Journal of Atmospheric Chemistry

, Volume 74, Issue 2, pp 187–204 | Cite as

Photochemical activation of chlorine by iron-oxide aerosol

  • Julian WittmerEmail author
  • Cornelius ZetzschEmail author


The photochemical activation of chlorine by dissolved iron in artificial sea-salt aerosol droplets and by highly dispersed iron oxide (Fe2O3) aerosol particles (mainly hematite, specific surface ~150 m2 g−1) exposed to gaseous HCl, was investigated in humidified air in a Teflon simulation chamber. Employing the radical-clock technique, we quantified the production of gaseous atomic chlorine (Cl) from the irradiated aerosol. When the salt aerosol contained Fe2O3 at pH 6, no significant Cl production was observed, even if the dissolution of iron was forced by “weathering” (repeatedly freezing and thawing for five times). Adjusting the pH in the stock suspension to 2.6, 2.2, and 1.9 and equilibrating for one week resulted in a quantifiable amount of dissolved iron (0.03, 0.2, and 0.6 mmol L−1, respectively) and in gaseous Cl production rates of ~1.6, 6, and 8 × 1021 atoms cm−2 h−1, respectively. In a further series of experiments, the pure Fe2O3 aerosol was exposed to various levels of gaseous hydrogen chloride (HCl). The resulting Cl production rates ranged from 8 × 1020 Cl atoms cm−2 h−1 (at ~4 ppb HCl) to 5 × 1022 Cl atoms cm−2 h−1 (at ~350 ppb HCl) and confirmed the uptake and conversion of HCl to atomic Cl (at HCl to Cl conversion yields of 2–5 %, depending on the relative humidity). The Fe2O3 experiments indicate that iron-induced Cl formation may be important for highly soluble combustion-aerosol particles in marine environments in the presence of gaseous HCl.


Fe2O3 aerosol Iron oxide Sea-salt aerosol Cl activation HCl uptake 



We wish to thank Dr. Catherine McCammon, BGI Bayreuth, Germany, for the Mössbauer spectroscopy of our samples, Johannes Thiessen for the BET analysis, Dipl.-Ing. Franz D. Oeste and Dr. Sergej Bleicher for advice, and Agnes Bednorz and Andrej Einhorn for technical support. This work was supported by the German Research Foundation (DFG) within research unit 763 (HALOPROC) grant ZE792/5-2.


  1. Al-Abadleh, H.A.: Review of the bulk and surface chemistry of iron in atmospherically relevant systems containing humic-like substances. RSC Adv. (2015). doi: 10.1039/C5RA03132J Google Scholar
  2. Atkinson, R., Baulch, D.L., Cox, R.A., Crowley, J.N., Hampson, R.F., Hynes, R.G., Jenkin, M.E., Rossi, M.J., Troe, J.: Evaluated kinetic and photochemical data for atmospheric chemistry: volume III – Gas phase reactions of inorganic halogens. Atmos. Chem. Phys. (2007). doi: 10.5194/acp-7-981-2007 Google Scholar
  3. Baker, A.R., Croot, P.L.: Atmospheric and marine controls on aerosol iron solubility in seawater. Mar. Chem. (2010). doi: 10.1016/j.marchem.2008.09.003 Google Scholar
  4. Baker, A.R., Jickells, T.D., Witt, M., Linge, K.L.: Trends in the solubility of iron, aluminium, manganese and phosphorus in aerosol collected over the Atlantic Ocean. Mar. Chem. (2006). doi: 10.1016/j.marchem.2005.06.004 Google Scholar
  5. Balzer, N.: Kinetische Untersuchungen der Halogen-Aktivierung einer simulierten Salzpfanne in einer Smogkammer, PhD thesis. University of Bayreuth, Germany (2012).
