Journal of Atmospheric Chemistry

, Volume 73, Issue 3, pp 303–328 | Cite as

Dimethyl sulfide and other biogenic volatile organic compound emissions from branching coral and reef seawater: potential sources of secondary aerosol over the Great Barrier Reef

  • Hilton B. Swan
  • Robert W. Crough
  • Petri Vaattovaara
  • Graham B. Jones
  • Elisabeth S. M. Deschaseaux
  • Bradley D. Eyre
  • Branka Miljevic
  • Zoran D. Ristovski


Volatile organic compounds (VOCs) in the headspace of bubble chambers containing branches of live coral in filtered reef seawater were analysed using gas chromatography with mass spectrometry (GC-MS). When the coral released mucus it was a source of dimethyl sulfide (DMS) and isoprene; however, these VOCs were not emitted to the chamber headspace from mucus-free coral. This finding, which suggests that coral is an intermittent source of DMS and isoprene, was supported by the observation of occasional large pulses of atmospheric DMS (DMSa) over Heron Island reef on the southern Great Barrier Reef (GBR), Australia, in the austral winter. The highest DMSa pulse (320 ppt) was three orders of magnitude less than the DMS mixing ratio (460 ppb) measured in the headspace of a dynamically purged bubble chamber containing a mucus-coated branch of Acropora aspera indicating that coral reefs can be strong point sources of DMSa. Static headspace GC-MS analysis of coral fragments identified mainly DMS and seven other minor reduced sulfur compounds including dimethyl disulfide, methyl mercaptan, and carbon disulfide, while coral reef seawater was an indicated source of methylene chloride, acetone, and methyl ethyl ketone. The VOCs emitted by coral and reef seawater are capable of producing new atmospheric particles < 15 nm diameter as observed at Heron Island reef. DMS and isoprene are known to play a role in low-level cloud formation, so aerosol precursors such as these could influence regional climate through a sea surface temperature regulation mechanism hypothesized to operate over the GBR.


Aerosol Biogenic CCN Climate Coral reef DMS Isoprene Tropical VOCs 



This research was partly funded from grants to GBJ by the Marine Ecology Research Centre of Southern Cross University (SCU, Lismore NSW), the Australian Institute for Marine Science (AIMS, Townsville, Qld) and Australian Research Council Discovery Grant DP110103638 awarded to BDE. HBS and RWC would like to thank the National Measurement Institute (NMI, Australia) for provision of equipment used to sample and analyse VOCs, and Gavin Stevenson (NMI) for manuscript technical review. PV would like to thank the Finnish Academy through visiting grant No. 136841, the Academy of Finland's Center of Excellence, University of Eastern Finland and the Queensland University of Technology for support. All authors would like to thank Dr Victor Beltran (AIMS) for providing coral samples from Davies Reef, the staff at the Heron Island Research Station for assistance with our experimental needs, the Great Barrier Reef Marine Park Authority for provision of permits to collect coral, and Prof. Peter Harrison (SCU) for coral species identification. Reviewer comments and advice to improve the manuscript is appreciated. We gratefully acknowledge the NOAA Air Resources Laboratory (ARL) for provision of the HYSPLIT transport and dispersion model and/or READY website ( used to obtain back trajectories for data evaluation presented in this publication.


