe in the samples was 23.3 ± 12.2%, with the majority of the soluble Fe being present as Fe(III). Approximately 48.5% of the total Fe existed as Fefil (the portion that passes through 0.45 μm pore size filter media). No significant correlation was found between the soluble ionic species and soluble Fe. Six snow events were kept frozen for 10 days, and analyzed in periodic intervals to study the post-freezing modification in Fe solubility. Events 1 and 2 showed increasing trend in the soluble Fe concentrations; however, the events 5, 6, 7, and 8 showed no noticeable increments. The pattern shown in Events 1 and 2 is associated with high fraction of Fefil and one unit pH drop, suggesting that the freeze-induced modification in Fe solubility could be linked with the amount of Fefil and the acidity change in the samples. To further investigate the freeze-induced compaction of particles, samples from three events 6, 7, and 10 were analyzed by SEM-STEM-EDS microscopy, and the results showed that due to freezing, in general, the particles in the ice-melt counterparts tend to compact and cluster and form larger aggregates compared to the particles in snow-melt. These results show, despite the freeze-induced compaction in snow was observed from STEM images, the snow freezing might not have significant effect in increasing Fe solubility from materials in the snow. These results further suggest that freezing process with fresh snow in high-latitude regions may not impose significant modification on Fe solubility in snow.


Iron solubility Freeze-induced compaction Urban snow events Scanning electron microscopic analysis 



This research was supported by NSF OCE Award 1435871 and Rutgers TA-GA development grant. The authors are grateful to Alexei Khalizov and Evert Elzinga for helpful discussions. The authors are grateful to the anonymous reviewers for constructive comments that helped substantially improve this manuscript. The authors are also thankful to Tinayi Xu, Guojie Xu, Lasita Bhattacharya, and Songyun Fan for help with sample collection and analysis.


  1. Barrie, L., Bottenheim, J., Schnell, R., Crutzen, P., Rasmussen, R.: Ozone destruction and photochemical reactions at polar sunrise in the lower Arctic atmosphere. Nature. 334(6178), 138–141 (1988)CrossRefGoogle Scholar
  2. Behra, P., Sigg, L.: Evidence for redox cycling of iron in atmospheric water droplets. Nature. 344(6265), 419–421 (1990)CrossRefGoogle Scholar
  3. Betterton, E.A., Anderson, D.J.: Autoxidation of N (III), S (IV), and other species in frozen solution–A possible pathway for enhanced chemical transformation in freezing systems. J. Atmos. Chem. 40(2), 171–189 (2001)CrossRefGoogle Scholar
  4. Bintanja, R., Van Oldenborgh, G., Drijfhout, S., Wouters, B., Katsman, C.: Important role for ocean warming and increased ice-shelf melt in Antarctic sea-ice expansion. Nat. Geosci. 6(5), 376–379 (2013)CrossRefGoogle Scholar
  5. Boyle, E.A., Bergquist, B.A., Kayser, R.A., Mahowald, N.: Iron, manganese, and lead at Hawaii Ocean time-series station ALOHA: temporal variability and an intermediate water hydrothermal plume. Geochim. Cosmochim. Acta. 69(4), 933–952 (2005)CrossRefGoogle Scholar