  6. Bartolomei, V., Gomez Alvarez, E., Wittmer, J., Tlili, S., Strekowski, R., Temime-Roussel, B., Quivet, E., Wortham, H., Zetzsch, C., Kleffmann, J., Gligorovski, S.: Combustion processes as a source of high levels of indoor hydroxyl radicals through the photolysis of nitrous acid. Environ. Sci. Technol. (2015). doi: 10.1021/acs.est.5b01905 Google Scholar
  7. Behnke, W., Zetzsch, C.: The generation of radicals on aerosol surfaces. Air Poll. Res. Rep. 17, 119–124 (1988)Google Scholar
  8. Behnke, W., Zetzsch, C.: Heterogeneous production of Cl atoms under simulated tropospheric conditions in a smog chamber. In: Restelli, G., Angeletti, G. (eds.) Physico-Chemical Behaviour of Atmospheric Pollutants, pp. 277–282. Springer, Dordrecht (1990)CrossRefGoogle Scholar
  9. Behnke, W., Holländer, W., Koch, W., Nolting, F., Zetzsch, C.: A smog chamber for studies of the photochemical degradation of chemicals in the presence of aerosols. Atmos. Environ. (1988). doi: 10.1016/0004-6981(88)90341-1 Google Scholar
  10. Bleicher, S., Buxmann, J.C., Sander, R., Riedel, T.P., Thornton, J.A., Platt, U., Zetzsch, C.: The influence of nitrogen oxides on the activation of bromide and chloride in salt aerosol. Atmos. Chem. Phys. Discuss. (2014). doi: 10.5194/acpd-14-10135-2014 Google Scholar
  11. Buxmann, J., Balzer, N., Bleicher, S., Platt, U., Zetzsch, C.: Observations of bromine explosions in smog chamber experiments above a model salt pan. Int. J. Chem. Kinet. (2012). doi: 10.1002/kin.20714 Google Scholar
  12. Buxmann, J., Bleicher, S., Platt, U., von Glasow, R., Sommariva, R., Held, A., Zetzsch, C., Ofner, J.: Consumption of reactive halogen species from sea-salt aerosol by secondary organic aerosol: slowing down bromine explosion. Environ. Chem. (2015). doi: 10.1071/EN14226 Google Scholar
  13. Byrne, R.H., Kester, D.R.: Solubility of hydrous ferric oxide and iron speciation in seawater. Mar. Chem. (1976). doi: 10.1016/0304-4203(76)90012-8 Google Scholar
  14. Cwiertny, D.M., Young, M.A., Grassian, V.H.: Chemistry and photochemistry of mineral dust aerosol. Annu. Rev. Phys. Chem. (2008). doi: 10.1146/annurev.physchem.59.032607.093630 Google Scholar
  15. Delmelle, P., Lambert, M., Dufrêne, Y., Gerin, P., Óskarsson, N.: Gas/aerosol–ash interaction in volcanic plumes: new insights from surface analyses of fine ash particles. Earth Planet. Sci. Lett. (2007). doi: 10.1016/j.epsl.2007.04.052 Google Scholar
  16. Duce, R.A., Tindale, N.W.: Atmospheric transport of iron and its deposition in the ocean. Limnol. Oceangr. (1991). doi: 10.4319/lo.1991.36.8.1715 Google Scholar
  17. Duggen, S., Croot, P., Schacht, U., Hoffmann, L.: Subduction zone volcanic ash can fertilize the surface ocean and stimulate phytoplankton growth: evidence from biogeochemical experiments and satellite data. Geophys. Res. Lett. (2007). doi: 10.1029/2006GL027522 Google Scholar
  18. Erickson, D.J., Seuzaret, C., Keene, W.C., Gong, S.L.: A general circulation model based calculation of HCl and ClNO2 production from sea salt dechlorination: reactive chlorine emissions inventory. J. Geophys. Res. (1999). doi: 10.1029/98JD01384 Google Scholar