  1. Almeida, J., Schobesberger, S., Kurten, A., Ortega, I.K., Kupiainen-Maatta, O., Praplan, A.P., Adamov, A., et al.: Molecular understanding of sulphuric acid-amine particle nucleation in the atmosphere. Nature 502, 359–363 (2013). doi: 10.1038/nature12663 CrossRefGoogle Scholar
  2. Andreae, M.O., Raemdonck, H.: Dimethyl sulfide in the surface ocean and the marine atmosphere: a global view. Science 221, 744–747 (1983)CrossRefGoogle Scholar
  3. Arnold, F., Bürger, V., Droste-Fanke, B., Grimm, F., Krieger, A., Schneider, J., Stilp, T.: Acetone in the upper troposphere and lower stratosphere: impact on trace gases and aerosols. Geophys. Res. Lett. 24(23), 3017–3020 (1997). doi: 10.1029/97GL02974 CrossRefGoogle Scholar
  4. Ayers, G.P., Gillett, R.W.: DMS and its oxidation products in the remote marine atmosphere: implications for climate and atmospheric chemistry. J. Sea Res. 43(3–4), 275–286 (2000). doi: 10.1016/S1385-1101(00)00022-8 CrossRefGoogle Scholar
  5. Bigg, E.K.: Sources, nature and influence on climate of marine airborne particles. Environ. Chem. 4, 155–161 (2007)CrossRefGoogle Scholar
  6. Bigg, E.K., Turvey, D.E.: Sources of atmospheric particles over Australia. Atmos. Environ. 12(8), 1643–1655 (1978)CrossRefGoogle Scholar
  7. Broadbent, A.D., Jones, G.B.: DMS and DMSP in mucus ropes, coral mucus, surface films and sediment pore waters from coral reefs in the Great Barrier Reef. Mar. Freshw. Res. 55, 849–855 (2004). doi: 10.1071/MF04114 CrossRefGoogle Scholar
  8. Broadbent, A., Jones, G.: Seasonal and diurnal cycles of dimethylsulfide, dimethylsulfoniopropionate and dimethylsulfoxide at one tree reef lagoon. Environ. Chem. 3, 260–267 (2006)CrossRefGoogle Scholar
  9. Broadbent, A.D., Jones, G.B., Jones, R.J.: DMSP in corals and benthic algae from the Great Barrier Reef. Estuar. Coast. Shelf Sci. 55, 547–555 (2002)CrossRefGoogle Scholar
  10. Bzdek, B.R., Johnston, M.V.: New particle formation and growth in the troposphere. Anal. Chem. 82(19), 7871–7878 (2010)CrossRefGoogle Scholar
  11. Charlson, R.J.: Gas to particle conversion and CCN production. In: Restelli, G., Angeletti, G. (eds.) Dimethylsulphide: Oceans, Atmosphere and Climate, pp. 275–286. Kluwer Academic Publishers, Dordrecht (1993)CrossRefGoogle Scholar
  12. Cheskis, S., Atar, E., Amirav, A.: Pulsed-flame photometer: a novel gas chromatography detector. Anal. Chem. 65, 539–555 (1993). doi: 10.1021/ac00053a010 CrossRefGoogle Scholar
  13. Ciuraru, R., Fine, L., van Pinxteren, M., D’Anna, B., Herrmann, H., George, C.: Unravelling new processes at interfaces: photochemical isoprene production at the sea surface. Environ. Sci. Technol. 49(22), 13199–13205 (2015). doi: 10.1021/acs.est.5b02388
  14. Colman, J.J., Swanson, A.L., Meinardi, S., Sive, B.C., Blake, D.R., Rowland, F.S.: Description of the analysis of a wide range of volatile organic compounds in whole air samples collected during PEM-tropics A and B. Anal. Chem. 73(15), 3723–3731 (2001)CrossRefGoogle Scholar
  15. Colomb, A., Yassaa, N., Williams, J., Peeken, I., Lochte, K.: Screening volatile organic compounds (VOCs) emissions from five marine phytoplankton species by headspace gas chromatography/mass spectrometry (HS-GC/MS). J. Environ. Monit. 10, 325–330 (2008)CrossRefGoogle Scholar
  16. Colomb, A., Gros, V., Alvain, S., Sarda-Esteve, R., Bonsang, B., Moulin, C., Klüpfel, T., Williams, J.: Variation of atmospheric volatile organic compounds over the Southern Indian Ocean (30-49°S). Environ. Chem. 6(1), 70–82 (2009)CrossRefGoogle Scholar
