Journal of Atmospheric Chemistry

, Volume 72, Issue 2, pp 165–182 | Cite as

Determination of aldehydes and acetone in fog water samples via online concentration and HPLC

  • Aubrey A. Heath
  • Mickael Vaïtilingom
  • Franz S. Ehrenhauser
  • Lillian E. Cormier
  • Cara A. Leger
  • Kalliat T. ValsarajEmail author


Aldehydes and ketones, ubiquitous air, cloud, and fog water pollutants, are precursors to secondary organic aerosol formation and photochemical smog. Traditional aldehyde and ketone determination methods involve the addition of 2,4-dinitrophenylhydrazine (DNPH) as a derivatization agent, but many require a large sample volume or a lengthy extraction/concentration process. For fog water, where the sample size is inherently small, a DNPH derivatization method, based on U.S. EPA Method 8315A, was developed to combat this issue. In this method, a manual injection online concentration system in conjunction with HPLC was used, eliminating all liquid-liquid extraction and concentration steps and reducing the required sample volume. Hence, concentration and separation were combined in a single step. Using this injection method shortened the procedure time and also lowered the limit of detection to the nanomolar range. In this study, fourteen fog water samples, collected from October 2012 through April 2014 in Baton Rouge, LA, were analyzed for the concentration of aldehydes and ketones in order to test the feasibility of this method. Dissolved organic content (DOC), ionic concentration, and pH were measured. Formaldehyde, acetaldehyde, acrolein, butyraldehyde, benzaldehyde, and acetone were quantified. The DOC of the collected fog samples varied between 6.2 and 262.2 mgC/L. The wide range of organic content in the fog water samples corresponds to a diverse sample set, highlighted by the large variation of observed acetone concentration (under 5 nM to 1.05 mM). However, formaldehyde had a relatively stable concentration between each event (0.5 to 4.5 μM).


Fog water Aldehydes Acetone DNPH derivatization High performance liquid chromatography Online concentration injection 



Research funding for this work was provided by NSF Grant AGS-1106569. A special thanks to both Dr. William Brookshire, Schlumberger, and Chevron for providing the William Brookshire Graduate Assistantship in Chemical Engineering, the Schlumberger Assistantship Supplement, and the Chevron Engineering Graduate Assistantship, respectively, to Aubrey A. Heath. We thank Dr. Patrick K. Bollich of the LSU AgCenter for providing us the use of the land for the fog water collection site, Dr. Huiming Bao from the LSU Department of Geology and Geophysics for access to his IC instrument, Dr. John White and Havalend Steinmuller from the LSU Department of Oceanography and Coastal Sciences for the DOC analyses, and Amie K. Hansel, Harsha Vempati, Andrew Pham, and Laura Huber for help with the fog water collection.

Supplementary material

10874_2015_9312_MOESM1_ESM.tif (4.4 mb)
(TIFF 4.40 MB)
10874_2015_9312_MOESM2_ESM.pdf (98 kb)
ESM 2 (PDF 97.7 KB)
10874_2015_9312_MOESM3_ESM.tif (442 kb)
(TIFF 441 KB)
10874_2015_9312_MOESM4_ESM.pdf (14 kb)
ESM 4 (PDF 14.2 KB)
10874_2015_9312_MOESM5_ESM.pdf (79 kb)
ESM 5 (PDF 79.2 KB)