  6. Bronshteyn, V.L., Chernov, A.A.: Freezing potentials arising on solidification of dilute aqueous solutions of electrolytes. J. Cryst. Growth. 112(1), 129–145 (1991)CrossRefGoogle Scholar
  7. Chen, H., Grassian, V.H.: Iron dissolution of dust source materials during simulated acidic processing: the effect of sulfuric, acetic, and oxalic acids. Environ. Sci. Technol. 47(18), 10312–10321 (2013)Google Scholar
  8. Chen, Y., Tovar-Sanchez, A., Siefert, R.L., Sañudo-Wilhelmy, S.A., Zhuang, G.: Luxury uptake of aerosol iron by Trichodesmium in the western tropical North Atlantic. Geophys. Res. Lett. 38(18), (2011)CrossRefGoogle Scholar
  9. Christopher, S.A., Chou, J., Zhang, J., Li, X., Berendes, T., Welch, R.M.: Shortwave direct radiative forcing of biomass burning aerosols estimated using VIRS and CERES data. Geophys. Res. Lett. 27(15), 2197–2200 (2000)CrossRefGoogle Scholar
  10. Clarke, A.D., Noone, K.J.: Soot in the Arctic snowpack: a cause for perturbations in radiative transfer. Atmos. Environ. (1967). 19(12), 2045–2053 (1985)CrossRefGoogle Scholar
  11. Colbeck, S.: An overview of seasonal snow metamorphism. Rev. Geophys. 20(1), 45–61 (1982)CrossRefGoogle Scholar
  12. Colbeck, S.: Snow particle morphology in the seasonal snow cover. Bull. Am. Meteorol. Soc. 64(6), 602–609 (1983)CrossRefGoogle Scholar
  13. Crawford, I., Möhler, O., Schnaiter, M., Saathoff, H., Liu, D., McMeeking, G., Linke, C., Flynn, M., Bower, K., Connolly, P.: Studies of propane flame soot acting as heterogeneous ice nuclei in conjunction with single particle soot photometer measurements. Atmos. Chem. Phys. 11(18), 9549–9561 (2011)CrossRefGoogle Scholar
  14. Dasch, J.M., Wolff, G.T.: Trace inorganic species in precipitation and their potential use in source apportionment studies. Water Air Soil Pollut. 43(3), 401–412 (1989)Google Scholar
  15. Domine, F., Taillandier, A., Houdier, S., Parrenin, F., Simpson, W.R., Douglas, T.A.: Interactions between snow metamorphism and climate: physical and chemical aspects. Special Publication-Royal Soc. Chem. 311, 27 (2006)Google Scholar
  16. Duce, R.A., Tindale, N.W.: Atmospheric transport of iron and its deposition in the ocean. Limnol. Oceanogr. 36(8), 1715–1726 (1991)CrossRefGoogle Scholar
  17. Edwards, R., Sedwick, P.: Iron in east Antarctic snow: implications for atmospheric iron deposition and algal production in Antarctic waters. Geophys. Res. Lett. 28(20), 3907–3910 (2001)CrossRefGoogle Scholar
  18. Erel, Y., Pehkonen, S.O., Hoffmann, M.R.: Redox chemistry of iron in fog and stratus clouds. J. Geophys. Res.-Atmos. 98(D10), 18423–18434 (1993)CrossRefGoogle Scholar
  19. Falkowski, P.G.: Evolution of the nitrogen cycle and its influence on the biological sequestration of CO2 in the ocean. Nature. 387(6630), 272–275 (1997)CrossRefGoogle Scholar
  20. Ferrari, C.P., Padova, C., Faïn, X., Gauchard, P.-A., Dommergue, A., Aspmo, K., Berg, T., Cairns, W., Barbante, C., Cescon, P.: Atmospheric mercury depletion event study in Ny-Alesund (Svalbard) in spring 2005. Deposition and transformation of Hg in surface snow during springtime. Sci. Total Environ. 397(1), 167–177 (2008)CrossRefGoogle Scholar
  21. Foster, K.L., Plastridge, R.A., Bottenheim, J.W., Shepson, P.B., Finlayson-Pitts, B.J., Spicer, C.W.: The role of Br2 and BrCl in surface ozone destruction at polar sunrise. Science. 291(5503), 471–474 (2001)CrossRefGoogle Scholar
