Journal of Atmospheric Chemistry

, Volume 74, Issue 1, pp 55–69 | Cite as

Depositional ice nucleation on NX illite and mixtures of NX illite with organic acids

  • Katherine M. Primm
  • Gregory P. Schill
  • Daniel P. Veghte
  • Miriam Arak Freedman
  • Margaret A. Tolbert


Mineral dust particles are known to be efficient ice nuclei in the atmosphere. Previous work has probed heterogeneous ice nucleation on various laboratory dust samples including Arizona Test Dust, kaolinite, montmorillonite, and illite as atmospheric dust surrogates. However, it has recently been suggested that NX illite may be a better representation of atmospheric dust. Hiranuma et al. (2015) performed a laboratory comparison for immersion ice nucleation on NX illite, but here we focus on depositional ice nucleation because of its importance in low temperature cirrus cloud formation. A Raman microscope setup was used to examine the ice-nucleating efficiency of NX illite. Organic coatings on the NX illite particles were also investigated using a mixture of 5 dicarboxylic acids (M5). The ratio of NX illite to M5 was varied from 1:10 to 100:1. It was found that NX illite efficiently nucleates ice with Sice = 1.07 ± 0.01 at −47 °C, with Sice slightly increasing at lower temperatures. In contrast, pure M5 is a poorer ice nucleus with Sice = 1.30 ± 0.02 at −40 °C, relatively independent of temperature. Further, it was found that M5 coatings on the order of several monolayers thick hindered the ice nucleating ability of NX illite. Optical images suggest that at colder temperatures (< −50 °C) 1:1 NX illite:M5 particles and pure M5 particles nucleate ice depositionally, while at warmer temperatures (> −50 °C) subsaturated immersion ice nucleation dominates. These experiments suggest that mineral dust particles may become less active towards ice nucleation as they age in the atmosphere.


Ice nucleation Mineral dust Organic coatings Cirrus clouds 

Supplementary material

10874_2016_9340_MOESM1_ESM.pdf (101 kb)
Supplemental Table 1(PDF 101 kb)


