Journal of Atmospheric Chemistry

, Volume 73, Issue 2, pp 181–205 | Cite as

Characterisation of water-soluble organic aerosols at a site on the southwest coast of India

  • Prashant HegdeEmail author
  • Kimitaka Kawamura
  • I. A. Girach
  • Prabha R. Nair


Aerosol samples collected over a tropical location, Thumba, southernmost West Coast of India were analyzed for the abundance of homologous dicarboxylic acids (C2 to C12), oxocarboxylic acids (ωC2 to ωC9, pyruvic acid), α-dicarbonyls (glyoxal and methylglyoxal), organic and elemental carbon. Among the measured organics, oxalic acid was found to be the most abundant species followed by succinic and/or malonic acids. As oxoacid and α-carbonyl groups, glyoxylic acid and glyoxal, respectively, were observed to be dominant. On average, dicarboxylic acids accounted almost 2.1 ± 0.7 % of the aerosol total organic carbon. Among the aerosols over Thumba, two types of formation pathways were noticed for oxalic acid. During the post-monsoon and winter periods, the photo-oxidation of biogenic and anthropogenic volatile organic compounds lead to the formation of oxalic acid through a chain reaction involving glyoxal, methylglyoxal, pyruvic and glyoxylic acids. In contrast, during the pre-monsoon, the oxidative degradation of the biogenic unsaturated fatty acids give rise to succinic acid, which can be decomposed to malonic acid and then to oxalic acid. The observed seasonal variations in acid concentrations are consistent with photochemical production and the subsequent accumulation under favourable meteorological conditions prevailing over the region.


Organic aerosols Dicarboxylic acid Biomass burning Anthropogenic sources Seasonal variation 



This study was partly supported by Japan Society for the Promotion of Science (JSPS) through grant-in-aid Nos. 19204055 and 24221001. We also appreciate the financial support of a JSPS fellowship to P.H., during which the author was on sabbatical from Indian Space Research Organisation (ISRO), Government of India.


  1. Acker K., Mertes S., Moller D., Wieprecht W., Auel R., Kalasz D.: Case study of cloud physical and chemical processes in low clouds at Mt. Brocken. Atmos. Res. 64, 41–51 (2002)CrossRefGoogle Scholar
  2. Agarwal S., Aggarwal S.G., Okuzawa K., Kawamura K.: Size distributions of dicarboxylic acids, ketoacids, α-dicarbonyls, sugars, WSOC, OC, EC and inorganic ions in atmospheric particles over Northern Japan: implication for long-range transport of Siberian biomass burning and East Asian polluted aerosols. Atmos. Chem. Phys. 10, 5839–5858 (2010). doi: 10.5194/acp-10-5839-2010 CrossRefGoogle Scholar
  3. Aggarwal S.G., Kawamura K.: Molecular distributions and stable carbon isotopic compositions of dicarboxylic acids and related compounds in aerosols from Sapporo, Japan: implications for photochemical aging during long-range atmospheric transport. J. Geophys. Res. 113, D14301 (2008). doi: 10.1029/2007JD009365 CrossRefGoogle Scholar
  4. Allen A.G., Miguel A.H.: Biomass burning in the Amazon-characterization of the ionic component of aerosols generated from flaming and smoldering rain-forest and savanna. Environ. Sci. Technol. 29(2), 486–493 (1995)CrossRefGoogle Scholar
  5. Andreae M., Crutzen P.J.: Atmospheric aerosols: biogeochemical sources and role in atmospheric chemistry. Science. 276, 1052–1058 (1997)CrossRefGoogle Scholar