  1. Air monitoring data and AQI.: site monitoring data at Baton Rouge capitol site. (2014)
  2. Aneja, V.P.: Organic compounds in cloud water and their deposition at a remote continental site. Air Waste 43(9), 1239–1244 (1993). doi: 10.1080/1073161X.1993.10467201 CrossRefGoogle Scholar
  3. Bakeas, E.B., Argyris, D.I., Siskos, P.A.: Carbonyl compounds in the urban environment of Athens, Greece. Chemosphere 52(5), 805–813 (2003). doi: 10.1016/S0045-6535(03)00257-1 CrossRefGoogle Scholar
  4. Brewer, R.L., Gordon, R.J., Shepard, L.S., Ellis, E.C.: Chemistry of mist and fog from the Los Angeles urban area. Atmos Environ 17(11), 2267–2270 (1983). doi: 10.1016/0004-6981(83)90224-x CrossRefGoogle Scholar
  5. Carlier, P., Hannachi, H., Mouvier, G.: The chemistry of carbonyl compounds in the atmosphere—A review. Atmos Environ 20(11), 2079–2099 (1986). doi: 10.1016/0004-6981(86)90304-5 CrossRefGoogle Scholar
  6. Collett Jr., J.L., Daube Jr., B.C., Gunz, D., Hoffmann, M.R.: Intensive studies of Sierra Nevada cloudwater chemistry and its relationship to precursor aerosol and gas concentrations. Atmos Environ Part A 24(7), 1741–1757 (1990). doi: 10.1016/0960-1686(90)90507-J CrossRefGoogle Scholar
  7. Collett Jr., J.L., Herckes, P., Youngster, S., Lee, T.: Processing of atmospheric organic matter by California radiation fogs. Atmos Res 87(3–4), 232–241 (2008). doi: 10.1016/j.atmosres.2007.11.005 CrossRefGoogle Scholar
  8. de Laat, A.T.J., de Gouw, J.A., Lelieveld, J., Hansel, A.: Model analysis of trace gas measurements and pollution impact during INDOEX. J Geophys Res Atmos 106(D22), 28469–28480 (2001). doi: 10.1029/2000JD900821 CrossRefGoogle Scholar
  9. Deguillaume, L., Charbouillot, T., Joly, M., Vaïtilingom, M., Parazols, M., Marinoni, A., Amato, P., Delort, A.M., Vinatier, V., Flossmann, A., Chaumerliac, N., Pichon, J.M., Houdier, S., Laj, P., Sellegri, K., Colomb, A., Brigante, M., Mailhot, G.: Classification of clouds sampled at the puy de Dôme (France) based on 10 yr of monitoring of their physicochemical properties. Atmos Chem Phys 14(3), 1485–1506 (2014). doi: 10.5194/acp-14-1485-2014 CrossRefGoogle Scholar
  10. Demoz, B.B., Collett Jr., J.L., Daube Jr., B.C.: On the Caltech active strand cloudwater collectors. Atmos Res 41(1), 47–62 (1996). doi: 10.1016/0169-8095(95)00044-5 CrossRefGoogle Scholar
  11. Ehrenhauser, F.S.: Photochemical reaction products of polycyclic aromatic hydrocarbons adsorbed at an air-water interface. Louisiana State University (2011)Google Scholar
  12. EPA.: Integrated Risk Information System (IRIS) on Acetaldehyde (1999a)Google Scholar
  13. EPA.: Integrated Risk Information System (IRIS) on Formaldehyde (1999b)Google Scholar
  14. EPA: U.S. EPA Method 8315A.: Determination of carbonyl compounds by high performance liquid chromatography (HPLC) (1996)
  15. Ervens, B., Turpin, B.J., Weber, R.J.: Secondary organic aerosol formation in cloud droplets and aqueous particles (aqSOA): a review of laboratory, field and model studies. Atmos Chem Phys 11(21), 11069–11102 (2011). doi: 10.5194/acp-11-11069-2011 CrossRefGoogle Scholar
  16. Ervens, B., Wang, Y., Eagar, J., Leaitch, W.R., Macdonald, A.M., Valsaraj, K.T., Herckes, P.: Dissolved organic carbon (DOC) and select aldehydes in cloud and fog water: the role of the aqueous phase in impacting trace gas budgets. Atmos Chem Phys 13(10), 5117–5135 (2013). doi: 10.5194/acp-13-5117-2013 CrossRefGoogle Scholar