  1. Aiken A.C., DeCarlo P.F., Kroll J.H., Worsnop D.R., Huffman J.A., Ulbrich I.M., Mohr C., Kimmel J.R., Sueper D., Sun Y., Zhang Q., Trimborn A., Northway M., Ziemann P.J., Canagaratna M.R., Onasch T.B., Alfarra M.R., Prevot A.S.H., Dommen J., Duplissy J., Metzger A., Baltensperger R., Jimenez J.L.: O/C and OM/OC ratios of primary, secondary, and ambient organic aerosols with high-resolution time-of-flights aerosol mass spectrometry. Environ. Sci. Technol. 42, 4478–4485 (2008)CrossRefGoogle Scholar
  2. Archuleta C.M., DeMott P.J., Kreidenweis S.M.: Ice nucleation by surrogates for atmospheric mineral dust and mineral dust/sulfate particles of cirrus temperatures. Atmos. Chem. Phys. 5, 2617–2634 (2005)CrossRefGoogle Scholar
  3. Arnold E., Merrill J., Leinen M., King J.: The effect of source area and atmospheric transport on mineral aerosol collected over the north pacific ocean. Glob. Planet. Chang. 18, 137–159 (1998)CrossRefGoogle Scholar
  4. Baustian K.J., Wise M.E., Tolbert M.A.: Depositional ice nucleation on solid ammonium sulfate and glutaric acid particles. Atmos. Chem. Phys. 10, 2307–2317 (2010)CrossRefGoogle Scholar
  5. Baustian K.J., Cziczo D.J., Wise M.E., Pratt K.A., Kulkarni G., Hallar A.G., Tolbert A.M.: Importance of aerosol composition, mixing state, and morphology for heterogeneous ice nucleation: a combined field and laboratory approach. J. Geophys. Res. (2012). doi:10.1029/2011JD016784 Google Scholar
  6. Berkemeier T., Shiraiwa M., Poschl, Koop T.: Competition between water uptake and ice nucleation by glassy organic aerosol particles. Atmos. Chem. Phys. Discuss. 14, 16451–16492 (2014)CrossRefGoogle Scholar
  7. Boucher, O. D. Randall, P. Artaxo, C. Bretherton, G. Feingold, P. Forster, V.-M. Kerminen, Y. Kondo, H. Liao, U. Lohmann, P. Rasch, S.K. Satheesh, S. Sherwood, B. Stevens and X.Y. Zhang, 2013: Clouds and Aerosols. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, CambridgeGoogle Scholar
  8. Broadley S.L., Murray B.J., Herbert R.J., Atkinson J.D., Dobbie S., Marlkin T.L., Condliffe E., Neve L.: Immerison mode heterogeneous ice nucleation by an illite rich powder representative of atmospheric mineral dust. Atmos. Chem. Phys. 12, 287–307 (2012)CrossRefGoogle Scholar
  9. Cantrell W., Heymsfield A.: Production of ice in tropospheric clouds: a review. Bull. Am. Meteorol. Soc. 86, 795–807 (2005)CrossRefGoogle Scholar
  10. Cziczo, D. J., Foyd K. D., Hoose, C., Jensen, E. J., Diao, M., Zondlo, M. A., Smith, J. B, Twohy, C. H., and Murphy, D. M.: Clarifying the dominant sources and mechanisms of cirrus cloud formation. Science 240, 1320–1340 (2013)Google Scholar
  11. Debenedetti P.G.: Etastable Liquids: Concepts and Principles. Princeton University Press, Princeton, NJ (1996)Google Scholar
  12. DeMott P.J.: Laboratory studies of cirrus cloud processes. In: Lynch D.K., Sassen K. (eds.) Cirrus, pp. 102–135. Oxford University Press, New York (2002)Google Scholar
  13. DeMott P.J., Mohler O., Stetzer O., Vali H., Levin Z., Petters M.D., Murakami M., Leisner T., Bundke U., Klein H., Kanji Z.A., Cotton R., Jones H., Benz S., Brinkmann M., Rzesanke D., Saathoff H., Nicolet M., Saito A., Nillius B., Bingemer H., Abbatt J., Ardon K., Ganor E., Georgakopoulos D.G., Saunders C.: Resurgence in ice nuclei measurement research. Bull. Am. Meteorol. Soc. 92(12), 1623–1635 (2011)CrossRefGoogle Scholar
  14. Dobson C.M., Ellison G.B., Tuck A.F., Vaida V.: Atmospheric aerosols as prebiotic chemical reactors. Proc. Natl. Acad. Sci. U. S. A. 97, 11864–11868 (2000)CrossRefGoogle Scholar
  15. Ellison G., Tuck A., Vaida A.: Atmospheric processing of organic aerosols. J. Geophys. Res. 104, 633–641 (1999)CrossRefGoogle Scholar
  16. Glaccum R.A., Prospero J.M.: Saharan aerosol over the trop- ical North Atlantic – mineralogy. Mar. Geol. 37, 295–321 (1980)CrossRefGoogle Scholar
  17. Hiranuma N., Augustin-Bauditz S., Bingemer H., Budke C., Curtius J., Danielczok A., Diehl K., Dreichmeier K., Ebert M., Frank F., Hoffman N., Kandler K., Kiselev A., Koop T., Leisner T., Mohler O., Billius B., Peckhaus A., Rose D., Weinbruch S., Wex H., Boose Y., DeMott P.J., Hader J.D., Hill T.C.J., Kanji Z.A., Kulkarni G., Levin E.J.T., McCluskey C.S., Murakami M., Murray B.J., Niedermeier D., Petters M.D., O’Sullivan D., Saito A., Schill G.P., Tajiri T., Tolbert M.A., Welti A., Whale T.F., Wright T.P., Yamashita K.: A comprehensive laboratory study on the immersion freezing behavior of illite NX particles: a comparison of seventeen ice nucleation measurement techniques. Atmos. Chem. Phys. 15, 2489–2518 (2015)CrossRefGoogle Scholar
  18. Hoose C., Mohler O.: Heterogeneous ice nucleation on atmospheric aerosols: a review of results from laboratory experiments. Atmos. Chem. And Phys. 12, 9817–9854 (2012)CrossRefGoogle Scholar
  19. Hoose C., Kristjansson J.E., Chen J.-P., Hazra A.: A classical-theory-based parameterization of heterogeneous ice nucleation by mineral dust, soot, and biological particles in a 25 global climate model. J. Atmos. Sci. (2010). doi:10.1175/2010JAS3425.1 Google Scholar