  6. Artaxo P., Storms H., Bruynseels F., Grieken R.V., Maenhaut W.: Composition and sources of aerosols from the Amazon Basin. J. Geophys. Res. 93, 1605–1615 (1988)CrossRefGoogle Scholar
  7. Babu S.S., Moorthy K.K.: Aerosol black carbon over a tropical coastal station in India. Geophys. Res. Lett. 29(23), 2098 (2002). doi: 10.1029/2002GL015662 CrossRefGoogle Scholar
  8. Carlson D.J.: Surface microlayer phenolic enrichments indicate sea surface slicks. Nature. 296, 426–429 (1982). doi: 10.1038/296426a0 CrossRefGoogle Scholar
  9. Chandra Mouli P., Venkata Mohan S., Jayarama Reddy S.: Chemical composition of atmospheric aerosols (PM10) at a semi-arid urban site: influence of terrestrial sources. Environ. Monit. Assess. 117, 291–305 (2006). doi: 10.1007/s10661-006-0988-6 CrossRefGoogle Scholar
  10. Chinnam N., Dey S., Tripathi S.N., Sharma M.: Dust events in Kanpur, northern India: Chemical evidence for source and implications to radiative forcing. Geophys. Res. Lett. 33, L08803 (2006). doi: 10.1029/2005GL025278 CrossRefGoogle Scholar
  11. Chowdhury Z., Zheng M., Schauer J.J., Sheesley R.J., Salmon L., Cass G.R., Russell A.: Speciation of ambient fine organic carbon particles and source apportionment of PM2.5 in Indian cities. J. Geophys. Res. 112, D15303 (2007). doi: 10.1029/2007JD008386 CrossRefGoogle Scholar
  12. Das, P. K., 1986, Monsoons, Fifth IMO lecture, WMO, No-613, World Meteorological Organisation. 1986 pp.Google Scholar
  13. Decesari S., Fuzzi S., Facchini M.C., Mircea M., Emblico L., Cavalli F., Maenhaut W., Chi X., Schkolnik G., Falkovich A., Rudich Y., Claeys M., Pashynska V., Vas G., Kourtchev I., Vermeylen R., Hoffer A., Andreae M.O., Tagliavini E., Moretti F., Artaxo P.: Characterization of the organic composition of aerosols from Rondˆnia, Brazil, during the LBASMOCC 2002 experiment and its representation through model compounds. Atmos. Chem. Phys. 6, 375–402 (2006). doi: 10.5194/acp-6-375-2006 CrossRefGoogle Scholar
  14. Ervens B., Feingold G., Frost G.F., Kreidenweis S.M.: A modeling study of aqueous production of dicarboxylic acids: 1. Chemical pathways and speciated organic mass production. J. Geophys. Res. 109, D15205 (2004). doi: 10.1029/2003JD004387 CrossRefGoogle Scholar
  15. Falkovich A.H., Graber E.R., Schkolnik G., Rudich Y., Maenhaut W., Artaxo P.: Low molecular weight organic acids in aerosol particles from Rondônia, Brazil, during the biomass-burning, transition and wet periods. Atmos. Chem. Phys. 5, 781–797 (2005)CrossRefGoogle Scholar
  16. Fletcher C.A., Johnson G.R., Ristovski Z.D., Harvey M.: Hygroscopic and volatile properties of marine aerosol observed at Cape Grim during P2P campaign. Environ. Chem. 4, 162–171 (2007)CrossRefGoogle Scholar
  17. Gadi R., Sarkar A.K., Gera B.S., Mitra A.P., Parashar D.C.: Chemical composition of atmospheric aerosols at New Delhi. Indian. J. Radio Space Phys. 31, 93–97 (2002)Google Scholar
  18. Gao S., Hegg D.A., Hobbs P.V., Kirchstetter T.W., Magi B.I., Sadilek M.: Water-soluble organic components in aerosols associated with savanna fires in southern Africa: identification, evolution, and distribution. J. Geophys. Res. 108(D13), 8491 (2003). doi: 10.1029/2002JD002324 Google Scholar
  19. George S.K., Nair P.R., Parameswaran K., Jacob S., Abraham A.: Seasonal trends in chemical composition of aerosols at a tropical coastal site of India. J. Geophys. Res. 113, D16209 (2008). doi: 10.1029/2007JD009507 CrossRefGoogle Scholar
