Journal of Atmospheric Chemistry

, Volume 73, Issue 2, pp 207–221 | Cite as

Carbon isotopic (14C and 13C) characterization of fossil-fuel derived dissolved organic carbon in wet precipitation in Shandong Province, China

  • Xuchen Wang
  • Tiantian Ge
  • Caili Xu
  • Yuejun Xue
  • Chunle Luo
Article

Abstract

We present results from a 1-year study of radiocarbon and stable carbon isotope measurement of dissolved organic carbon (DOC) of wet precipitation samples collected in the Shandong province of China. A total of 32 rainfall and 4 snow samples were collected from two coastal cities (Qingdao and Yantai) and one inland site (Taian) during 2014. Concentrations of DOC in the rainwater and snow samples varied widely from 28 to 616 μM. In general, rainwater originating from marine sources had relatively low DOC concentrations compared with continentally generated precipitation. Values of δ13C-DOC and Δ14C-DOC in the snow and rainwater ranged from −19.0 to −29.4 ‰ and −23 to −494 ‰, with corresponding radiocarbon ages of 125 to 5410 years before present. The dominant DOC in the wet precipitation had a relatively old 14C age (average 2841 years) and a depleted 13C value (average −24.4 ‰), indicating the mixing of contemporary organic carbon with 14C-depleted fossil fuel-derived soluble organic carbon in the atmosphere. Using a dual isotopic two-endmember model, we calculate that 7 % to 52 % of DOC in the snow and rainfall originated from fossil fuels. It is estimated that the flux of DOC in continental rainfall of China is 23 × 1012 g C yr−1 and of this, 7.1 × 1012 g C yr−1 could be fossil-fuel OC. On a global scale, the DOC flux in rainfall is estimated to be 357 Tg C yr−1, and 110 Tg C yr−1 could be fossil fuel-derived. Our study demonstrates that wet precipitation is an important removal process for old fossil fuel carbon from the atmosphere. This removal mechanism could play an important role in the carbon cycle, especially for the anthropogenically derived fraction, and it should be taken into consideration in global carbon cycle models.

Keywords

Radiocarbon Fossil fuel emission Organic carbon Wet precipitation, Atmospheric pollution 

