Journal of Atmospheric Chemistry

, Volume 74, Issue 1, pp 1–21 | Cite as

Inorganic ions and trace metals bulk deposition at an Atlantic Coastal European region

  • Jorge Moreda-PiñeiroEmail author
  • Elia Alonso-Rodríguez
  • Isabel Turnes-Carou
  • Carmen Moscoso-Pérez
  • Gustavo Blanco-Heras
  • Loreto Gómez Tellado
  • Purificación López-Mahía
  • Soledad Muniategui-Lorenzo
  • Darío Prada-Rodríguez


The inorganic chemical composition (major ions and trace metals) of bulk deposition samples collected monthly with bulk collectors at seven Atlantic Coastal European cities (Galicia, Northwest of Spain) during wet season (September 2011 to March 2012) has been assessed and compared. Trace metals (Al, As, Ba, Co, Cr, Cu, Fe, Mn, Ni, Pb, Sr, V and Zn) were analysed in soluble fraction and non-soluble fraction (after acid extraction) of the bulk deposition by inductively coupled plasma-mass spectrometry. Major inorganic ions (Cl, NO3 , SO4 2−, Na+, K+, Ca2+, Mg2+ and NH4 +) were analysed in the soluble fraction of the bulk deposition by capillary zone electrophoresis. Univariate analysis (ANOVA and Multiple Range Test) according to the location of each sampling site was performed. Results also suggest a great influence of cleaner Atlantic air masses. After partition coefficients and enrichment factor estimation, similar sources could be assigned for the ionic and metal composition of bulk deposition at seven urban sites.


Bulk deposition Atmospheric deposition Chemical composition Major ions Trace metals Urban sites Atlantic Coastal European region 



The authors wish to thank Xunta de Galicia (Programa de Consolidación y Estructuración de Unidades de Investigación Competitivas 2013–2016, ref: GRC2013-047 and Dirección Xeral de Desevolvemento e innovación, ref: 10MSD 164019PR), Ministerio de Ciencia y Innovación (Plan Nacional I+D+I 2008–2011, ref: CGL2010-18145) for financial support. The authors thank Laboratorio de Medio Ambiente de Galicia (Consellería de Medio Ambiente, Territorio e Infraestructuras, Xunta de Galicia) proividing samples belonging to the Stations Atmospheric Deposition Network of Galicia. We are also grateful to Alicia María Cantarero-Roldán (Servicios Xerais de Apoio a Investigación at the University of A Coruña) for ICP-MS technical support.

Compliance with ethical standards

Ethical standards

This research has not conflicts of interest with any member of scientific community, human participants / animals were not used in this study, and all authors of this paper shown me their informed consent. Information regarding sources of funding has been enclosed into the acknowledgement section.