  17. Facchini, M.C., Chiavari, G., Fuzzi, S.: An improved HPLC method for carbonyl compound speciation in the atmospheric liquid phase. Chemosphere 15(6), 667–674 (1986). doi: 10.1016/0045-6535(86)90032-9 CrossRefGoogle Scholar
  18. Facchini, M.C., Lind, J., Orsi, G., Fuzzi, S.: Chemistry of carbonyl compounds in Po Valley fog water. Sci Total Environ 91, 79–86 (1990). doi: 10.1016/0048-9697(90)90289-7 CrossRefGoogle Scholar
  19. Faroon, O., Roney, N., Taylor, J., Ashizawa, A., Lumpkin, M.H., Plewak, D.J.: Acrolein environmental levels and potential for human exposure. Toxicol Ind Health 24(8), 543–564 (2008). doi: 10.1177/0748233708098124 CrossRefGoogle Scholar
  20. Faust, B.C., Allen, J.M.: Aqueous-phase photochemical formation of hydroxyl radical in authentic cloudwaters and fogwaters. Environ Sci Technol 27(6), 1221–1224 (1993). doi: 10.1021/es00043a024 CrossRefGoogle Scholar
  21. Fuzzi, S., Facchini, M.C., Orsi, G., Bonforte, G., Martinotti, W., Ziliani, G., Mazzalit, P., Rossi, P., Natale, P., Grosa, M.M., Rampado, E., Vitali, P., Raffaelli, R., Azzini, G., Grotti, S.: The NEVALPA project: A regional network for fog chemical climatology over the PO Valley basin. Atmos Environ 30(2), 201–213 (1996). doi: 10.1016/1352-2310(95)00298-d CrossRefGoogle Scholar
  22. Gierczak, T., Burkholder, J.B., Bauerle, S., Ravishankara, A.R.: Photochemistry of acetone under tropospheric conditions. Chem Phys 231(2–3), 229–244 (1998). doi: 10.1016/S0301-0104(98)00006-8 CrossRefGoogle Scholar
  23. Grosjean, D., Wright, B.: Carbonyls in urban fog, ice fog, cloudwater and rainwater. Atmos Environ 17(10), 2093–2096 (1983). doi: 10.1016/0004-6981(83)90368-2 CrossRefGoogle Scholar
  24. Guo, H., Ling, Z.H., Cheung, K., Wang, D.W., Simpson, I.J., Blake, D.R.: Acetone in the atmosphere of Hong Kong: Abundance, sources and photochemical precursors. Atmos Environ 65, 80–88 (2013). doi: 10.1016/j.atmosenv.2012.10.027 CrossRefGoogle Scholar
  25. Hallquist, M., Wenger, J.C., Baltensperger, U., Rudich, Y., Simpson, D., Claeys, M., Dommen, J., Donahue, N.M., George, C., Goldstein, A.H., Hamilton, J.F., Herrmann, H., Hoffmann, T., Iinuma, Y., Jang, M., Jenkin, M., Jimenez, J.L., Kiendler-Scharr, A., Maenhaut, W., McFiggans, G., Mentel, T.F., Monod, A., Prévôt, A.S.H., Seinfeld, J.H., Surratt, J.D., Szmigielski, R., Wildt, J.: The formation, properties and impact of secondary organic aerosol: current and emerging issues. Atmos Chem Phys Discuss 9(1), 3555–3762 (2009). doi: 10.5194/acpd-9-3555-2009 CrossRefGoogle Scholar
  26. Herbarth, O., Rehwagen, M., Herbarth, O., Ronco, A.E.: The influence of localized emittants on the concentration of volatile organic compounds in the ambient air measured close to ground level. Environ Toxicol Water Qual 12(1), 31–37 (1997). doi: 10.1002/(SICI)1098-2256(1997)12:1<31::AID-TOX5>3.0.CO;2[-‐]9 CrossRefGoogle Scholar
  27. Herckes, P., Hannigan, M.P., Trenary, L., Lee, T., Collett Jr., J.L.: Organic compounds in radiation fogs in Davis (California). Atmos Res 64(1–4), 99–108 (2002). doi: 10.1016/s0169-8095(02)00083-2 CrossRefGoogle Scholar
  28. Herckes, P., Valsaraj, K.T., Collett Jr., J.L.: A review of observations of organic matter in fogs and clouds: Origin, processing and fate. Atmos Res 132–133, 434–449 (2013). doi: 10.1016/j.atmosres.2013.06.005 CrossRefGoogle Scholar