  19. Gliß, J., Bobrowski, N., Vogel, L., Pöhler, D., Platt, U.: OClO and BrO observations in the volcanic plume of Mt. Etna – implications on the chemistry of chlorine and bromine species in volcanic plumes. Atmos. Chem. Phys. (2015). doi: 10.5194/acp-15-5659-2015 Google Scholar
  20. Graedel, T.E., Keene, W.C.: The budget and cycle of earth’s natural chlorine. Pure Appl. Chem. (1996). doi: 10.1351/pac199668091689 Google Scholar
  21. Herrmann, H., Majdik, Z., Ervens, B., Weise, D.: Halogen production from aqueous tropospheric particles. Chemosphere (2003). doi: 10.1016/S0045-6535(03)00202-9 Google Scholar
  22. Ito, A., Feng, Y.: Role of dust alkalinity in acid mobilization of iron. Atmos. Chem. Phys. (2010). doi: 10.5194/acp-10-9237-2010 Google Scholar
  23. Jeong, D., Kim, K., Choi, W.: Accelerated dissolution of iron oxides in ice. Atmos. Chem. Phys. (2012). doi: 10.5194/acp-12-11125-2012 Google Scholar
  24. Jickells, T.D., Spokes, L.J.: Atmospheric iron inputs to the oceans. IUPAC Ser. Analytical Phys. Chem. Environ. Syst. 7, 85–122 (2001)Google Scholar
  25. Keene, W.C., Savoie, D.L.: The pH of deliquesced sea-salt aerosol in polluted marine air. Geophys. Res. Lett. (1998). doi: 10.1029/98GL01591 Google Scholar
  26. Keene, W.C., Sander, R., Pszenny, A.A., Vogt, R., Crutzen, P.J., Galloway, J.N.: Aerosol pH in the marine boundary layer. J. Aerosol Sci. (1998). doi: 10.1016/S0021-8502(97)10011-8 Google Scholar
  27. Keene, W.C., Khalil, M., Aslam, K., Erickson, D.J., McCulloch, A., Graedel, T.E., Lobert, J.M., Aucott, M.L., Gong, S.L., Harper, D.B., Kleiman, G., Midgley, P., Moore, R.M., Seuzaret, C., Sturges, W.T., Benkovitz, C.M., Koropalov, V., Barrie, L.A., Li, Y.F.: Composite global emissions of reactive chlorine from anthropogenic and natural sources: reactive chlorine emissions inventory. J. Geophys. Res. (1999). doi: 10.1029/1998JD100084 Google Scholar
  28. Kester, D.R., Duedall, I.W., Connors, D.N., Pytkowicz, R.M.: Preparation of artificial seawater. Limnol. Oceangr. (1967). doi: 10.4319/lo.1967.12.1.0176 Google Scholar
  29. Kiwi, J., Lopez, A., Nadtochenko, V.: Mechanism and kinetics of the OH-radical intervention during Fenton oxidation in the presence of a significant amount of radical scavenger (Cl). Environ. Sci. Technol. (2000). doi: 10.1021/es991406i Google Scholar
  30. Knipping, E.M., Lakin, M.J., Foster, K.L., Jungwirth, P., Tobias, D.J., Gerber, R.B., Dabdub, D., Finlayson-Pitts, B.J.: Experiments and simulations of ion-enhanced interfacial chemistry on aqueous NaCl aerosols. Science (2000). doi: 10.1126/science.288.5464.301 Google Scholar
  31. Kolb, C.E., Cox, R.A., Abbatt, J.P.D., Ammann, M., Davis, E.J., Donaldson, D.J., Garrett, B.C., George, C., Griffiths, P.T., Hanson, D.R., Kulmala, M., McFiggans, G., Pöschl, U., Riipinen, I., Rossi, M.J., Rudich, Y., Wagner, P.E., Winkler, P.M., Worsnop, D.R., O’ Dowd, C.D.: An overview of current issues in the uptake of atmospheric trace gases by aerosols and clouds. Atmos. Chem. Phys. (2010). doi: 10.5194/acp-10-10561-2010 Google Scholar