  20. Khvorostianov V.I., Curry J.A.: Thermodynamics, kinetics, and microphysics of clouds. Cambridge University Press, New York (2014)CrossRefGoogle Scholar
  21. Knopf D.A., Koop T.: Heterogeneous nucleation of ice on surrogates of mineral dust. J. Geophys. Res. Atmos. (2006). doi:10.1029/2005JD006894 Google Scholar
  22. Koop T., Luo B., Tsias A., Peter T.: Water activity as the determinant for homogeneous ice nucleation is aqueous solutions. Nature. 406, 611–614 (2000)CrossRefGoogle Scholar
  23. Koop T., Bookhold J., Shiraiwa M., Poschl U.: Glass transition and phase state of organic compoounds: dependency on molecular properties and implications for secondary organic aerosols in the atmosphere. Phys. Chem. Chem. Phys. 13, 19238–19255 (2011)CrossRefGoogle Scholar
  24. Kumai M.: Snow crystals and the identification of the nuclei in the northern United States of America. J. Meteorol. 18, 139–150 (1961)CrossRefGoogle Scholar
  25. Kumai M., Francis K.E.: Nuclei in snow and ice crystals on the Greenland ice cap under natural and artificially simulated condition. J. Atmos. Sci. 19, 474–481 (1962)CrossRefGoogle Scholar
  26. Marcolli C., Krieger U.K.: Phase changes during hygroscopic cycles of mixed organic/inorganic model Systems of Tropospheric Aerosols. J. Phys. Chem. A. 110, 1881–1893 (2006)CrossRefGoogle Scholar
  27. Marcolli C., Luo B., Peter T.: Mixing of the organic aerosol fractions: liquids as the thermodynamically stable phases. J. Phys. Chem. A. 108, 2216–2224 (2004)CrossRefGoogle Scholar
  28. Martin S.T.: Phase transitions of aqueous atmospheric particles. Chem. Rev. 100, 3403–3453 (2000)CrossRefGoogle Scholar
  29. Mohler O., Benz S., Saathoff H., Schaiter M., Wagner R., Schneider J., Walter S., Ebert V., Wagner S.: The effect of organic coating on the heterogeneous ice nucleation efficiency of mineral dust aerosols. Environ. Res. Lett. 3, (2008)Google Scholar
  30. Murray B.J., Wilson T.W., Dobbie S., Cui Z., Al-Jumur S.M.R.K., Möhler O., Schnaiter M., Wagner R., Benz S., Niemand M., Saathoff H., Ebert V., Wagner S., Kärcher B.: Heterogeneous nucleation of ice particles on glassy aerosols under cirrus conditions. Nat. Geosci. 3(4), 233–237 (2010)CrossRefGoogle Scholar
  31. Pruppacher H.R., Klett J.D.: Microphysics of clouds and precipitation. Kluwer, Dordrecht (1997)Google Scholar
  32. Richardson M.S., DeMott P.J., Kreidenweis S.M., Cziczo D.J., Dunlea E.J., Jimenez J.L., Thomson D.S., Ashbaugh L.L., Borys R.D., Westphal D.L., Casuccio G.S., Lersch T.L.: Measurements of heterogeneous ice nuclei in the western United States in springtime and their relation to aerosol characteristics. J. Geophys. Res. (2007). doi:10.1029/2006JD007500 Google Scholar
  33. Schill G.P., Tolbert M.A.: Heterogeneous ice nucleation on phase-separated organic-sulfate particles: effect of liquid vs. glassy coatings. Atmos. Chem. Phys. 13(9), 4681–4695 (2013)CrossRefGoogle Scholar
  34. Schill G., DeHaan D., Tolbert M.: Heterogeneous ice nucleation on simulated secondary organic aerosol. Environ. Sci. Technol. 48, 1677–1682 (2014)CrossRefGoogle Scholar
  35. Shaw R.A., Durant A.J., Mi Y.: Heterogeneous surface crystallization observed in undercooled water. J. Phys. Chem. Lett. B. 109, 9865–9868 (2005)CrossRefGoogle Scholar
  36. Tobo Y., DeMott P.J., Raddatz M., Niedermeier D., Hartmann S., Kreidenweis S., M. S., Wex H.: Impacts of chemical reactivity on ice nucleation of kaolinite particles: A case study of levoglucosan and sulfuric acid. Geophys. Res. Lett. (2012). doi:10.1029/2012GL053007 Google Scholar
  37. Vali G.: Nucleation terminology. J. Aerosol Sci. (1985). doi:10.1016/0021-8502(85)90009-6 Google Scholar
  38. Welti A., Lüönd F., Stetzer O., Lohmann U.: Influence of particle size on the ice nucleating ability of mineral dusts. Atmos. Chem. Phys. 9, 6705–6715 (2009)CrossRefGoogle Scholar
  39. Wilson T.W., Murray B.J., Wagner R., Möhler O., Saathoff H., Schnaiter M., Skrotzki J., Price H.C., Malkin T.L., Dobbie S., Al-Jumur S.M.R.K.: Glassy aerosols with a range of compositions nucleate ice heterogeneously at cirrus temperatures. Atmos. Chem. Phys. 12(18), 8611–8632 (2012)CrossRefGoogle Scholar
  40. Zobrist B., Marcolli C.: Do atmospheric aerosols form glasses? Atmos. Chem. Phys. 8, 5221–5244 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Katherine M. Primm
    • 1
    • 2
  • Gregory P. Schill
    • 1
    • 2
    • 3
  • Daniel P. Veghte
    • 4
  • Miriam Arak Freedman
    • 4
  • Margaret A. Tolbert
    • 1
    • 2
  1. 1.Cooperative Institute for Research in Environmental SciencesUniversity of ColoradoBoulderUSA
  2. 2.Departiment of Chemistry and BiochemistryUniversity of ColoradoBoulderUSA
  3. 3.Department of Atmospheric SciencesColorado State UniversityFort CollinsUSA
  4. 4.Department of ChemistryPennsylvania State UniversityUniversity ParkUSA

Personalised recommendations