  29. Houdier, S., Perrier, S., Defrancq, E., Legrand, M.: A new fluorescent probe for sensitive detection of carbonyl compounds: sensitivity improvement and application to environmental water samples. Anal Chim Acta 412(1–2), 221–233 (2000). doi: 10.1016/S0003-2670(99)00875-2 CrossRefGoogle Scholar
  30. Jacob, D.J., Waldman, J.M., Munger, J.W., Hoffmann, M.R.: A field investigation of physical and chemical mechanisms affecting pollutant concentrations in fog droplets. Tellus B 36(4) (1984)Google Scholar
  31. Jacob, D.J., Waldman, J.M., Munger, J.W., Hoffmann, M.R.: Chemical composition of fogwater collected along the California coast. Environ Sci Technol 19(8), 730–736 (1985). doi: 10.1021/es00138a013 CrossRefGoogle Scholar
  32. Jacob, D.J., Field, B.D., Jin, E.M., Bey, I., Li, Q., Logan, J.A., Yantosca, R.M., Singh, H.B.: Atmospheric budget of acetone. J Geophys Res Atmos 107(D10), ACH 5-1–ACH 5–17 (2002). doi: 10.1029/2001JD000694 CrossRefGoogle Scholar
  33. Li, P., Li, X., Yang, C., Wang, X., Chen, J., Collett Jr., J.L.: Fog water chemistry in Shanghai. Atmos Environ 45(24), 4034–4041 (2011). doi: 10.1016/j.atmosenv.2011.04.036 CrossRefGoogle Scholar
  34. Luecken, D.J., Hutzell, W.T., Strum, M.L., Pouliot, G.A.: Regional sources of atmospheric formaldehyde and acetaldehyde, and implications for atmospheric modeling. Atmos Environ 47, 477–490 (2012). doi: 10.1016/j.atmosenv.2011.10.005 CrossRefGoogle Scholar
  35. Matsumoto, K., Kawai, S., Igawa, M.: Dominant factors controlling concentrations of aldehydes in rain, fog, dew water, and in the gas phase. Atmos Environ 39(38), 7321–7329 (2005). doi: 10.1016/j.atmosenv.2005.09.009 CrossRefGoogle Scholar
  36. Mhadeshwar, A.B..., Wang, H., Vlachos, D.G.: Thermodynamic consistency in microkinetic development of surface reactions. J Phys Chem 107, 12721–12733 (2003)CrossRefGoogle Scholar
  37. Millet, M., Sanusi, A., Wortham, H.: Chemical composition of fogwater in an urban area: Strasbourg (France). Environ Pollut 94(3), 345–354 (1996). doi: 10.1016/S0269-7491(96)00064-4 CrossRefGoogle Scholar
  38. Pal, R., Kim, K.-H., Hong, Y.-J., Jeon, E.-C.: The pollution status of atmospheric carbonyls in a highly industrialized area. J Hazard Mater 153(3), 1122–1135 (2008). doi: 10.1016/j.jhazmat.2007.09.068 CrossRefGoogle Scholar
  39. Poulain, L., Katrib, Y., Isikli, E., Liu, Y., Wortham, H., Mirabel, P., Calvé, S.L., Monod, A.: In-cloud multiphase behaviour of acetone in the troposphere: Gas uptake, Henry’s law equilibrium and aqueous phase photooxidation. Chemosphere 81(3), 312–320 (2010). doi: 10.1016/j.chemosphere.2010.07.032 CrossRefGoogle Scholar
  40. Raja, S., Ravikrishna, R., Kommalapati, R.R., Valsaraj, K.T.: Monitoring of fogwater chemistry in the gulf coast urban industrial corridor: baton rouge (Louisiana). Environ Monit Assess 110(1–3), 99–120 (2005). doi: 10.1007/s10661-005-6281-2 CrossRefGoogle Scholar
  41. Raja, S., Raghunathan, R., Yu, X.-Y., Lee, T., Chen, J., Kommalapati, R.R., Murugesan, K., Shen, X., Qingzhong, Y., Valsaraj, K.T., Collett Jr., J.L.: Fog chemistry in the Texas–Louisiana gulf coast corridor. Atmos Environ 42(9), 2048–2061 (2008). doi: 10.1016/j.atmosenv.2007.12.004 CrossRefGoogle Scholar
  42. Raja, S., Raghunathan, R., Kommalapati, R.R., Shen, X., Collett Jr., J.L., Valsaraj, K.T.: Organic composition of fogwater in the Texas–Louisiana gulf coast corridor. Atmos Environ 43(27), 4214–4222 (2009). doi: 10.1016/j.atmosenv.2009.05.029 CrossRefGoogle Scholar