  20. George, S.K., Nair, P.R., Parameswaran, K., Jacob, S., 2011. Wintertime chemical composition of aerosols at a rural location in the Indo-Gangetic Plains. J. Atmos. Sol.Terr. Phys., 73(13), 1798–1809, doi: 10.1016/j.jastp.2011.04.005.CrossRefGoogle Scholar
  21. Graedel T.T., Hawkins D.T., Claxton L.D.: Atmospheric Chemical Compounds, p. 732. Academic, San Diego (1986)Google Scholar
  22. Graham B., Mayol-Bracero O.L., Guyon P., Roberts G.C., Decesari S., Facchini M.C., Artaxo P., Maenhaut W., Koll P., Andreae M.O.: Water-soluble organic compounds in biomass burning aerosols over Amazonia: 1. Characterization by NMR and GC-MS. J. Geophys. Res. 107(D20), 8047 (2002). doi: 10.1029/2001JD000336 CrossRefGoogle Scholar
  23. Grosjean D., Fung K.: Hydrocarbons and carbonyls in Los Angeles air. J. Air Pollut. Control Assoc. 34, 537–543 (1984)CrossRefGoogle Scholar
  24. Grosjean D., Cauwenberghe K.V., Schmid J.P., Kelley P.E., Pitts Jr. J.N.: Identification of C3 - C10 aliphatic dicarboxylic acids in airborne particulate matter. Environ. Sci. Technol. 12, 313–317 (1978)CrossRefGoogle Scholar
  25. Guenther A., Karl T., Harley P., Wiedinmyer C., Palmer P., Geron C.: Estimates of global terrestrial isoprene emissions using MEGAN (model of emissions of gases and aerosols from nature). Atmos. Chem. Phys. 6, 3181–3210 (2006)CrossRefGoogle Scholar
  26. Hatakeyama S., Tanonaka T., Weng J., Bandow H., Takagi H., Akimoto H.: Ozone-cyclohexene reaction in air: quantitative analyses of particulate products and the reaction mechanism. Environ. Sci. Technol. 19, 935–942 (1985)CrossRefGoogle Scholar
  27. Hatakeyama S., Ohno M., Weng J., Takagi H., Akimoto H.: Mechanism for the formation of gaseous and particulate products from ozone-cycloalkene reactions in air. Environ. Sci. Technol. 21, 52–57 (1987)CrossRefGoogle Scholar
  28. Hegde P., Kawamura K.: Seasonal variations of water-soluble organic carbon, dicarboxylicacids, ketoacids, and α-dicarbonyls in the central Himalayan aerosols. Atmos. Chem. Phys. 12, 6645–6665 (2012). doi: 10.5194/acp-12-6645-2012 CrossRefGoogle Scholar
  29. Hegde P., Sudheer A.K., Sarin M.M., Manjunatha B.R.: Chemical characteristics of atmospheric aerosols over southwest coast of India. Atmos. Environ. 41, 7751–7766 (2007)CrossRefGoogle Scholar
  30. Heidam N.Z.: Atmospheric aerosol factor models, mass and missing data. Atmos. Environ. 16, 1923–1931 (1982)CrossRefGoogle Scholar
  31. Ho K.F., Lee S.C., Cao J.J., Kawamura K., Watanabe T., Cheng Y., Chow J.C.: Dicarboxylic acids, ketocarboxylic acids and dicarbonyls in the urban roadside area of Hong Kong. Atmos. Environ. 40, 3030–3040 (2006). doi: 10.1016/j.atmosenv.2005.11.069 CrossRefGoogle Scholar
  32. Ho K.F., Cao J.J., Lee S.C., Kawamura K., Zhang R.J., Chow J.C., Watson J.G.: Dicarboxylic acids, ketocarboxylic acids, and dicarbonyls in the urban atmosphere of China. J. Geophys. Res. 112, D22S27 (2007). doi: 10.1029/2006JD008011 CrossRefGoogle Scholar
  33. Ho K.F., Lee S.C., Ho S.S.H., Kawamura K., Tachibana E., Cheng Y., Zhu T.: Dicarboxylic acids, ketocarboxylic acids, α-dicarbonyls, fatty acids and benzoic acid in urban aerosols collected during 2006 Campaign of Air Quality Research in Beijing (CAREBeijing-2006). J. Geophys. Res. 115, D19312 (2010). doi: 10.1029/2009JD013304 CrossRefGoogle Scholar