  1. Alastuey, A., Querol, X., Chaves, A., López-Soler, A., Ruiz, C.R.: Wet-only sequential deposition in a rural area in north-eastern Spain. Tellus B 53, 40–52 (2011)CrossRefGoogle Scholar
  2. Almeida, S.M., Pio, C.A., Freitas, M.C., Reis, M.A., Trancoso, M.A.: Source apportionment of fine and coarse particulate matter in a sub-urban area at the Western European Coast. Atmos. Environ. 39, 3127–3138 (2005)CrossRefGoogle Scholar
  3. Al-Momani, I.F.: Trace elements in atmospheric precipitation at northern Jordan measured by ICP-MS: acidity and possible sources. Atmos. Environ. 37, 4507–4515 (2003)CrossRefGoogle Scholar
  4. Arimoto, R., Duce, R.A., Ray, B.J., Hewitt, A.D., Williams, J.: Trace elements in the atmosphere of American Samoa: concentrations and deposition to the tropical South Pacific. J. Geophys. Res. 92, 8465–8479 (1987)CrossRefGoogle Scholar
  5. Avila, A., Roda, F.: Assessing decadal changes in rainwater alkalinity at a rural Mediterranean site in the Montseny Mountains (NE Spain). Atmos. Environ. 36, 2881–2890 (2002)CrossRefGoogle Scholar
  6. Ayers, G.P.: Some practical aspects of acid deposition measurements. Presentation to the 3rd expert meeting on acid deposition monitoring network in East Asia, 14–16 November 1995, Niigata Prefecture, Japan, 1–20 (1995)Google Scholar
  7. Baker, A.R., Jickells, T.D., Witt, M., Linge, K.L.: Trends in the solubility of iron, aluminium, manganese and phosphorus in aerosol collected over the Atlantic Ocean. Mar. Chem. 98, 43–58 (2006a)CrossRefGoogle Scholar
  8. Baker, A.R., French, M., Linge, K.L.: Trends in aerosol nutrient solubility along a west–east transect of the Saharan dust plume. Geophys. Res. Lett. 33, L07805 (2006b)Google Scholar
  9. Başak, B., Alagha, O.: The chemical composition of rainwater over Büyüçekmece Lake, Istanbul. Atmos. Res. 71, 275–288 (2004)CrossRefGoogle Scholar
  10. Berglund, J., Elding, L.I.: Manganese-catalysed autoxidation of dissolved sulfur dioxide in the atmospheric aqueous phase. Atmos. Environ. 29, 1379–1391 (1995)CrossRefGoogle Scholar
  11. Berner, E.K., Berner, R.A.: The global water cycle. Geochemistry and Environment, Prentice-Hall (1987)Google Scholar
  12. Bertrand, G., Celle-Jeanton, H., Laj, P., Rangognio, J., Chazot, G.: Rainfall chemistry: long range transport versus below cloud scavenging. A two-year study at an inland station (Opme, France). J. Atmos. Chem. 60, 253–271 (2008)CrossRefGoogle Scholar
  13. Beysens, D., Ohayon, C., Muselli, M., Clus, O.: Chemical and biological characteristics of dew and rain water in an urban coastal area (Bordeaux, France). Atmos. Environ. 40, 3710–3723 (2006)CrossRefGoogle Scholar
  14. Calvo, A.I., Olmo, F.J., Lyamani, H., Alados-Arboledas, L., Castro, A., Fernández-Raga, M., Fraile, R.: Chemical composition of wet precipitation at the background EMEP station in Víznar (Granada, Spain) (2002–2006). Atmos. Res. 96, 408–420 (2010)CrossRefGoogle Scholar
  15. Celle-Jeanton, H., Travi, Y., Loÿe-Pilot, M.D., Huneau, F., Bertrand, G.: Rainwater chemistry at a Mediterranean inland station (Avignon, France): Local contribution versus long-range supply. Atmos. Res. 91, 118–126 (2009)CrossRefGoogle Scholar
  16. Chatterjee, J., Singh, S.K.: 87Sr/86Sr and major ion composition of rainwater of Ahmedabad, India: sources of base cations. Atmos. Environ. 63, 60–67 (2012)CrossRefGoogle Scholar
  17. Clarke, A.G., Radojevic, M.: Oxidation of SO2 in rainwater and its role in acid rain chemistry. Atmos. Environ. 21, 1115–1123 (1987)CrossRefGoogle Scholar