  17. Deschaseaux, E., Jones, G., Miljevic, B., Ristovski, Z., Swan, H., Vaattovaara, P.: Can corals form aerosol particles through volatile sulphur compound emissions? Paper presented at the 12th International Coral Reef Symposium, Cairns, Qld, Australia (2012)Google Scholar
  18. Deschaseaux, E.S.M., Jones, G.B., Deseo, M.A., Shepherd, K.M., Kiene, R.P., Swan, H.B., Harrison, P.L., Eyre, B.D.: Effects of environmental factors on dimethylated sulphur compounds and their potential role in the antioxidant system of the coral holobiont. Limnol. Oceanogr. 59(3), 758–768 (2014). doi: 10.4319/lo.2014.59.3.0758 CrossRefGoogle Scholar
  19. Ehn, M., Thornton, J.A., Kleist, E., Sipila, M., Junninen, H., Pullinen, I., Springer, M., et al.: A large source of low-volatility secondary organic aerosol. Nature 506, 476–479 (2014). doi: 10.1038/nature13032 CrossRefGoogle Scholar
  20. Exton, D.A., Suggett, D.J., McGenity, T.J., Steinke, M.: Chlorophyll-normalized isoprene production in laboratory cultures of marine microalgae and implications for global models. Limnol. Oceanogr. 58, 1301–1311 (2013)Google Scholar
  21. Exton, D.A., McGenity, T.J., Steinke, M., Smith, D.J., Suggett, D.J.: Uncovering the volatile nature of tropical coastal marine ecosystems in a changing world. Glob. Chang. Biol. 21, 1383–1394 (2015). doi: 10.1111/gcb.12764 CrossRefGoogle Scholar
  22. Facchini, M.C., Decesari, S., Rinaldi, M., Carbone, C., Finessi, E., Mircea, M., Fuzzi, S., Moretti, F., Tagliavini, E., Ceburnis, D., O’Dowd, C.D.: Important source of marine secondary organic aerosol from biogenic amines. Environ. Sci. Technol. 42(24), 9116–9121 (2008)CrossRefGoogle Scholar
  23. Fan, J., Zhang, R.: Atmospheric oxidation mechanism of isoprene. Environ. Chem. 1, 140–149 (2004). doi: 10.1071/EN04045 CrossRefGoogle Scholar
  24. Finlayson-Pitts, B.J., Pitts Jr., J.N.: Chemistry of the Upper and Lower Atmosphere: Theory, Experiments, and Applications. Academic, San Diego (2000)Google Scholar
  25. Fischer, E., Jones, G.: Atmospheric dimethylsulphide production from corals in the Great Barrier Reef and links to solar radiation, climate and coral bleaching. Biogeochemistry 110(1–3), 31–46 (2012). doi: 10.1007/s10533-012-9719-y CrossRefGoogle Scholar
  26. Fischer, E.V., Jacob, D.J., Millet, D.B., Yantosca, R.M., Mao, J.: The role of the ocean in the global atmospheric budget of acetone. Geophys. Res. Lett. 39(L01807), 1–5 (2012). doi: 10.1029/2011GL050086 Google Scholar
  27. Fletcher, C.A., Johnson, G.R., Ristovski, Z.D.: Hygroscopic and volatile properties of marine aerosol observed at Cape Grim during the P2P campaign. Environ. Chem. 4, 162–171 (2007)CrossRefGoogle Scholar
  28. Galbally, I.E., Lawson, S.J., Weeks, I.A., Bentley, S.T., Gillett, R.W., Meyer, M., Goldstein, A.H.: Volatile organic compounds in marine air at Cape Grim. Environ. Chem. 4(3), 178–182 (2007)CrossRefGoogle Scholar
  29. Gantt, B., Meskhidze, N., Kamykowski, D.: A new physically-based quantification of isoprene and primary organic aerosol emissions from the world’s oceans. Atmos. Chem. Phys. 9, 4915–4927 (2009). doi: 10.5194/acp-9-4915-2009 CrossRefGoogle Scholar
  30. Gillett, R.W., Ayers, G.P., Ivey, J.P., Gras, J.L.: Measurement of dimethyl sulfide, sulfur dioxide, methane sulfonic acid and non sea salt sulfate at the Cape Grim baseline station. In: Restelli, G., Angeletti, G. (eds.) Dimethylsulphide: Oceans, Atmosphere and Climate, pp. 117–128. Kluwer Academic Publishers, Dordrecht, Netherlands (1993)CrossRefGoogle Scholar
  31. Hawkins, L.N., Russell, L.M.: Polysaccharides, proteins, and phytoplankton fragments: four chemically distinct types of marine primary organic aerosol classified by single particle spectromicroscopy. Adv. Meteorol. 612132, 1–14 (2010). doi: 10.1155/2010/612132 CrossRefGoogle Scholar