  34. Hobbs P.V., Harrison H., Robinson E.: Atmospheric effects of pollutants. Science. 183, 909–915 (1974)CrossRefGoogle Scholar
  35. Hori M., Sachio O., Naoto M., Sadamu Y.: Activation capability of water soluble organic substances as CCN. Aerosol Sci. 34, 419–448 (2003)CrossRefGoogle Scholar
  36. Hsieh L.-Y., Chen C.-L., Wan M.-W., Tsai C.-H., Tsai Y.I.: Speciation and temporal characterization of dicarboxylic acids in PM2.5 during a PM episode and a period of non-episodic pollution. Atmos. Environ. 42, 6836–6850 (2008). doi: 10.1016/j.atmosenv.2008.05.021 CrossRefGoogle Scholar
  37. Huang X.-F., Hu M., He L.-Y., Tang X.-Y.: Chemical characterization of water-soluble organic acids inPM2.5 in Beijing, China. Atmos. Environ. 39, 2819–2827 (2005). doi: 10.1016/j.atmosenv.2004.08.038 CrossRefGoogle Scholar
  38. Jacobson M.C., Hansson H.-C., Noone K.J., Charlson R.J.: Organic atmospheric aerosols: review and state of the science. Rev. Geophys. 38, 267–294 (2000)CrossRefGoogle Scholar
  39. Jung J., Tsatsral B., Kim Y.J., Kawamura K.: Organic and inorganic aerosol compositions in Ulaanbaatar, Mongolia, during the cold winter of 2007 to 2008: dicarboxylic acids, ketocarboxylic acids, and α-dicarbonyls. J. Geophys. Res. 115, D22203 (2010). doi: 10.1029/2010JD014339 CrossRefGoogle Scholar
  40. Kawamura K.: Identification of C2-C10 ω-oxocarboxylic acids, pyruvic acid C2-C3 α-dicarbonyls in wet precipitation and aerosol samples by capillary GC and GC-MS. Anal. Chem. 65, 3505–3511 (1993)CrossRefGoogle Scholar
  41. Kawamura K., Gagosian R.B.: Implications of w-oxocarboxylic acids in the remote marine atmosphere for photo-oxidation of unsaturated fatty acids. Nature. 325, 330–332 (1987). doi: 10.1038/325330a0 CrossRefGoogle Scholar
  42. Kawamura K., Ikushima K.: Seasonal changes in the distribution of dicarboxylic acids in the urban atmosphere. Environ. Sci. Technol. 27, 2227–2235 (1993)CrossRefGoogle Scholar
  43. Kawamura K., Kaplan I.R.: Motor exhaust emission as a primary source of dicarboxylic acids in Los Angeles ambient air. Environ. Sci. Technol. 21, 105–110 (1987)CrossRefGoogle Scholar
  44. Kawamura K., Pavuluri C.M.: New directions: need for better understanding of plastic waste burning as inferred from high abundance of terephthalic acid in South Asian aerosols. Atoms. Environ. 44, 5320–5321 (2010)CrossRefGoogle Scholar
  45. Kawamura K., Sakaguchi F.: Molecular distribution of water soluble dicarboxylic acids in marine aerosols over the Pacific Ocean including tropics. J. Geophys. Res. 104(D3), 3501–3509 (1999). doi: 10.1029/1998JD100041 CrossRefGoogle Scholar
  46. Kawamura K., Usukura K.: Distributions of low molecular weight dicarboxylic acids in the North Pacific aerosol samples. J. Oceanogr. 49, 271–283 (1993). doi: 10.1007/BF02269565 CrossRefGoogle Scholar
  47. Kawamura K., Yasui O.: Diurnal changes in the distribution of dicarboxylic acids, ketocarboxylic acids and dicarbonyls in the urban Tokyo atmosphere. Atmos. Environ. 39, 1945–1960 (2005)CrossRefGoogle Scholar
  48. Kawamura K., Kasukabe H., Barrie L.A.: Source and reaction pathways of dicarboxylic acids, ketoacids, and dicarbonyls in Arctic aerosols at polar sunrise. Atmos. Environ. 30, 1709–1722 (1996a)CrossRefGoogle Scholar
  49. Kawamura K., Sempéré R., Imai Y., Fujii Y., Hayashi M.: Water soluble dicarboxylic acids and related compounds in Antarctic aerosols. J. Geophys. Res. 101, 18,721–18,728 (1996b)CrossRefGoogle Scholar