  18. Desboeufs, K.V., Sofikitis, A., Losno, R., Colin, J.L., Ausset, P.: Dissolution and solubility of trace metals from natural and anthropogenic aerosol particulate matter. Chemosphere 58, 195–203 (2005)CrossRefGoogle Scholar
  19. Dorderic, D.S., Tosic, I., Unkasevic, M., Duraskovic, P.: Water-soluble main ions in precipitation over the southeastern Adriatic region: chemical composition and long-range transport. Environ. Sci. Pollut. Res. 17, 1591–1598 (2010)CrossRefGoogle Scholar
  20. Draxler, R.R., Rolph, G.D.: HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) model access via NOAA ARL READY website. NOAA Air Resources Laboratory, Silver Spring (2003) (available at )
  21. Drever, J.I.: Geochemistry of natural waters: surface and groundwater environment, 3rd edn. Prentice Hall, New Jersey (1997)Google Scholar
  22. Duce, R.A., Hoffman, G.L., Zoller, W.H.: Atmospheric trace metals at remote northern and southern hemisphere sites: pollution or natural? Science 187, 339–342 (1975)CrossRefGoogle Scholar
  23. Dueñas, C., Fernández M-, C., Gordo, E., Cañete, S., Pérez, M.: Chemical and radioactive composition of bulk deposition in Málaga (Spain). Atmos. Environ. 62, 1–8 (2012)CrossRefGoogle Scholar
  24. Encinas, D., Calzada, I., Casado, H.: Scavenging ratios in an urban area in the Spanish Basque country. Aerosol Sci. Technol. 38, 685–691 (2004)CrossRefGoogle Scholar
  25. Faust, B., Hoigné, J.: Photolysis of FeIII-hydroxy complexes as sources of OH radicals in clouds, fog and rain. Atmos. Environ. 24, 79–89 (1990)CrossRefGoogle Scholar
  26. Galloway, J.N., Linkens, G.E., Hawley, M.E.: Acid precipitation natural versus anthropogenic components. Science 226, 829–831 (1984)CrossRefGoogle Scholar
  27. Gioda, A., Mayol-Bracero, O.L., Scatena, F.N., Weathers, K.C., Mateus, V.L., McDowell, W.H.: Chemical constituents in clouds and rainwater in the Puerto Rican rainforest: potential sources and seasonal drivers. Atmos. Environ. 68, 208–220 (2013)CrossRefGoogle Scholar
  28. Gupta, A., Kumar, R., Kumari, K.M., Srivastava, S.S.: Measurement of NO2, HNO3, NH3 and SO2 and related particulate matter at a rural site in Rampur, India. Atmos. Environ. 37, 4837–4846 (2003)CrossRefGoogle Scholar
  29. Halstead, M.J.R., Cunninghame, R.G., Hunter, K.A.: Wet deposition of trace metals to a remote site in Fiordland, New Zealand. Atmos. Environ. 34, 665–676 (2000)CrossRefGoogle Scholar
  30. Hontoria, C., Saa, A., Almorox, J., Cuadra, L., Sánchez, A., Gascó, J.M.: The chemical composition of precipitation in Madrid. Water Air Soil Pollut. 146, 35–54 (2003)CrossRefGoogle Scholar
  31. Hou, H., Takamatsu, T., Koshikawa, M.K., Hosomi, M.: Trace metals in bulk precipitation and throughfall in a suburban area of Japan. Atmos. Environ. 39, 3583–3595 (2005)CrossRefGoogle Scholar
  32. WMO. In: Mohnen, V., Santroch, J., Vet, R. (Eds.), Report of the workshop on precipitation chemistry laboratory techniques. Hradec Kralove, Czech Republic 17–21 October WMO Report No. 102 (1994)Google Scholar
  33. Kleinman, M.T., Tomezyk, C., Leaderer, B.P., Tanner, R.L.: Inorganic nitrogen compounds in New York City. Air Ann. N. Y. Acad. Sci. 322, 115–123 (1979)CrossRefGoogle Scholar
  34. Krauskopf, K.B., Bird, D.K.: Introduction to geochemisdtry third edition, Mc Graw Hill, international edition, 589–591 (1995)Google Scholar
  35. Kulshrestha, U.C., Sarkar, A.K., Srivastava, S.S., Parashar, D.C.: Investigation into atmospheric deposition through precipitation studies at New Delhi (India). Atmos. Environ. 30, 4149–4154 (1996)CrossRefGoogle Scholar