  32. Hoegh-Guldberg, O., Dove, S.: Primary production, nutrient recycling and energy flow through coral reef ecosystems. In: Hutchings, P., Kingsford, M.J., Hoegh-Guldberg, O. (eds.) The Great Barrier Reef: Biology, Environment and Management, pp. 59–73. CSIRO Publishing, Collingwood, Victoria (2008)Google Scholar
  33. Huettel, M., Wild, C., Gonelli, S.: Mucus trap in coral reefs: formation and temporal evolution of particle aggregates caused by coral mucus. Mar. Ecol. Prog. Ser. 307, 69–84 (2006)CrossRefGoogle Scholar
  34. Inomata, Y., Matsunaga, K., Murai, Y., Osada, K., Iwasaka, Y.: Simultaneous measurement of volatile sulfur compounds using ascorbic acid for oxidant removal and gas chromatography - flame photometric detection. J. Chromatogr. A 864(1), 111–119 (1999). doi: 10.1016/S0021-9673(99)00963-2 CrossRefGoogle Scholar
  35. Johnson, G.R., Ristovski, Z.D., D’Anna, B., Morawska, L.: Hygroscopic behaviour of partially volatilised coastal marine aerosols using the volatilisation and humidification tandem differential mobility analyser technique. J. Geophys. Res. 110(D20203), (2005). doi: 10.1029/2004JD005657
  36. Jones, G., Curran, M., Broadbent, A., King, S., Fischer, E., Jones, R.: Factors affecting the cycling of dimethylsulfide and dimethylsulfoniopropionate in coral reef waters of the Great Barrier Reef. Environ. Chem. 4, 310–322 (2007)Google Scholar
  37. Jones, G.B., Fischer, E., Deschaseaux, E.S.M., Harrison, P.L.: The effect of coral bleaching on the cellular concentrations of dimethylsulphoniopropionate in reef corals. J. Exp. Mar. Biol. Ecol. 460, 19–31 (2014). doi: 10.1016/j.jembe.2014.06.003 CrossRefGoogle Scholar
  38. Keskinen, H., Virtanen, A., Joutsensaari, J., Tsagkogeorgas, G., Duplissy, J., Schobesberger, S., Gysel, M., et al.: Evolution of particle composition in CLOUD nucleation experiments. Atmos. Chem. Phys. 13, 5587–5600 (2013). doi: 10.5194/acp-13-5587-2013
  39. Kittler, P., Swan, H., Ivey, J.: An indicating oxidant scrubber for the measurement of atmospheric dimethylsulphide. Atmos. Environ. 26A(14), 2661–2664 (1992). doi: 10.1016/0960-1686(92)90117-4 CrossRefGoogle Scholar
  40. Kleypas, J.A., Danabasoglu, G., Lough, J.M.: Potential role of the ocean thermostat in determining regional differences in coral reef bleaching events. Geophys. Res. Lett. 35, L03613 (2008). doi: 10.1029/2007GL032257 CrossRefGoogle Scholar
  41. Kreidenweis, S.M., Seinfeld, J.H.: Nucleation of sulfuric acid-water and methanesulfonic acid-water solution particles: implications for the atmospheric chemistry of organosulfur species. Atmos. Environ. 22, 283–296 (1988)CrossRefGoogle Scholar
  42. Kroll, J.H., Seinfeld, J.H.: Chemistry of secondary organic aerosol: formation and evolution of low-volatility organics in the atmosphere. Atmos. Environ. 42, 3593–3624 (2008)CrossRefGoogle Scholar
  43. Kroll, J.H., Ng, N.L., Murphy, S.M., Flagan, R.C., Seinfeld, J.H.: Secondary organic aerosol formation from isoprene photooxidation. Environ. Sci. Technol. 40(6), 1869–1877 (2006). doi: 10.1021/es0524301 CrossRefGoogle Scholar
  44. Lawson, S., Galbally, I., Dunne, E., Gras, J.: Measurement of VOCs in marine air at Cape Grim using proton transfer reaction -mass spectrometry (PTR-MS). In: Derek, N., Krummel, P.B. (eds.) Baseline Atmospheric Program Australia 2007–2008, pp. 23–32. Commonwealth of Australia, Melbourne (2011)Google Scholar