  43. Simon, H., Beck, L., Bhave, P.V., Divita, F., Hsu, Y., Luecken, D.J., Mobley, D., Pouliot, G.A., Reff, A., Sarwar, G., Strum, M.L.: The development and uses of EPA’s SPECIATE database. Atmos Pollut Res 1(4), 196–206 (2010). CrossRefGoogle Scholar
  44. Singh, H.B., O’Hara, D., Herlth, D., Sachse, W., Blake, D.R., Bradshaw, J.D., Kanakidou, M., Crutzen, P.J.: Acetone in the atmosphere: Distribution, sources, and sinks. J Geophys Res Atmos 99(D1), 1805–1819 (1994). doi: 10.1029/93JD00764 CrossRefGoogle Scholar
  45. Stefan, M.I., Hoy, A.R., Bolton, J.R.: Kinetics and mechanism of the degradation and mineralization of acetone in dilute aqueous solution sensitized by the UV photolysis of hydrogen peroxide. Environ Sci Technol 30(7), 2382–2390 (1996). doi: 10.1021/es950866i CrossRefGoogle Scholar
  46. Steinberg, S., Kaplan, I.R.: The determination of Low molecular weight aldehydes in rain, Fog and mist by reversed phase liquid chromatography of the 2, 4-dinitrophenylhydrazone derivatives. Int J Environ Anal Chem 18(4), 253–266 (1984). doi: 10.1080/03067318408077007 CrossRefGoogle Scholar
  47. Straub, D.J., Hutchings, J.W., Herckes, P.: Measurements of fog composition at a rural site. Atmos Environ 47, 195–205 (2012). doi: 10.1016/j.atmosenv.2011.11.014 CrossRefGoogle Scholar
  48. Vaïtilingom, M., Deguillaume, L., Vinatier, V., Sancelme, M., Amato, P., Chaumerliac, N., Delort, A.-M.: Potential impact of microbial activity on the oxidant capacity and organic carbon budget in clouds. Proc Natl Acad Sci 110(2), 559–564 (2013). doi: 10.1073/pnas.1205743110 CrossRefGoogle Scholar
  49. van Pinxteren, D., Plewka, A., Hofmann, D., Müller, K., Kramberger, H., Svrcina, B., Bächmann, K., Jaeschke, W., Mertes, S., Collett Jr., J.L., Herrmann, H.: Schmücke hill cap cloud and valley stations aerosol characterisation during FEBUKO (II): Organic compounds. Atmos Environ 39(23–24), 4305–4320 (2005). doi: 10.1016/j.atmosenv.2005.02.014 CrossRefGoogle Scholar
  50. Wang, Y., Guo, J., Wang, T., Ding, A., Gao, J., Zhou, Y., Collett Jr., J.L., Wang, W.: Influence of regional pollution and sandstorms on the chemical composition of cloud/fog at the summit of Mt. Taishan in northern China. Atmos Res 99(3–4), 434–442 (2011). doi: 10.1016/j.atmosres.2010.11.010 CrossRefGoogle Scholar
  51. Wang, Y., Zhang, J., Marcotte, A.R., Karl, M., Dye, C., Herckes, P.: Fog chemistry at three sites in Norway. Atmos Res 151, 72–81 (2015). doi: 10.1016/j.atmosres.2014.04.016 CrossRefGoogle Scholar
  52. Zhou, X., Mopper, K.: Photochemical production of low-molecular-weight carbonyl compounds in seawater and surface microlayer and their air-sea exchange. Mar Chem 56(3–4), 201–213 (1997). doi: 10.1016/S0304-4203(96)00076-X CrossRefGoogle Scholar
  53. Zweidinger, R.B., Sigsby, J.E., Tejada, S.B., Stump, F.D., Dropkin, D.L., Ray, W.D., Duncan, J.W.: Detailed hydrocarbon and aldehyde mobile source emissions from roadway studies. Environ Sci Technol 22(8), 956–962 (1988). doi: 10.1021/es00173a015 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Aubrey A. Heath
    • 1
  • Mickael Vaïtilingom
    • 1
  • Franz S. Ehrenhauser
    • 1
    • 2
  • Lillian E. Cormier
    • 1
  • Cara A. Leger
    • 1
  • Kalliat T. Valsaraj
    • 1
    Email author
  1. 1.Cain Department of Chemical EngineeringLouisiana State UniversityBaton RougeUSA
  2. 2.Audubon Sugar InstituteLouisiana State UniversitySt. GabrielUSA

Personalised recommendations