  32. Kuma, K., Nishioka, J.U., Matsunaga, K.: Controls on iron(III) hydroxide solubility in seawater: the influence of pH and natural organic chelators. Limnol. Oceangr. (1996). doi: 10.4319/lo.1996.41.3.0396 Google Scholar
  33. Lim, M., Chiang, K., Amal, R.: Photochemical synthesis of chlorine gas from iron(III) and chloride solution. J. Photochem. Photobiol., A (2006). doi: 10.1016/j.jphotochem.2006.03.005 Google Scholar
  34. Liu, X., Millero, F.J.: The solubility of iron in seawater. Mar. Chem. (2002). doi: 10.1016/S0304-4203(01)00074-3 Google Scholar
  35. Luo, C., Mahowald, N., Bond, T., Chuang, P.Y., Artaxo, P., Siefert, R., Chen, Y., Schauer, J.: Combustion iron distribution and deposition. Glob Biogeochem. Cycles (2008). doi: 10.1029/2007GB002964 Google Scholar
  36. Machulek, A., Vautier-Giongo, C., Moraes, J.E.F., Nascimento, C.A.O., Quina, F.H.: Laser flash photolysis study of the photocatalytic step of the photo-Fenton reaction in saline solution. J. Photochem. Photobiol. (2006). doi: 10.1562/2005-05-28-RA-548 Google Scholar
  37. Machulek, A., Moraes, J.E.F., Vautier-Giongo, C., Silverio, C.A., Friedrich, L.C., Nascimento, C.A.O., Gonzalez, M.C., Quina, F.H.: Abatement of the inhibitory effect of chloride anions on the photo-Fenton process. Environ. Sci. Technol. (2007). doi: 10.1021/es071884q Google Scholar
  38. Mahowald, N.M., Engelstaedter, S., Luo, C., Sealy, A., Artaxo, P., Benitez-Nelson, C., Bonnet, S., Chen, Y., Chuang, P.Y., Cohen, D.D., Dulac, F., Herut, B., Johansen, A.M., Kubilay, N., Losno, R., Maenhaut, W., Paytan, A., Prospero, J.M., Shank, L.M., Siefert, R.L.: Atmospheric iron deposition: global distribution, variability, and human perturbations. Ann. Rev. Mar. Sci. (2009). doi: 10.1146/annurev.marine.010908.163727 Google Scholar
  39. Meskhidze, N.: Dust and pollution: a recipe for enhanced ocean fertilization? J. Geophys. Res. (2005). doi: 10.1029/2004JD005082 Google Scholar
  40. Miller, W.L., King, D., Lin, J., Kester, D.R.: Photochemical redox cycling of iron in coastal seawater. Mar. Chem. (1995). doi: 10.1016/0304-4203(95)00027-O Google Scholar
  41. Nadtochenko, V.A., Kiwi, J.: Photolysis of FeOH2+ and FeCl2+ in aqueous solution. Photodissociation kinetics and quantum yields. Inorg. Chem. (1998). doi: 10.1021/ic9804723 Google Scholar
  42. Pignatello, J.J., Liu, D., Huston, P.: Evidence for an additional oxidant in the photoassisted Fenton reaction. Environ. Sci. Technol. (1999). doi: 10.1021/es980969b Google Scholar
  43. Prescher, C., McCammon, C., Dubrovinsky, L., Moss, A.: A program for analyzing energy-domain Mössbauer spectra from conventional and synchrotron sources. J. Appl. Crystallogr. (2012). doi: 10.1107/S0021889812004979 Google Scholar
  44. Rossi, M.J.: Heterogeneous reactions on salts. Chem. Rev. 103, 4823–4882 (2003)CrossRefGoogle Scholar