  22. Franz, T.P., Eisenreich, S.J.: Snow scavenging of polychlorinated biphenyls and polycyclic aromatic hydrocarbons in Minnesota. Environ. Sci. Technol. 32(12), 1771–1778 (1998)CrossRefGoogle Scholar
  23. Fung, I.Y., Meyn, S.K., Tegen, I., Doney, S.C., John, J.G., Bishop, J.K.: Iron supply and demand in the upper ocean. Glob. Biogeochem. Cycles. 14(1), 281–295 (2000)CrossRefGoogle Scholar
  24. Gao, Y., Kaufman, Y., Tanre, D., Kolber, D., Falkowski, P.: Seasonal distributions of aeolian iron fluxes to the global ocean. Geophys. Res. Lett. 28(1), 29–32 (2001)CrossRefGoogle Scholar
  25. Gao, Y., Xu, G., Zhan, J., Zhang, J., Li, W., Lin, Q., Chen, L., Lin, H.: Spatial and particle size distributions of atmospheric dissolvable iron in aerosols and its input to the Southern Ocean and coastal East Antarctica. J. Geophys. Res. Atmos. 118(22), 12,634–12,648 (2013)CrossRefGoogle Scholar
  26. Gorbunov, B., Baklanov, A., Kakutkina, N., Windsor, H., Toumi, R.: Ice nucleation on soot particles. J. Aerosol Sci. 32(2), 199–215 (2001)CrossRefGoogle Scholar
  27. Graedel, T., Mandich, M., Weschler, C.: Kinetic model studies of atmospheric droplet chemistry: 2. Homogeneous transition metal chemistry in raindrops. J. Geophys. Res. Atmos. 91(D4), 5205–5221 (1986)CrossRefGoogle Scholar
  28. Grannas, A.M., Bausch, A.R., Mahanna, K.M.: Enhanced aqueous photochemical reaction rates after freezing. J. Phys. Chem. A. 111(43), 11043–11049 (2007)CrossRefGoogle Scholar
  29. Grotti, M., Soggia, F., Ianni, C., Frache, R.: Trace metals distributions in coastal sea ice of Terra Nova Bay, Ross Sea, Antarctica. Antarct. Sci. 17(2), 289–300 (2005)CrossRefGoogle Scholar
  30. Gunz, D.W., Hoffmann, M.R.: Field investigations on the snow chemistry in central and southern California—I. Inorganic ions and hydrogen peroxide. Atmos. Environ. Part A. 24(7), 1661–1671 (1990)CrossRefGoogle Scholar
  31. Hallett, J.: The growth of ice crystals on freshly cleaved covellite surfaces. Philos. Mag. 6(69), 1073–1087 (1961)CrossRefGoogle Scholar
  32. Hawkings, J.R., Wadham, J.L., Tranter, M., Raiswell, R., Benning, L.G., Statham, P.J., Tedstone, A., Nienow, P., Lee, K., Telling, J.: Ice sheets as a significant source of highly reactive nanoparticulate iron to the oceans. Nat. Commun. 5, (2014)Google Scholar
  33. Heaton, R.W., Rahn, K.A., Lowenthal, D.H.: Determination of trace elements, including regional tracers, in Rhode Island precipitation. Atmos. Environ. Part A. 24(1), 147–153 (1990)CrossRefGoogle Scholar
  34. Heimburger, A., Losno, R., Triquet, S.: Solubility of iron and other trace elements over the southern Indian Ocean. Biogeosci. Discuss. 10(3), 6065–6092 (2013)CrossRefGoogle Scholar
  35. Helmers, E., Schrems, O.: Wet deposition of metals to the tropical north and the South Atlantic Ocean. Atmos. Environ. 29(18), 2475–2484 (1995)CrossRefGoogle Scholar
  36. Herman, F., Gorham, E.: Total mineral material, acidity, Sulphur and nitrogen in rain and snow at Kentville, Nova Scotia. Tellus. 9(2), 180–183 (1957)CrossRefGoogle Scholar
  37. Hobbs, P. (1968). Snow: metamorphism of deposited snowsnow: metamorphism of deposited snow Geomorphology (pp. 1025–1028): SpringerGoogle Scholar