  50. Kawamura K., Steinberg S., Kaplan I.R.: Concentrations of monocarboxylic and dicarboxylic acids and aldehydes in Southern California wet precipitations: comparison of urban and non-urban samples and compositional changes during scavenging. Atmos. Environ. 30, 1035–1052 (1996c)CrossRefGoogle Scholar
  51. Kawamura, K., M. Kobayashi, N. Tsubonuma, M. Mochida, T. Watanabe, and M. Lee, 2004. Organic and inorganic compositions of marine aerosols from East Asia: seasonal variations of water-soluble dicarboxylic acids, major ions, total carbon and nitrogen, and stable C and N isotopic composition, In Geochemical Investigation in Earth and Space Science: a Tribute to Isaac R. Kaplan, (eds) R. J. Hill et al.. Geochem. Soc., Publ. Ser. no. 9, pp. 243–265, Elsevier, New York.Google Scholar
  52. Kawamura K., Tachibana E., Okuzawa K., Aggarwal S.G., Kanaya Y., Wang Z.F.: High abundances of water-soluble dicarboxylic acids, ketocarboxylic acids and α-dicarbonyls in the mountaintop aerosols over the North China plain during wheat burning season. Atmos. Chem. Phys. 13, 8285–8302 (2013). doi: 10.5194/acp-13-8285-2013 CrossRefGoogle Scholar
  53. Kerminen V.-M., Ojanen C., Pakkanen T., Hillamo R., Aurela M., Merilainen J.: Low-molecular-weight dicarboxylic acids in an urban and rural atmosphere. J. Aerosol Sci. 31, 349–362 (2000)CrossRefGoogle Scholar
  54. Kulshrestha U.C., Kumar N., Saxena A., Kumari K.M., Srivastava S.S.: Identification of the nature and source of atmospheric aerosols near the Taj Mahal (India). Environ. Monit. Assess. 34, 1–11 (1995)CrossRefGoogle Scholar
  55. Kundu S., Kawamura K., Andreae T.W., Hoffer A., Andreae M.O.: Diurnal variation in the water-soluble inorganic ions, organic carbon and isotopic compositions of total carbon and nitrogen in biomass burning aerosols from the LBA-SMOCC campaign in Rondônia. Brazil. J. Aerosol Sci. 41, 118–133 (2010a)CrossRefGoogle Scholar
  56. Kundu S., Kawamura K., Andreae T.W., Hoffer A., Andreae M.O.: Molecular distributions of dicarboxylic acids, ketocarboxylic acids and α-dicarbonyls in biomass burning aerosols: implications for photochemical production and degradation in smoke layers. Atmos. Chem. Phys. 10, 2209–2225 (2010b)CrossRefGoogle Scholar
  57. Legrand M., Preunkert S., Oliveira T., Pio C.A., Hammer S., Gelencér A., Kasper-Giebl A., Laj P.: Origin of C2-C5 dicarboxylic acids in the European atmosphere inferred from year-round aerosol study conducted at a west–east transect. J. Geophys. Res. 112, D23S07 (2007). doi: 10.1029/2006JD008019 CrossRefGoogle Scholar
  58. Lim H.-O., Carlton A.G., Turpin B.J.: Isoprene forms secondary organic aerosol through cloud processing: model simulations. Environ. Sci. Technol. 39, 4441–4446 (2005). doi: 10.1021/es048039h CrossRefGoogle Scholar
  59. Matsumoto K., Tanaka H., Nagao I., Ishizaka Y.: Contribution of particulate sulfate and organic carbon to cloud condensation nuclei in the marine atmosphere. Geophys. Res. Lett. 24, 655–658 (1997)CrossRefGoogle Scholar
  60. Mayol-Bracero O.L., Guyon P., Graham B., Roberts G., Andreae M.O., Decesari S., Facchini M.C., Fuzzi S., Artaxo P.: Water-soluble organic compounds in biomass burning aerosols over Amazonia, 2, apportionment of the chemical composition and importance of the polyacidic fraction. J. Geophys. Res. 107(D20), 8091 (2002). doi: 10.1029/2001JD000522 CrossRefGoogle Scholar