  45. Rubasinghege, G., Lentz, R.W., Scherer, M.M., Grassian, V.H.: Simulated atmospheric processing of iron oxyhydroxide minerals at low pH: roles of particle size and acid anion in iron dissolution. Proc. Natl. Acad. Sci. U. S. A. (2010). doi: 10.1073/pnas.0910809107 Google Scholar
  46. Santschi, C., Rossi, M.J.: Uptake of CO2, SO2, HNO3 and HCl on calcite (CaCO3) at 300 K: mechanism and the role of adsorbed water. J. Phys. Chem. A (2006). doi: 10.1021/jp056312b Google Scholar
  47. Schroth, A.W., Crusius, J., Sholkovitz, E.R., Bostick, B.C.: Iron solubility driven by speciation in dust sources to the ocean. Nat. Geosci. (2009). doi: 10.1038/ngeo501 Google Scholar
  48. Sedwick, P.N., Sholkovitz, E.R., Church, T.M.: Impact of anthropogenic combustion emissions on the fractional solubility of aerosol iron: evidence from the Sargasso Sea. Geochem. Geophys. Geosyst. (2007). doi: 10.1029/2007GC001586 Google Scholar
  49. Shi, Z., Krom, M.D., Bonneville, S., Baker, A.R., Jickells, T.D., Benning, L.G.: Formation of iron nanoparticles and increase in iron reactivity in mineral dust during simulated cloud processing. Environ. Sci. Technol. (2009). doi: 10.1021/es901294g Google Scholar
  50. Shi, Z., Krom, M.D., Jickells, T.D., Bonneville, S., Carslaw, K.S., Mihalopoulos, N., Baker, A.R., Benning, L.G.: Impacts on iron solubility in the mineral dust by processes in the source region and the atmosphere: a review. Aeolian Res. (2012). doi: 10.1016/j.aeolia.2012.03.001 Google Scholar
  51. Sholkovitz, E.R., Sedwick, P.N., Church, T.M., Baker, A.R., Powell, C.F.: Fractional solubility of aerosol iron: synthesis of a global-scale data set. Geochim. Cosmochim. Ac. (2012). doi: 10.1016/j.gca.2012.04.022 Google Scholar
  52. Siefert, R.L., Johansen, A.M., Hoffmann, M.R., Pehkonen, S.O.: Measurements of trace metal (Fe, Cu, Mn, Cr) oxidation states in fog and stratus clouds. J. Air Waste Manag. Assoc. (1998). doi: 10.1080/10473289.1998.10463659 Google Scholar
  53. Sullivan, R.C., Guazzotti, S.A., Sodeman, D.A., Prather, K.A.: Direct observations of the atmospheric processing of Asian mineral dust. Atmos. Chem. Phys. (2007a). doi: 10.5194/acp-7-1213-2007 Google Scholar
  54. Sullivan, R.C., Guazzotti, S.A., Sodeman, D.A., Tang, Y., Carmichael, G.R., Prather, K.A.: Mineral dust is a sink for chlorine in the marine boundary layer. Atmos. Environ. (2007b). doi: 10.1016/j.atmosenv.2007.05.047 Google Scholar
  55. Supeno, Supeno, P.: Sonochemical formation of nitrate and nitrite in water. Ultrason. Sonochem. (2000). doi: 10.1016/S1350-4177(99)00043-7 Google Scholar
  56. Svensson, R., Ljungström, E., Lindqvist, O.: Kinetics of the reaction between nitrogen dioxide and water vapour. Atmos. Environ. (1987). doi: 10.1016/0004-6981(87)90315-5 Google Scholar
  57. Tilgner, A., Bräuer, P., Wolke, R., Herrmann, H.: Modelling multiphase chemistry in deliquescent aerosols and clouds using CAPRAM3.0i. J. Atmos. Chem. (2013). doi: 10.1007/s10874-013-9267-4 Google Scholar
  58. Tobo, Y., Zhang, D., Nakata, N., Yamada, M., Ogata, H., Hara, K., Iwasaka, Y.: Hygroscopic mineral dust particles as influenced by chlorine chemistry in the marine atmosphere. Geophys. Res. Lett. (2009). doi: 10.1029/2008GL036883 Google Scholar