References

  1. Asman, W.A.H., Jonker, P.J., Slanina, J., Baard, J.H.: Neutralization of acid in precipitation and some results of sequential sampling. In: Georgii, H.W., Pankrath, J. (eds.) Deposition of Atmospheric Pollutants, pp. 115–123. Reidel, Dordrecht (1982)CrossRefGoogle Scholar
  2. Avery Jr., G.B., Willey, J.D., Kieber, R.J.: Carbon isotopic characterization of dissolved organic carbon in rainwater: Terrestrial and marine influences. Atmos. Environ. 40, 7539–7545 (2006)CrossRefGoogle Scholar
  3. Avery Jr., G.B., Dickson Brown, J.L., Willey, J.D., Kieber, R.J.: Assessment of rainwater volatile organic carbon in southeastern North Carolina, USA. Atmos. Environ. 43, 2678–2681 (2009)CrossRefGoogle Scholar
  4. Avery Jr., G.B., Biswas, K.F., Mead, R., Southwell, M., Willey, J.D., Kieber, R.J.: Carbon isotopic characterization of hydrophobic dissolved organic carbon in rainwater. Atmos. Environ. 68, 230–234 (2013)CrossRefGoogle Scholar
  5. Bauer, J.E., Williams, P.M., Druffel, E.R.M.: 14C activity of dissolved organic carbon fractions in the North Central Pacific and Sargasso Sea. Nature 357, 667–670 (1992)CrossRefGoogle Scholar
  6. Berner, R.A.: Biogeochemical cycles of carbon and sulfur and their effect on atmospheric oxygen over Phanerozic time. Palaeogeogr. Palaeoclimatol. Palaeoecol. 73, 97–122 (1989)CrossRefGoogle Scholar
  7. Cao, Y.Z., Wang, S.Y., Zhang, G., Luo, J.Y., Lu, S.Y.: Chemical characteristics of wet precipitation at an urban site of Guangzhou, South China. Atmos. Res. 94, 462–469 (2009)CrossRefGoogle Scholar
  8. Cornell, S., Mace, K., Coeppicus, S., Duce, R., Huebert, B., Jickells, T., Zhuang, L.Z.: Organic nitrogen in Hawaiian rain and aerosol. J. Geophys. Res.-Atmos. 106, 7973–7983 (2001)CrossRefGoogle Scholar
  9. Druffel, E.R.M., Williams, P.M., Bauer, J.E., Ertel, J.R.: Cycling of dissolved and particulate organic matter in the open ocean. J. Geophys. Res. 97, 15639–15659 (1992)CrossRefGoogle Scholar
  10. Galloway, J.N., Zhao, D., Xiong, J., Liken, G.E.: Acid rain: China, United States, and a remote area. Science 236, 1559–1562 (1987)CrossRefGoogle Scholar
  11. Hedges, J.I., Keil, R.G.: Sedimentary organic matter preservation: an assessment and speculative synthesis. Mar. Chem. 49, 81–115 (1995)CrossRefGoogle Scholar
  12. Hedges, J.I., Keil, R.G., Benner, R.: What happens to terrestrial organic matter in the ocean. Org. Geochem. 27, 195–212 (1997)CrossRefGoogle Scholar
  13. Huang, X.F., Li, X., He, L.Y., Feng, N., Hu, M., Niu, Y.W., Zeng, L.W.: 5-year study of rainwater chemistry in a coastal mega-city in South China. Atmos. Res. 97, 185–193 (2010)CrossRefGoogle Scholar
  14. Huang, R.J., Zhang, Y.L., Bozzetti, C., Ho, K.F., Cao, J.J., et al.: High secondary aerosol contribution to particulate pollution during haze events in China. Nature 514, 218–222 (2014)Google Scholar
  15. Inomata, Y., Igarashi, Y., Chiba, M., Shinoda, Y., Takahashi, H.: Dry and wet deposition of water-insoluble dust and water-soluble chemical species during spring 2007 in Tsukuba, Japan. Atmos. Environ. 43, 4503–4512 (2009)CrossRefGoogle Scholar
  16. Kieber, R.J., Long, M.S., Willey, J.D.: Factors influencing nitrogen speciation in coastal rainwaters. J. Atmos. Chem. 52, 81–99 (2005)CrossRefGoogle Scholar
  17. Klouda, G.A., Lewis, C.W., Rasmussen, R.A., Rhoderick, G.C., Sams, R.L., Stevens, R.K.: Radiocarbon measurements of atmospheric volatile organic compounds: Quantifying the biogenic contribution. Environ. Sci. Technol. 30, 1098–1105 (1996)CrossRefGoogle Scholar
  18. Kodina, L.A.: Carbon isotope fractionation in various forms of biogenic organic matter: I. Partitionaing of carbon isotopes between the main polymers of higher plant biomass. Geochem. Int. 48, 1157–1165 (2010)CrossRefGoogle Scholar
  19. Krom, M.D., Herut, B., Mantoura, R.F.C.: Nutrient budget for the Eastern Mediterranean: implications for P limitation. Limnol. Oceanogr. 49, 1582–1592 (2004)CrossRefGoogle Scholar
  20. Larsen, B.R., Brussol, C., Kotzias, D., Veltkamp, T., Zwaagstra, O., Slanina, J.: Sample preparation for radiocarbon (14C) measurements of carbonyl compounds in the atmosphere: Quantifying the biogenic contribution. Atmos. Environ. 32, 1485–1492 (1998)CrossRefGoogle Scholar