  45. Lawson, S.J., Selleck, P.W., Galbally, I.E., Keywood, M.D., Harvey, M.J., Lerot, C., Helmig, D., Ristovski, Z.: Seasonal in situ observations of glyoxal and methylglyoxal over the temperate oceans of the Southern Hemisphere. Atmos. Chem. Phys. 15, 223–240 (2015). doi: 10.5194/acp-15-223-2015 CrossRefGoogle Scholar
  46. Leahy, S.M., Kingsford, M.J., Steinberg, C.R.: Do clouds save the Great Barrier Reef? Satellite imagery elucidates the cloud-SST relationship at the local scale. PLoS ONE 8(7), e70400 (2013). doi: 10.1371/journal.pone.0070400 CrossRefGoogle Scholar
  47. Leck, C., Bigg, E.K.: A modified aerosol-cloud-climate feedback hypothesis. Environ. Chem. 4(6), 400–403 (2007). doi: 10.1071/EN07061 CrossRefGoogle Scholar
  48. Leck, C., Bigg, E.K.: Comparison of sources and nature of the tropical aerosol with the summer high Arctic aerosol. Tellus 60B(1), 118–126 (2008). doi: 10.1111/j.1600-0889.2007.00315.x Google Scholar
  49. Mc Keen, S.A., Gierczak, T., Burkholder, J.B., Wennberg, P.O., Hanisco, E.R., Keim, R.-S., Gao, S.C., Liu, A.R., Ravishankara, A.R., Fahey, D.W.: The photochemistry of acetone in the upper troposphere: a source of odd-hydrogen radicals. Geophys. Res. Lett. 24, 3177–3180 (1997)CrossRefGoogle Scholar
  50. McClenny, W.A., Holdren, M.W.: Method TO-15: Determination of Volatile Organic Compounds (VOCs) in Air Collected in Specially-Prepared Canisters and Analyzed by Gas Chromatography/ Mass Spectrometry (GC/MS), p. 67. US Environmental Protection Agency, Cincinnati (1999)Google Scholar
  51. Meikle, P., Richards, G.N., Yellowlees, D.: Structural determination of the oligosaccharide side chains from a glycoprotein isolated from the mucus of the coral Acropora formosa. J. Biol. Chem. 262(35), 16941–16947 (1987)Google Scholar
  52. Meinardi, S., Simpson, I.J., Blake, N.J., Blake, D.R., Rowland, F.S.: Dimethyl disulfide (DMDS) and dimethyl sulfide (DMS) emissions from biomass burning in Australia. Geophys. Res. Lett. 30(9), 1–4 (2003). doi: 10.1029/2003GL016967 CrossRefGoogle Scholar
  53. Meskhidze, N., Nenes, A.: Phytoplankton and cloudiness in the Southern Ocean. Science 314, 1419–1423 (2006)CrossRefGoogle Scholar
  54. Meskhidze, N., Nenes, A.: Effects of ocean ecosystem on marine aerosol-cloud interaction. Adv. Meteorol. 239808, 1–13 (2010). doi: 10.1155/2010/250896 Google Scholar
  55. Modini, R.L., Ristovski, Z.D., Johnson, G.R., He, C., Surawski, N., Morawska, L., Suni, T., Kulmala, M.: New particle formation and growth at a remote, subtropical coastal location. Atmos. Chem. Phys. Discuss. 9, 12101–12139 (2009)CrossRefGoogle Scholar
  56. Nemecek-Marshall, M., Wojciechowski, C., Kuzma, J., Silver, G., Fall, R.: Marine Vibrio species produce the volatile organic compound acetone. Appl. Environ. Microbiol. 61(1), 44–47 (1995)Google Scholar
  57. Nishino, N., Arquero, K.D., Dawson, M.L., Finlayson-Pitts, B.J.: Infrared studies of the reaction of methanesulfonic acid with trimethylamine on surfaces. Environ. Sci. Technol. 48(1), 323–330 (2014). doi: 10.1021/es403845b CrossRefGoogle Scholar
  58. O’Dowd, C.D., Facchini, M.C., Cavalli, F., Ceburnis, D., Mircea, M., Decesari, S., Fuzzi, S., Yoon, Y.J., Putaud, J.P.: Biologically driven organic contribution to marine aerosol. Nature 431(7009), 676–680 (2004)CrossRefGoogle Scholar
  59. Omori, Y., Tanimoto, H., Inomata, S., Wada, S., Thume, K., Pohnert, G.: Enhancement of dimethylsulfide production by anoxic stress in natural seawater. Geophys. Res. Lett. 42(10), 4047–4053 (2015). doi: 10.1002/2015GL063546 CrossRefGoogle Scholar
  60. Ooki, A., Yokouchi, Y.: Dichloromethane in the Indian Ocean: evidence for in-situ production in seawater. Mar. Chem. 124(1–4), 119–124 (2011). doi: 10.1016/j.marchem.2011.01.001 CrossRefGoogle Scholar