  36. Kumar, P., Imam, B.: Footprints of air pollution and changing environment on the sustainability of built infrastructure. Sci. Total Environ. 444, 85–101 (2013)CrossRefGoogle Scholar
  37. Lin, C.T., Baker, A.R., Jickells, T.D., Kelly, S., Lesworth, T.: An assessment of the significance of sulphate sources over the Atlantic Ocean based on sulphur isotope data. Atmos. Environ. 62, 615–621 (2012)CrossRefGoogle Scholar
  38. Losno, R.: Trace metals acting as catalysts in a marine cloud: a box model study. Phys. Chem. Earth 24, 281–286 (1999)CrossRefGoogle Scholar
  39. Mishra, A., Singh, A.K., Singh, K.A., Pandey, P., Yadav, S., Khan, A.H., Barman, S.C.: Urban air pollution and their effects on rainwater characteristics in Lucknow city, India. J. Environ. Res. Dev. 6, 1127–1132 (2012)Google Scholar
  40. Montoya-Mayor, R., Fernández-Espinosa, A.J., Seijo-Delgado, I., Ternero-Rodríguez, M.: Determination of soluble ultra-trace metals and metalloids in rainwater and atmospheric deposition fluxes: a 2-year survey and assessment. Chemosphere 92, 882–891 (2013)CrossRefGoogle Scholar
  41. Moreda-Piñeiro, J., Alonso-Rodríguez, E., Moscoso-Pérez, C., Blanco-Heras, G., Turnes-Carou, I., López-Mahía, P., Muniategui-Lorenzo, S., Prada-Rodríguez, D.: Influence of marine, terrestrial and anthropogenic sources on ionic and metallic composition of rainwater at a suburban site (northwest coast of Spain). Atmos. Environ. 88, 30–38 (2014)CrossRefGoogle Scholar
  42. Mouli, P.C., Mohan, S.V., Reddy, S.J.: Rainwater chemistry at a regional representative urban site: influence of terrestrial sources on ionic composition. Atmos. Environ. 39, 999–1008 (2005)CrossRefGoogle Scholar
  43. Powell, C.F., Baker, A.R., Jickells, T.D., Bange, H.W., Chance, R.J., Yodle, C.: Estimation of the atmospheric flux of nutrients and trace metals to the eastern tropical north Atlantic ocean. J. Atmos. Sci. 72, 4029–4045 (2015)CrossRefGoogle Scholar
  44. Prada-Sánchez, J.M., García-Jurado, I., González-Manteiga, W., Fiestras-Janeiro, M.G., Espada-Ríos, M.I., Lucas-Domínguez, T.: Multivariate statistical analysis of precipitation chemistry in northwestern Spain. Water Air Soil Pollut 69, 37–55 (1993)CrossRefGoogle Scholar
  45. Querol, X., Alastuey, A., Moreno, T., Viana, M.M., Castillo, S., Pey, J., Rodríguez, S., Artiñano, B., Salvador, P., Sánchez, M., Garcia Dos Santos, S., Herce Garraleta, M.D., Fernandez-Patier, R., Moreno-Grau, S., Negral, L., Minguillón, M.C., Monfort, E., Sanz, M.J., Palomo-Marín, R., Pinilla-Gil, E., Cuevas, E., de la Rosa, J., Sánchez de la Campa, A.: Spatial and temporal variations in airborne particulate matter (PM10 and PM2.5) across Spain 1999–2005. Atmos. Environ. 42, 3964–3979 (2008)CrossRefGoogle Scholar
  46. Santos, P.S.M., Otero, M., Santos, E.B.H., Duarte, A.C.: Chemical composition of rainwater at a coastal town on the southwest of Europe: what changes in 20 years? Sci. Total Environ. 409, 3548–3553 (2011)CrossRefGoogle Scholar
  47. Santos, P.S.M., Santos, E.B.H., Duarte, A.C.: Dissolved organic and inorganic matter in bulk deposition of a coastal urban area: an integrated approach. J. Environ. Manage. 145, 71–78 (2014)CrossRefGoogle Scholar
  48. Sanusi, A., Wortham, H., Millet, M., Mirabel, P.: Chemical composition of rainwater in Eastern France. Atmos. Environ. 30, 59–71 (1995)CrossRefGoogle Scholar