  21. Liu, J.W., Li, J., Zhang, Y.L., Liu, D., Ding, P., et al.: Source apportionment using radiocarbon and organic tracers for PM2.5 carbonaceous aerosols in Guangzhou, South China: Contrasting local- and regional-scale haze events. Environ. Sci. Technol. 48, 12002–12011 (2014)CrossRefGoogle Scholar
  22. Martin, J.M., Elbaz-Poulichet, F., Guieu, C., Love-Pilot, M.D., Han, G.: River versus atmospheric input of material to the Mediterranean Sea: an overview. Mar. Chem. 28, 159–182 (1989)CrossRefGoogle Scholar
  23. Pan, Y., Wang, Y., Xin, J., Tang, G., Song, T.: Study on dissolved organic carbon in precipitation in northern China. Atmos. Environ. 44, 2350–2357 (2010)CrossRefGoogle Scholar
  24. Raymond, P.A.: The composition and transport of organic carbon in rainfall: insight from the natural (13C and 14C) isotopes of carbon. Geophys. Res. Lett. 32, L14402 (2005). doi:10.1029/2005GL022879 CrossRefGoogle Scholar
  25. Stuiver, M., Polach, H.A.: Discussion: reporting of 14C data. Radiocarbon 19, 355–363 (1977)Google Scholar
  26. Tang, Y.: Organic acids in coastal North Carolina rainwater. Master’s thesis, University of North Carolina at Wilmington (1998)Google Scholar
  27. Walker, J.T., Aneja, V.P., Dickey, D.A.: Atmospheric transport and wet deposition of ammonium in North Carolina. Atmos. Environ. 34, 3407–3418 (2000)CrossRefGoogle Scholar
  28. Wang, Y., Wai, K.M., Gao, J., Liu, X., Wang, W.X.: The impacts of anthropogenic emissions on the precipitation chemistry at an elevated site in North-eastern China. Atmos. Environ. 42, 2959–2970 (2008)CrossRefGoogle Scholar
  29. Wang, X.C., Ma, H.Q., Li, R.H., Song, Z.S., Wu, J.P.: Seasonal fluxes and source variation of organic carbon transported by two major Chinese Rivers: The Yellow River and Changjiang (Yangtze) River. Glob. Biogeochem. Cycles 26, GB2025 (2012). doi:10.1029/2011GB004130 Google Scholar
  30. Willey, J.D., Kieber, R.J., Eyman, M.S., Avery Jr., G.B.: Rainwater dissolved organic carbon: concentrations and global flux. Global Biogeochem. Cycles 14, 139–148 (2000)CrossRefGoogle Scholar
  31. Williams, P.M., Druffel, E.R.M.: Radiocarbon in dissolved organic matter in the central North Pacific Ocean. Nature 330, 246–248 (1987)CrossRefGoogle Scholar
  32. Xu, Y., Shen, P.: Stable carbon isotopic geochemistry of fossil fuels in China. Sci. China B 4, 409–418 (1990) (in Chinese)Google Scholar
  33. Xu, C.L., Luo, C.L., Xue, Y.J., Wang, X.C.: Concentration and source assessment of dissolved organic carbon, dissolved inorganic carbon and nitrogen in snow and rainwater in Shandong Province. Acta Sci. Circumst. (in press) (2015) (in Chinese)Google Scholar
  34. Xue, Y.J., Ge, T.T., Wang, X.C.: An effective method of UV-Oxidation of dissolved organic carbon in natural waters for radiocarbon analysis by accelerator mass spectrometry. J. Ocean Univ. China (2015) (accepted)Google Scholar
  35. Yan, G., Kim, G.: Dissolved organic carbon in the precipitation of Seoul, Korea: implications for global wet depositional flux of fossil-fuel derived organic carbon. Atmos. Environ. 59, 117–124 (2012)CrossRefGoogle Scholar
  36. Zhang, M., Wang, S., Wu, F., Yuan, X., Zhang, Y.: Chemical compositions of wet precipitation and anthropogenic influences at a developing urban site in southeastern China. Atmos. Res. 84, 311–322 (2007)CrossRefGoogle Scholar
  37. Zhang, Y.L., Huang, R.J., Haddad, I., Ho, K.F., Cao, J.I., et al.: Fossil vs. non-fossil sources of fine carbonaceous aerosols in four Chinese cities during the extreme winter haze episode of 2013. Atmos. Chem. Phys. 15, 1299–1321 (2015a)CrossRefGoogle Scholar
  38. Zhang, Y.L., Cerqueira, M., Salazar, G., Zotter, P., Hueglin, C., et al.: Wet deposition of fossil and non-fossil derived particulate carbon: Insights from radiocarbon measurement. Atmos. Environ. 115, 257–262 (2015b)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Xuchen Wang
    • 1
    • 2
  • Tiantian Ge
    • 1
  • Caili Xu
    • 1
  • Yuejun Xue
    • 1
  • Chunle Luo
    • 1
  1. 1.Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical EngineeringOcean University of ChinaQingdaoChina
  2. 2.Qingdao Collaborative Innovation Center of Marine Science and TechnologyQingdaoChina

Personalised recommendations