  61. Ooki, A., Nomura, D., Nishino, S., Kikuchi, T., Yokouchi, Y.: A global-scale map of isoprene and volatile organic iodine in surface seawater of the Arctic, Northwest Pacific, Indian, and Southern oceans. J. Geophys. Res. Oceans 120(6), 4108–4128 (2015). doi: 10.1002/2014JC010519 CrossRefGoogle Scholar
  62. Osborne, K., Dolman, A.M., Burgess, S.C., Johns, K.A.: Disturbance and the dynamics of coral cover on the Great Barrier Reef (1995–2009). PLoS ONE 6(3), e17516 (2011). doi: 10.1371/journal.pone.0017516 CrossRefGoogle Scholar
  63. Pandis, S.N., Donahue, N.M., Robinson, A.L.: Atmospheric evolution and chemical aging of organic particulate matter. Air Qual. Clim. Chang. 47(4), 38–41 (2013)Google Scholar
  64. Quinn, P.K., Bates, T.S., Johnson, J.E., Covert, D.S., Charlson, R.J.: Interactions between the sulfur and reduced nitrogen cycles over the central Pacific ocean. J. Geophys. Res. 95, 16405–16416 (1990)CrossRefGoogle Scholar
  65. Raina, J.-B., Tapiolas, D., Willis, B.L., Bourne, D.G.: Coral-associated bacteria and their role in the biogeochemical cycling of sulfur. Appl. Environ. Microbiol. 75(11), 3492–3501 (2009). doi: 10.1128/AEM.02567-08 CrossRefGoogle Scholar
  66. Raina, J.-B., Tapiolas, D.M., Foret, S., Lutz, A., Abrego, D., Ceh, J., Seneca, F.O., Clode, P.L., Bourne, D.G., Willis, B.L., Motti, C.A.: DMSP biosynthesis by an animal and its role in coral thermal stress response. Nature 502, 677–680 (2013)CrossRefGoogle Scholar
  67. Riccobono, F., Schobesberger, S., Scott, C.E., Dommen, J., Ortega, I.K., Rondo, L., Almeida, J., et al.: Oxidation products of biogenic emissions contribute to nucleation of atmospheric particles. Science 344(6185), 717–721 (2014). doi: 10.1126/science.1243527 CrossRefGoogle Scholar
  68. Rinaldi, M., Decesari, S., Finessi, E., Giulianelli, L., Carbone, C., Fuzzi, S., O’Dowd, C.D., Ceburnis, D., Facchini, M.C.: Primary and secondary organic marine aerosol and oceanic biological activity: recent results and new perspectives for future studies. Adv. Meteorol. 310682, 1–10 (2010). doi: 10.1155/2010/310682 CrossRefGoogle Scholar
  69. Ristovski, Z.D., Suni, T., Kulmala, M., Boy, M., Meyer, N.K., Duplissy, J., Turnipseed, A., Morawska, L., Baltensperger, U.: The role of sulphates and organic vapours in new particle formation in a eucalypt forest. Atmos. Chem. Phys. 10, 2919–2926 (2010)CrossRefGoogle Scholar
  70. Russell, D.W., Howard, A.G.: The determination of DMSP in marine algae and salt marsh plants. In: Kiene, R.P., Visscher, P.T., Keller, M.D., Kirst, G.O. (eds.) Biological and Environmental Chemistry of DMSP and Related Sulfonium Compounds, pp. 155–163. Plenum Press, New York (1996)CrossRefGoogle Scholar
  71. Seinfeld, J.H., Pandis, S.N.: Atmospheric Chemistry and Physics. Wiley, New York (1998)Google Scholar
  72. Shaw, S.L., Gantt, B., Meskhidze, N.: Production and emissions of marine isoprene and monoterpenes: a review. Adv. Meteorol. 408696, 1–24 (2010). doi: 10.1155/2010/408696 CrossRefGoogle Scholar
  73. Smith, M.H.: Sea-salt particles and the CLAW hypothesis. Environ. Chem. 4(6), 391–395 (2007)CrossRefGoogle Scholar
  74. Steinke, M., Malin, G., Gibb, S.W., Burkill, P.H.: Vertical and temporal variability of DMSP lyase activity in a coccolithophorid bloom in the northern North Sea. Deep Sea Res. Part II 49, 3001–3016 (2002)CrossRefGoogle Scholar
  75. Surratt, J.D., Kroll, J.H., Kleindienst, T.E., Edney, E.O., Claeys, M., Sorooshian, A., Ng, N.L., Offenberg, J.H., Lewandowski, M., Jaoui, M., Flagan, R.C., Seinfeld, J.H.: Evidence for organosulfates in secondary organic aerosol. Environ. Sci. Technol. 41(2), 517–527 (2007). doi: 10.1021/es062081q CrossRefGoogle Scholar