  38. Hofmann, H., Hoffmann, P., Lieser, K.: Transition metals in atmospheric aqueous samples, analytical determination and speciation. Fresenius J. Anal. Chem. 340(9), 591–597 (1991)CrossRefGoogle Scholar
  39. Jeong, D., Kim, K., Choi, W.: Accelerated dissolution of iron oxides in ice. Atmos. Chem. Phys. 12(22), 11125–11133 (2012)CrossRefGoogle Scholar
  40. Johnson, K.S., Coale, K.H., Elrod, V.A., Tindale, N.W.: Iron photochemistry in seawater from the equatorial Pacific. Mar. Chem. 46(4), 319–334 (1994)CrossRefGoogle Scholar
  41. Journet, E., Desboeufs, K.V., Caquineau, S., Colin, J.L.: Mineralogy as a critical factor of dust iron solubility. Geophys. Res. Lett. 35(7), (2008)CrossRefGoogle Scholar
  42. Kelly, T.J., Daum, P.H., Schwartz, S.E.: Measurements of peroxides in cloudwater and rain. J. Geophys. Res.-Atmos. 90(D5), 7861–7871 (1985)CrossRefGoogle Scholar
  43. Kieber, R.J., Williams, K., Willey, J.D., Skrabal, S., Avery, G.B.: Iron speciation in coastal rainwater: concentration and deposition to seawater. Mar. Chem. 73(2), 83–95 (2001)CrossRefGoogle Scholar
  44. Kieber, R. J., Willey, J. D., & Avery, G. B. (2003). Temporal variability of rainwater iron speciation at the Bermuda Atlantic time Series Station. J. Geophys. Res. Oceans, 108(C8), n/a-n/a. doi:
  45. Kieber, R.J., Skrabal, S.A., Smith, B., Willey, J.D.: Organic complexation of Fe (II) and its impact on the redox cycling of iron in rain. Environ. Sci. Technol. 39(6), 1576–1583 (2005)CrossRefGoogle Scholar
  46. Kim, K., Choi, W., Hoffmann, M.R., Yoon, H.-I., Park, B.-K.: Photoreductive dissolution of iron oxides trapped in ice and its environmental implications. Environ. Sci. Technol. 44(11), 4142–4148 (2010)CrossRefGoogle Scholar
  47. Kumai, M.: Acidity of snow and its reduction by alkaline aerosols. Ann. Glaciol. 6(1), 92–94 (1985)CrossRefGoogle Scholar
  48. Kuroiwa, D. (1974). Metamorphism of Snow and Ice Sintering Observed by Time Lapse Cinephotomicrography. Paper presented at the Snow Mechanics SymposiumGoogle Scholar
  49. Lalonde, J.D., Poulain, A.J., Amyot, M.: The role of mercury redox reactions in snow on snow-to-air mercury transfer. Environ. Sci. Technol. 36(2), 174–178 (2002)CrossRefGoogle Scholar
  50. Lannuzel, D., Schoemann, V., De Jong, J., Chou, L., Delille, B., Becquevort, S., Tison, J.-L.: Iron study during a time series in the western Weddell pack ice. Mar. Chem. 108(1), 85–95 (2008)CrossRefGoogle Scholar
  51. Liu, J., Chen, Z., Francis, J., Song, M., Mote, T., Hu, Y.: Has Arctic Sea ice loss contributed to increased surface melting of the Greenland ice sheet? J. Clim. 29(9), 3373–3386 (2016)CrossRefGoogle Scholar
  52. Liu, L., Kong, S., Zhang, Y., Wang, Y., Xu, L., Yan, Q., Lingaswamy, A., Shi, Z., Lv, S., Niu, H.: Morphology, composition, and mixing state of primary particles from combustion sources—crop residue, wood, and solid waste. Sci. Rep. 7, (2017)Google Scholar
  53. Luo, C., Gao, Y.: Aeolian iron mobilisation by dust–acid interactions and their implications for soluble iron deposition to the ocean: a test involving potential anthropogenic organic acidic species. Environ. Chem. 7(2), 153–161 (2010)CrossRefGoogle Scholar