  61. Miyazaki Y., Aggarwal S.G., Singh K., Gupta P.K., Kawamura K.: Dicarboxylic acids and water-soluble organic carbon in aerosols in New Delhi, India, in winter: characteristics and formation processes. J. Geophys. Res. 114, D19206 (2009). doi: 10.1029/2009JD011790 CrossRefGoogle Scholar
  62. Mkoma S.L., Kawamura K., Fu P.: Carbonaceous components, levoglucosan and inorganic ions in tropical aerosols from a rural site in Tanzania, East Africa: Implication for biomass burning to organic aerosols. Atmos. Chem. Phys. 13, 10325–10338 (2013)CrossRefGoogle Scholar
  63. Mochida M., Kawabata A., Kawamura K., Hatsushika H., Yamazaki K.: Seasonal variation and origins of dicarboxylic acids in the marine atmosphere over the western north Pacific. J. Geophys. Res. 108(D6), 4193 (2003). doi: 10.1029/2002JD002355 CrossRefGoogle Scholar
  64. Moorthy K.K., Babu S.S.: Aerosol black carbon over bay of Bengal observed from an island location, port Blair: temporal features and long-range transport. J. Geophys. Res. 111, D17205 (2006). doi: 10.1029/2005JD006855 CrossRefGoogle Scholar
  65. Moorthy K.K., Nair P.R., Murthy B.V.K.: Size distribution of coastal aerosols: effects of local sources and sinks. J. Appl. Meteorol. 30(6), 844–852 (1991)CrossRefGoogle Scholar
  66. Nair P.R., George S.K., Sunilkumar S.V., Parameswaran K., Jacob S., Abraham A.: Chemical composition of aerosols over peninsular India during winter. Atmos. Environ. 40, 6477–6493 (2006)CrossRefGoogle Scholar
  67. Nair P.R., George S.K., Aryasree S., Jacob S.: Chemical composition of aerosols over Bay of Bengal during premonsoon: Dominance of anthropogenic sources. J. Atmos. Sol. Terr. Phys. 109, 54–65 (2014). doi: 10.1016/j.jastp.2014.01.004 CrossRefGoogle Scholar
  68. Narayanan V.: An observational study of the sea breeze at an equatorial coastal station. Indian J. Meteorol. Geophys. 18, 497–504 (1967)Google Scholar
  69. Narukawa M., Kawamura K., Takeuchi N., Nakajima T.: Distribution of dicarboxylic acids and carbon isotopic compositions in aerosols from 1997 Indonesian forest fires. Geophys. Res. Lett. 26(20), 3101–3104 (1999). doi: 10.1029/1999GL010810 CrossRefGoogle Scholar
  70. Negi B.S., Sadasivan S., Mishra U.C.: Aerosol composition and sources in urban areas in India. Atmos. Environ. 21, 1259–1266 (1987). doi: 10.1016/0004-6981(67)90072-8 CrossRefGoogle Scholar
  71. Parameswaran K., Sunilkumar S.V., Rajeev K., Nair P.R., Moorthy K.K.: Boundary layer aerosols at Trivandrum tropical coast. Adv. Space Res. 34, 838–844 (2004)CrossRefGoogle Scholar
  72. Pavuluri C.M., Kawamura K., Swaminathan T.: Water-soluble organic carbon, dicarboxylic acids, ketoacids, and a-dicarbonyls in the tropical Indian aerosols. J. Geophys. Res. 115, D11302 (2010). doi: 10.1029/2009JD012661 CrossRefGoogle Scholar
  73. Pillai P.S., Moorthy K.K.: Aerosol mass-size distributions at a tropical coastal environment: response to mesoscale and synoptic processes. Atmos. Environ. 35, 4099–4112 (2001)CrossRefGoogle Scholar
  74. Prakash J.W.J., Ramachandran R., Nair K.N., Gupta S.K., Kunhikrishnan P.K.: On the structure of sea breeze front effects observed near the coast line of Thumba, India. Bound.-Lay. Meteorol. 59, 111–124 (1992)CrossRefGoogle Scholar