  76. Swan, H.B., Ivey, J.P.: Analysis of atmospheric sulfur gases by capillary gas chromatography with atomic-emission detection. J. High Resolut. Chromatogr. 17(12), 814–820 (1994)CrossRefGoogle Scholar
  77. Swan, H.B., Jones, G.B., Deschaseaux, E.: Dimethylsulfide, climate and coral reef ecosystems. Paper presented at the The 12th International Coral Reef Symposium, Paper 4A-5 in Water motion, abiotic and biotic processes on coral reefs, Cairns, Australia, 9–13th July (2012)Google Scholar
  78. Tanimoto, H., Kameyama, S., Iwata, T., Inomata, S., Omori, Y.: Measurements of air-sea exchange of dimethyl sulfide and acetone by PTR-MS coupled with gradient flux technique. Environ. Sci. Technol. 48, 526–533 (2014). doi: 10.1021/es4032562 CrossRefGoogle Scholar
  79. Tapiolas, D.M., Motti, C.A., Holloway, P., Boyle, S.G.: High levels of acrylate in the Great Barrier Reef coral Acropora millepora. Coral Reefs 29, 621–625 (2010)CrossRefGoogle Scholar
  80. Tapiolas, D.M., Raina, J.-B., Lutz, A., Willis, B.L., Motti, C.A.: Direct measurement of dimethylsulfoniopropionate (DMSP) in reef-building corals using quantitative nuclear magnetic resonance (qNMR) spectroscopy. J. Exp. Mar. Biol. Ecol. 443, 85–89 (2013)CrossRefGoogle Scholar
  81. Tong, C., Blanco, M., Goddard III, W.A., Seinfeld, J.H.: Secondary organic aerosol formation by heterogeneous reactions of aldehydes and ketones: a quantum mechanical study. Environ. Sci. Technol. 40(7), 2333–2338 (2006). doi: 10.1021/es0519785 CrossRefGoogle Scholar
  82. Turnipseed, A.A., Ravishankara, A.R.: The atmospheric oxidation of dimethyl sulfide: elementary steps in a complex mechanism. In: Restelli, G., Angeletti, G. (eds.) Dimethylsulphide: Oceans, Atmosphere and Climate, pp. 185–195. Kluwer Academic Publishers, Netherlands (1993)CrossRefGoogle Scholar
  83. Vaattovaara, P., Räsänen, M., Kühn, T., Joutsensaari, J., Laaksonen, A.: A method for detecting the presence of organic fraction in nucleation mode sized particles. Atmos. Chem. Phys. 5, 3595–3620 (2005)CrossRefGoogle Scholar
  84. Vaattovaara, P., Huttunen, P.E., Yoon, Y.J., Joutsensaari, J., Lehtinen, K.E.J., O’Dowd, C.D., Laaksonen, A.: The composition of nucleation and Aitken mode particles during coastal nucleation events: evidence for marine secondary organic contribution. Atmos. Chem. Phys. 6, 4601–4616 (2006)CrossRefGoogle Scholar
  85. Vaattovaara, P., Petäjä, T., Joutsensaari, J., Miettinen, P., Zaprudin, B., Kortelainen, A., Heijari, J., Yli-Pirilä, P., Aalto, P., Worsnop, D.R., Laaksonen, A.: The evolution of nucleation and Aitken-mode particle compositions in a boreal forest environment during clean and pollution-affected new particle formation events. Boreal Environ. Res. 14, 662–682 (2009)Google Scholar
  86. Vaattovaara, P., Cravigan, L., Ristovski, Z., Mallet, M., Laaksonen, A., Lawson, S., Talbot, N., Olivares, G., Harvey, M., Law, C.: Organic contribution on particles formed on Pacific Ocean: from phytoplankton blooms to climate. World Academy of Science Technology Engineering. Int. J.Chem. Mater. Sci. Eng. 7(10), 60–63 (2013a)Google Scholar
  87. Vaattovaara, P., Swan, H.B., Jones, G.B., Deschaseaux, E., Miljevic, B., Laaksonen, A., Ristovski, Z.D.: The contribution of sulfate and oxidized organics in climatically important ultrafine particles at a coral reef environment. Int. J. Env. Chem. Ecol. Geol. Geophys. Eng. 7(10), 720–724 (2013b)Google Scholar
  88. Vallina, S.M., Simó, R.: Revisiting the CLAW hypothesis. Environ. Chem. 4(6), 384–387 (2007)CrossRefGoogle Scholar