  54. Özsoy, T., Saydam, A.C.: Iron speciation in precipitation in the North-Eastern Mediterranean and its relationship with Sahara dust. J. Atmos. Chem. 40(1), 41–76 (2001)CrossRefGoogle Scholar
  55. Paramonov, M., Grönholm, T., Virkkula, A.: Below-cloud scavenging of aerosol particles by snow at an urban site in Finland. Boreal Environ. Res. 16, 304–320 (2011)Google Scholar
  56. Paris, R., Desboeufs, K.: Effect of atmospheric organic complexation on iron-bearing dust solubility. Atmos. Chem. Phys. 13(9), 4895–4905 (2013)CrossRefGoogle Scholar
  57. Paris, R., Desboeufs, K., Journet, E.: Variability of dust iron solubility in atmospheric waters: investigation of the role of oxalate organic complexation. Atmos. Environ. 45(36), 6510–6517 (2011)CrossRefGoogle Scholar
  58. Pehkonen, S.O., Siefert, R., Erel, Y., Webb, S., Hoffmann, M.R.: Photoreduction of iron oxyhydroxides in the presence of important atmospheric organic compounds. Environ. Sci. Technol. 27(10), 2056–2062 (1993)CrossRefGoogle Scholar
  59. Pike, S., Moran, S.: Trace elements in aerosol and precipitation at New Castle, NH, USA. Atmos. Environ. 35(19), 3361–3366 (2001)CrossRefGoogle Scholar
  60. Polyakov, I.V., Timokhov, L.A., Alexeev, V.A., Bacon, S., Dmitrenko, I.A., Fortier, L., Frolov, I.E., Gascard, J.-C., Hansen, E., Ivanov, V.V.: Arctic Ocean warming contributes to reduced polar ice cap. J. Phys. Oceanogr. 40(12), 2743–2756 (2010)CrossRefGoogle Scholar
  61. Sattler, B., Puxbaum, H., Psenner, R.: Bacterial growth in supercooled cloud droplets. Geophys. Res. Lett. 28(2), 239–242 (2001)CrossRefGoogle Scholar
  62. Sedwick, P.N., DiTullio, G.R.: Regulation of algal blooms in Antarctic shelf waters by the release of iron from melting sea ice. Geophys. Res. Lett. 24(20), 2515–2518 (1997)CrossRefGoogle Scholar
  63. Sedwick, P.N., DiTullio, G.R., Mackey, D.J.: Iron and manganese in the Ross Sea, Antarctica: seasonal iron limitation in Antarctic shelf waters. J. Geophys. Res. Oceans. 105(C5), 11321–11336 (2000)CrossRefGoogle Scholar
  64. Sedwick, P.N., Sholkovitz, E.R., Church, T.M.: Impact of anthropogenic combustion emissions on the fractional solubility of aerosol iron: evidence from the Sargasso Sea. Geochem. Geophys. Geosyst. 8(10), (2007)CrossRefGoogle Scholar
  65. Sempére, R., Kawamura, K.: Comparative distributions of dicarboxylic acids and related polar compounds in snow, rain and aerosols from urban atmosphere. Atmos. Environ. 28(3), 449–459 (1994)CrossRefGoogle Scholar
  66. Sholkovitz, E.R., Sedwick, P.N., Church, T.M., Baker, A.R., Powell, C.F.: Fractional solubility of aerosol iron: synthesis of a global-scale data set. Geochim. Cosmochim. Acta. 89, 173–189 (2012)CrossRefGoogle Scholar
  67. Siefert, R.L., Pehkonen, S.O., Erel, Y., Hoffmann, M.R.: Iron photochemistry of aqueous suspensions of ambient aerosol with added organic acids. Geochim. Cosmochim. Acta. 58(15), 3271–3279 (1994)CrossRefGoogle Scholar
  68. Siefert, R.L., Johansen, A.M., Hoffmann, M.R.: Chemical characterization of ambient aerosol collected during the southwest monsoon and intermonsoon seasons over the Arabian Sea: labile-Fe (II) and other trace metals. J. Geophys. Res.-Atmos. 104(D3), 3511–3526 (1999)CrossRefGoogle Scholar