  75. Putaud J.-P., Van Dingenen R., Dell’Acqua A., Raes F., Matta E., Decesari S., Facchini M.C., Fuzzi S.: Size-segregated aerosol mass closure and chemical composition in Monte Ci- mone (I) during MINATROC. Atmos. Chem. Phys. 4, 889–902 SRef-ID: 1680-7324/acp/2004-4-889 (2004)CrossRefGoogle Scholar
  76. Rastogi N., Sarin M.M.: Chemistry of aerosols over a semiarid region: evidence for acid neutralization by mineral dust. Geophys. Res. Lett. 33, L23815 (2006). doi: 10.1029/2006GL027708 CrossRefGoogle Scholar
  77. Roberts G.C., Andreae M.O., Zhou J., Artaxo P.: Cloud condensation nuclei in the Amazon Basin: “Marine” conditions over a continent? Geophys. Res. Lett.. 28(14), 2807–2810 (2001)CrossRefGoogle Scholar
  78. Rogge W.F., Hildemann L.M., Mazurek M.A., Cass G.R., Simoneit B.R.T.: Sources of fine organic aerosol. part I: Charbroilers and meat cooking operations. Environ. Sci. Technol. 25(D24), 1112–1125 (1991)CrossRefGoogle Scholar
  79. Safai P.D., Kewat S., Praveen P.S., Rao P.S.P., Momin G.A., Ali K., Devara P.C.S.: Seasonal variation of black carbon aerosols over a tropical urban city of Pune, India. Atmos. Environ. 41, 2699–2709 (2007)CrossRefGoogle Scholar
  80. Satsumabayashi H., Kurita H., Yokouchi Y., Ueda H.: Photochemical formation of particulate dicarboxylic acids under long-range transport in central Japan. Atmos. Environ. 24, 1443–1450 (1990)CrossRefGoogle Scholar
  81. Saxena P., Hildemann L.M.: Water-soluble organics in atmospheric particles: a critical review of the literature and application of thermodynamics to identify candidate compounds. J. Atmos. Chem. 24, 57–109 (1996)CrossRefGoogle Scholar
  82. Sciare J., Favez O., Sarda-Este’ve R., Oikonomou K., Cachier H., Kazan V.: Long-term observations of carbonaceous aerosols in the Austral Ocean atmosphere: evidence of a biogenic marine organic source. J. Geophys. Res. 114, D15302 (2009). doi: 10.1029/2009JD011998 CrossRefGoogle Scholar
  83. Sempéré R., Kawamura K.: Comparative distributions of dicarboxylic-acids and related polar compounds in snow rain and aerosols from urban atmosphere. Atmos. Environ. 28, 449–459 (1994)CrossRefGoogle Scholar
  84. Sempéré R., Kawamura K.: Trans-hemispheric contribution of C2-C10 α, ω-dicarboxylic acids, and related polar compounds to water-soluble organic carbon in the western Pacific aerosols in relation to photochemical oxidation reactions. Glob. Biogeochem. Cycles. 17, 1069 (2003). doi: 10.1029/2002GB001980 CrossRefGoogle Scholar
  85. Seto S., Oohara M., Ikeda Y.: Analysis of precipitation chemistry at a rural site in Hiroshima Prefecture, Japan. Atmos. Environ. 34, 621–628 (2000)CrossRefGoogle Scholar
  86. Sharma D.N., Sawant A.A., Uma R., Cocker III D.R.: Preliminary chemical characterization of particle-phase organic compounds in New Delhi, India. Atmos. Environ. 37, 4317–4323 (2003)CrossRefGoogle Scholar
  87. Sharma M., Kishore S., Tripathi S.N., Behera S.N.: Role of atmospheric ammonia in the formation of inorganic secondary particulate matter: a study at Kanpur, India. J. Atmos. Chem. 58, 1 (2007)CrossRefGoogle Scholar
  88. Simeonov V., Kalina M., Tsakovski S., Puxbaum H.: Multivariate statistical study of simultaneously monitored cloud water, aerosol and rainwater data from different elevation levels in an alpine valley (Achenkirch, Tyrol, Austria). Talanta. 61, 519–528 (2003)CrossRefGoogle Scholar
  89. Simoneit B.R.T., Medeiros P.M., Didyk B.M.: Combustion products of plastics as indicators for refuse burning in the atmosphere. Environ. Sci. Technol. 39, 6961–6970 (2005). doi: 10.1021/es050767x CrossRefGoogle Scholar