  89. Van Alstyne, K.L., Dominique, V.J.I., Muller-parker, G.: Is dimethylsulfoniopropionate (DMSP) produced by the symbionts or the host in an anemone-zooxanthella symbiosis? Coral Reefs 28, 167–176 (2008)CrossRefGoogle Scholar
  90. Warneck, P., Williams, J.: The Atmospheric Chemist’s Companion: Numerical Data for Use in the Atmospheric Sciences, 1st edn. Springer, Dordrecht (2012)CrossRefGoogle Scholar
  91. Warneke, C., de Gouw, J.A.: Organic trace gas composition of the marine boundary layer over the northwest Indian Ocean in April 2000. Atmos. Environ. 35(34), 5923–5933 (2001). doi: 10.1016/S1352-2310(01)00384-3 CrossRefGoogle Scholar
  92. Williams, J., Holzinger, R., Gros, V., Xu, X., Atlas, E., Wallace, D.W.R.: Measurements of organic species in air and seawater from the tropical Atlantic. Geophys. Res. Lett. 31(L23S06), 1–5 (2004). doi: 10.1029/2004GL020012 Google Scholar
  93. Woodhouse, M.T., Mann, G.W., Carslaw, K.S., Boucher, O.: Sensitivity of cloud condensation nuclei to regional changes in dimethyl-sulphide emissions. Atmos. Chem. Phys. 13, 2723–2733 (2013). doi: 10.5194/acp-13-2723-2013 CrossRefGoogle Scholar
  94. Woolfenden, E.A., McClenny, W.A.: Method TO-17: Determination of Volatile Organic Compounds in Ambient Air Using Active Sampling Onto Sorbent Tubes, p. 53. US Environmental Protection Agency, Cincinnati (1999)Google Scholar
  95. Yassaa, N., Peeken, I., Zöllner, E., Bluhm, K., Arnold, S., Sparclen, D., Williams, J.: Evidence for marine production of monoterpenes. Environ. Chem. 5, 391–401 (2008)CrossRefGoogle Scholar
  96. Yin, F., Grosjean, D., Seinfeld, J.H.: Photooxidation of dimethyl sulfide and dimethyl disulfide. I: mechanism development. J. Atmos. Chem. 11, 309–364 (1990)CrossRefGoogle Scholar
  97. Yoch, D.C.: Dimethylsulfoniopropionate: its sources, role in the marine food web, and biological degradation to dimethylsulfide. Appl. Environ. Microbiol. 68(12), 5804–5815 (2002)CrossRefGoogle Scholar
  98. Yokouchi, Y., Li, H.-J., Machida, T.: Isoprene in the marine boundary layer (Southeast Asian Sea, eastern Indian Ocean, and Southern Ocean): comparison with dimethyl sulfide and bromoform. J. Geophys. Res. 104(D7), 8067–8076 (1999)CrossRefGoogle Scholar
  99. Yost, D.M., Mitchelmore, C.L.: Dimethylsulfoniopropionate (DMSP) lyase activity in different strains of the symbiotic alga Symbiodinium microadriaticum. Mar. Ecol. Prog. Ser. 386, 61–70 (2009). doi: 10.3354/meps08031 CrossRefGoogle Scholar
  100. Yost, D.M., Mitchelmore, C.L.: Determination of total and particulate dimethylsulfoniopropionate (DMSP) concentrations in four scleractinian coral species: a comparison of methods. J. Exp. Mar. Biol. Ecol. 395, 72–79 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Hilton B. Swan
    • 1
    • 2
  • Robert W. Crough
    • 2
  • Petri Vaattovaara
    • 3
    • 4
  • Graham B. Jones
    • 1
  • Elisabeth S. M. Deschaseaux
    • 1
  • Bradley D. Eyre
    • 5
  • Branka Miljevic
    • 6
  • Zoran D. Ristovski
    • 6
  1. 1.School of Environment, Science and EngineeringSouthern Cross UniversityLismoreAustralia
  2. 2.Chemical and Biological MetrologyNational Measurement InstituteNorth RydeAustralia
  3. 3.University of Eastern FinlandKuopioFinland
  4. 4.Centre for Climate and Air Pollution Studies, School of PhysicsNational University of IrelandGalwayIreland
  5. 5.Centre for Coastal BiogeochemistrySouthern Cross UniversityLismoreAustralia
  6. 6.Science and Engineering FacultyQueensland University of Technology (QUT)BrisbaneAustralia

Personalised recommendations