  69. Song, F., Gao, Y.: Chemical characteristics of precipitation at metropolitan Newark in the US East Coast. Atmos. Environ. 43(32), 4903–4913 (2009)CrossRefGoogle Scholar
  70. Stookey, L.L.: Ferrozine---a new spectrophotometric reagent for iron. Anal. Chem. 42(7), 779–781 (1970)CrossRefGoogle Scholar
  71. Sunda, W. (2001). Bioavailability and bioaccumulation of Iron in the sea, in" The Biogeochemistry of Iron in Seawater", edited by DR Turner, K. Hunter: Wiley, Chinester, UKGoogle Scholar
  72. Takenaka, N., Ueda, A., Daimon, T., Bandow, H., Dohmaru, T., Maeda, Y.: Acceleration mechanism of chemical reaction by freezing: the reaction of nitrous acid with dissolved oxygen. J. Phys. Chem. 100(32), 13874–13884 (1996)CrossRefGoogle Scholar
  73. Takenaka, N., Daimon, T., Ueda, A., Sato, K., Kitano, M., Bandow, H., Maeda, Y.: Fast oxidation reaction of nitrite by dissolved oxygen in the freezing process in the tropospheric aqueous phase. J. Atmos. Chem. 29(2), 135–150 (1998)CrossRefGoogle Scholar
  74. Walna, B., Kurzyca, I., Bednorz, E., Kolendowicz, L.: Fluoride pollution of atmospheric precipitation and its relationship with air circulation and weather patterns (Wielkopolski National Park, Poland). Environ. Monit. Assess. 185(7), 5497–5514 (2013)CrossRefGoogle Scholar
  75. Wells, M.L., Price, N.M., Bruland, K.W.: Iron chemistry in seawater and its relationship to phytoplankton: a workshop report. Mar. Chem. 48(2), 157–182 (1995)CrossRefGoogle Scholar
  76. Willey, J.D., Kieber, R.J., Williams, K.H., Crozier, J.S., Skrabal, S.A., Avery, G.B.: Temporal variability of iron speciation in coastal rainwater. J. Atmos. Chem. 37(2), 185–205 (2000)CrossRefGoogle Scholar
  77. Xia, L., Gao, Y.: Chemical composition and size distributions of coastal aerosols observed on the US East Coast. Mar. Chem. 119(1), 77–90 (2010)CrossRefGoogle Scholar
  78. Xu, G., Gao, Y., Lin, Q., Li, W., Chen, L.: Characteristics of water-soluble inorganic and organic ions in aerosols over the Southern Ocean and coastal East Antarctica during austral summer. J. Geophys. Res.-Atmos. 118(23), 13,303–13,318 (2013)CrossRefGoogle Scholar
  79. Zepp, R.G., Faust, B.C., Hoigne, J.: Hydroxyl radical formation in aqueous reactions (pH 3-8) of iron (II) with hydrogen peroxide: the photo-Fenton reaction. Environ. Sci. Technol. 26(2), 313–319 (1992)CrossRefGoogle Scholar
  80. Zhiyuan, C., Shichang, K., Dahe, Q.: Seasonal features of aerosol particles recorded in snow from Mt. Qomolangma (Everest) and their environmental implications. J. Environ. Sci. 21(7), 914–919 (2009)CrossRefGoogle Scholar
  81. Zhu, X., Prospero, J.M., Savoie, D.L., Millero, F.J., Zika, R.G., Saltzman, E.S.: Photoreduction of iron (III) in marine mineral aerosol solutions. J. Geophys. Res.-Atmos. 98(D5), 9039–9046 (1993)CrossRefGoogle Scholar
  82. Zhuang, G., Duce, R.A., Kester, D.R.: The dissolution of atmospheric iron in surface seawater of the open ocean. J. Geophys. Res. Oceans. 95(C9), 16207–16216 (1990)CrossRefGoogle Scholar
  83. Zhuang, G., Yi, Z., Wallace, G.T.: Iron (II) in rainwater, snow, and surface seawater from a coastal environment. Mar. Chem. 50(1–4), 41–50 (1995)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Earth and Environmental ScienceRutgers UniversityNewarkUSA

Personalised recommendations