  59. Tobo, Y., Zhang, D., Matsuki, A., Iwasaka, Y.: Asian dust particles converted into aqueous droplets under remote marine atmospheric conditions. Proc. Natl. Acad. Sci. U. S. A. (2010). doi: 10.1073/pnas.1008235107 Google Scholar
  60. Vogt, R., Crutzen, P.J., Sander, R.: A mechanism for halogen release from sea-salt aerosol in the remote marine boundary layer. Nature (1996). doi: 10.1038/383327a0 Google Scholar
  61. Wahner, A., Mentel, T.F., Sohn, M.: Gas-phase reaction of N2O5 with water vapor: Importance of heterogeneous hydrolysis of N2O5 and surface desorption of HNO3 in a large Teflon chamber. Geophys. Res. Lett. (1998). doi: 10.1029/98GL51596 Google Scholar
  62. Wang, W.-N., Purwanto, A., Lenggoro, I.W., Okuyama, K., Chang, H., Jang, H.D.: Investigation on the correlations between droplet and particle size distribution in ultrasonic spray pyrolysis. Ind. Eng. Chem. Res. (2008). doi: 10.1021/ie070821d Google Scholar
  63. Wang, R., Balkanski, Y., Boucher, O., Bopp, L., Chappell, A., Ciais, P., Hauglustaine, D., Peñuelas, J., Tao, S.: Sources, transport and deposition of iron in the global atmosphere. Atmos. Chem. Phys. (2015). doi: 10.5194/acp-15-6247-2015 Google Scholar
  64. Wittmer, J., Bleicher, S., Zetzsch, C.: Iron(III)-induced activation of chloride and bromide from modeled saltpans. J. Phys. Chem. A (2015a). doi: 10.1021/jp508006s Google Scholar
  65. Wittmer, J., Bleicher, S., Ofner, J., Zetzsch, C.: Iron(III)-induced activation of chloride from artificial sea salt aerosol. Environ. Chem. (2015b). doi: 10.1071/EN14279 Google Scholar
  66. Zetzsch, C., Behnke, W.: Heterogeneous reactions of chlorine compounds. In: Niki, H., Becker, K.H. (eds.) The Tropospheric Chemistry of Ozone in the Polar Regions, pp. 291–306. Springer, Berlin Heidelberg (1993)CrossRefGoogle Scholar
  67. Zetzsch, C.: Simulation of atmospheric photochemistry in the presence of solid airborne aerosols. In: Dechema-Monographien, vol 104. pp 187–213. Verlag Chemie, Weinheim, Germany (1987)Google Scholar
  68. Zhang, D., Iwasaka, Y.: Chlorine deposition on dust particles in marine atmosphere. Geophys. Res. Lett. (2001). doi: 10.1029/2001GL013333 Google Scholar
  69. Zhu, X., Prospero, J.M., Millero, F.J., Savoie, D.L., Brass, G.W.: The solubility of ferric ion in marine mineral aerosol solutions at ambient relative humidities. Mar. Chem. (1992). doi: 10.1016/0304-4203(92)90069-M Google Scholar
  70. Zhu, X., Prospero, J.M., Savoie, D.L., Millero, F.J., Zika, R.G., Saltzman, E.S.: Photoreduction of iron(III) in marine mineral aerosol solutions. J. Geophys. Res. (1993). doi: 10.1029/93JD00202 Google Scholar
  71. Zhuang, G., Yi, Z., Duce, R.A., Brown, P.R.: Chemistry of iron in marine aerosols. Glob. Biogeochem. Cycles (1992). doi: 10.1029/92GB00756 Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Atmospheric Chemistry Research Unit, BayCEERUniversity of BayreuthBayreuthGermany
  2. 2.Max Planck Institute for ChemistryMainzGermany

Personalised recommendations