  90. Sorooshian A. et al.: Oxalic acid in clear and cloudy atmospheres: Analysis of data from International Consortium for Atmospheric Research on Transport and Transformation 2004. J. Geophys. Res. 111, D23S45 (2006). doi: 10.1029/2005JD006880 CrossRefGoogle Scholar
  91. Stephanou E.G., Stratigakis N.: Oxocarboxylic and alpha, omega-dicarboxylic acids: photooxidation products of biogenic unsaturated fatty acids present in urban aerosols. Environ. Sci. Technol. 27, 1403–1407 (1993)CrossRefGoogle Scholar
  92. Talbot R.W., Beecher K.M., Harriss R.C., Cofer III W.R.: Atmospheric geochemistry of formic and acetic acids at a mid-latitude temperature. J. Geophys. Res. 93, 1638–1652 (1988)CrossRefGoogle Scholar
  93. Volkamer R. et al.: Primary and secondary glyoxal formation from aromatics: experimental evidence for the bicycloalkyl-radical pathway from benzene, toluene, and p-xylene. J. Phys. Chem. A. 105, 7865–7874 (2001)CrossRefGoogle Scholar
  94. Volkamer R., San Martini F., Molina L.T., Salcedo D., Jimenez J.L., Molina M.J.: A missing sink for gas-phase glyoxal in Mexico city: formation of secondary organic aerosol. Geophys. Res. Lett. 34, L19807 (2007). doi: 10.1029/2007GL030752 CrossRefGoogle Scholar
  95. Wang G., Liu N.C., Wang L.: Identification of dicarboxylic acids and aldehydes of PM10 and PM2.5 aerosols in Nanjing, China. Atmos. Environ. 36, 1941–1950 (2002)CrossRefGoogle Scholar
  96. Wang H., Kawamura K., Yamazaki K.: Water soluble dicarboxylic acids, ketoacids and dicarbonyls in the atmospheric aerosols over the Southern Ocean and western Pacific Ocean. J. Atmos. Chem. 53, 43–61 (2006a)CrossRefGoogle Scholar
  97. Wang H., Kawamura K., Ho K.F., Lee S.C.: Low molecular weight dicarboxylic acids, ketoacids and dicarbonyls in the fine particles from a roadway tunnel: significant secondary production from the precursors in vehicular emissions. Environ. Sci. Technol. 40, 6255–6260 (2006b)CrossRefGoogle Scholar
  98. Warneck P.: Chemistry of the Natural Atmosphere, pp. 270–275. Academic, San Diego (2000)Google Scholar
  99. Warneck P.: In-cloud chemistry opens pathway to the formation of oxalic acid in the marine atmosphere. Atmos. Environ. 37, 2423–2427 (2003)CrossRefGoogle Scholar
  100. Yao X., Fang M., Chan C.K.: Size distributions and formation of dicarboxylic acids in atmospheric particles. Atmos. Environ. 36, 2099–2107 (2002)CrossRefGoogle Scholar
  101. Yao X., Fang M., Chan C.K., Ho K.F., Lee S.C.: Characterization of dicarboxylic acids in PM2.5 in Hong Kong. Atmos. Environ. 38, 963–970 (2004). doi: 10.1016/j.atmosenv.2003.10.048 CrossRefGoogle Scholar
  102. Yokouchi Y., Ambe Y.: Characterization of polar organics in airborne particulate matter. Atmos. Environ. 20, 1727–1734 (1986)CrossRefGoogle Scholar
  103. Yu S.C.: Review: role of organic acids formic, acetic, pyruvic and oxalic in the formation of cloud condensation nuclei CCN: a review. Atmos. Res. 53, 185–217 (2000)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Prashant Hegde
    • 1
    Email author
  • Kimitaka Kawamura
    • 2
  • I. A. Girach
    • 1
  • Prabha R. Nair
    • 1
  1. 1.Space Physics LaboratoryVikram Sarabhai Space CentreThiruvananthapuramIndia
  2. 2.Institute of Low Temperature ScienceHokkaido UniversitySapporoJapan

Personalised recommendations