  49. Sedlak, D.L., Hoigné, J.: The role of copper and oxalate in the redox cycling of iron in atmospheric waters. Atmos. Environ. 27, 2173–2185 (1993)CrossRefGoogle Scholar
  50. Silva, B., Rivas, T., García-Rodeja, E., Prieto, B.: Distribution of ions of marine origin in Galicia (NW Spain) as a function of distance from the sea. Atmos. Environ. 41, 4396–4407 (2007)CrossRefGoogle Scholar
  51. Szigeti, T., Mihucz, V.G., Óvári, M., Baysal, A., Atılgan, S., Akman, S., Záray, G.: Chemical characterization of PM2.5 fractions of urban aerosol collected in Budapest and Istanbul. Miccrochem. J. 107, 86–94 (2013)CrossRefGoogle Scholar
  52. Vázquez, A., Costoya, M., Peña, R.M., García, S., Herrero, C.: A rainwater quality monitoring network: a preliminary study of the composition of rainwater in Galicia (NW Sapin). Chemosphere 51, 375–386 (2003)CrossRefGoogle Scholar
  53. Viana, M., López, J.M., Querol, X., Alastuey, A., Garcıía-Gacio, D., Blanco-Heras, G., López-Mahía, P., Piñeiro-Iglesias, M., Sanz, M.J., Sanz, F., Chi, X., Maenhaut, W.: Tracers and impact of open burning of rice straw residues on PM in Eastern Spain. Atmos. Environ. 42, 1941–1957 (2008)CrossRefGoogle Scholar
  54. Vidal-Romaní, J.R., Vaquero, M., Sanjurjo, J.: In: Gutiérrez, F., Gutiérrez, M. (eds.) Granite landforms in Spain. Landscapes and landforms of Spain, Part of the series world geomorphological landscapes. Springer Science + Business Media, Dordrecht (2014)Google Scholar
  55. Wai, K.M., Tanner, P.A., Tam, C.W.F.: 2-Year study of chemical composition of bulk deposition in a south China coastal city: comparison with east Asian cities. Environ. Sci. Technol. 39, 6542–6547 (2005)CrossRefGoogle Scholar
  56. Wang, H., Han, G.: Chemical composition of rainwater and anthropogenic influences in Chengdu, Southwest China. Atmos. Res. 99, 190–196 (2011)CrossRefGoogle Scholar
  57. Wiley, J.D., Glinski, D.A., Southwell, M., Long, M.S., Avery, G.B., Kieber, R.J.: Decadal variations of rainwater formic and acetic acid concentrations in Wilmington, NC, USA. Atmos. Environ. 45, 1010–1014 (2011)CrossRefGoogle Scholar
  58. Wu, Q., Han, G., Tao, F., Tang, Y.: Chemical composition of rainwater in a karstic agricultural area, southwest China: the impact of urbanization. Atmos. Res. 111, 71–78 (2012)CrossRefGoogle Scholar
  59. Xu, Z., Han, G.: Chemical and strontium isotope characterization of rainwater in Beijing, China. Atmos. Environ. 43, 1954–1961 (2009)CrossRefGoogle Scholar
  60. Zunckel, M., Saizar, C., Zarauz, J.: Rainwater composition in northeast Uruguay. Atmos. Environ. 37, 1601–1611 (2003)CrossRefGoogle Scholar
  61. Zuo, Y., Hoigné, J.: Evidence for photochemical formation of H2O2 and oxidation of SO2 in authentic fog. Water Sci. 260, 71–73 (1993)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Jorge Moreda-Piñeiro
    • 1
    Email author
  • Elia Alonso-Rodríguez
    • 1
  • Isabel Turnes-Carou
    • 1
  • Carmen Moscoso-Pérez
    • 1
  • Gustavo Blanco-Heras
    • 1
  • Loreto Gómez Tellado
    • 2
  • Purificación López-Mahía
    • 1
  • Soledad Muniategui-Lorenzo
    • 1
  • Darío Prada-Rodríguez
    • 1
  1. 1.Grupo Química Analítica Aplicada (QANAP), University Institute of Research in Environmental Studies (IUMA), Centro de Investigaciones Científicas Avanzadas (CICA), Department of Analytical Chemistry, Faculty of SciencesUniversity of A CoruñaA CoruñaSpain
  2. 2.Laboratorio de Medio Ambiente de Galicia, Consellería de Medio Ambiente, Territorio e InfraestructurasA CoruñaSpain

Personalised recommendations