Advertisement

Journal of Atmospheric Chemistry

, Volume 72, Issue 1, pp 43–64 | Cite as

Size-resolved characterisation of organic compounds in atmospheric aerosols collected at Welgegund, South Africa

  • Wanda Booyens
  • Pieter G. Van Zyl
  • Johan P. Beukes
  • Jose Ruiz-Jimenez
  • Matias Kopperi
  • Marja-Liisa Riekkola
  • Miroslav Josipovic
  • Andrew D. Venter
  • Kerneels Jaars
  • Lauri Laakso
  • Ville Vakkari
  • Markku Kulmala
  • Jacobus J. Pienaar
Article

Abstract

The organic fraction of atmospheric aerosols is 20 to 90 % of which only a small percentage has been chemically characterised. Two-dimensional gas chromatography with a time-of-flight mass spectrometer (GCxGC-TOFMS) is a powerful instrument used to chemically characterise organic compounds. Size-resolved characterisation and semi-quantification of ambient organic aerosol compounds were performed with a GCxGC-TOFMS for the first time in South Africa. Twenty-four-hour samples were collected for 1 year for three different size ranges. A combined total of 1056 different organic compounds could be tentatively characterised. The largest number of organic compounds tentatively identified was PM2.5–1 (particles in the size range 1–2.5 μm), while this size fraction also had the highest total number of normalised response factors (∑NRF). On average, 52, 26, 6, 13 and 3 % of species tentatively identified were oxygenated species, hydrocarbons, halogenated compounds, N-containing compounds and S-containing compounds, respectively. Oxygenated compounds were the most abundant species. Alkane and mono-aromatic species were the largest number of hydrocarbons tentatively identified with the highest ∑NRFs. The largest number of oxygenated species tentatively characterised were carboxylic acids and esters, while ether compounds had the highest ∑NRFs. Most of the halogenated compounds tentatively identified were chlorinated species with the highest ∑NRFs in two size fractions. Iodate species had a significantly higher ∑NRF in the PM2.5–1 size fraction. The largest number of N-containing species tentatively characterised with the highest ∑NRFs were amines. A small number of S-containing compounds with low ∑NRFs were tentatively identified. The major sources of organic compounds measured at Welgegund were considered to be biomass burning and air masses moving over the anthropogenically impacted source regions.

Keywords

Atmospheric aerosols Organic compounds Characterisation and semi-quantification GCxGC-TOFMS Size-resolved Welgegund 

Notes

Acknowledgments

The authors wish to acknowledge Diederik and Jackie Hattingh and their family who are the owners of the commercial farm on which the Welgegund measurement station is situated.

Compliance with ethical standards

Conflict of interest: The authors declare that they have no conflict of interest. Disclosure of potential conflict of interest forms was signed by all the authors.

The research did not involve any human participants and/or animals.

References

  1. Akagi, S.K., Yokelson, R.J., Wiedinmyer, C., Alvarado, M.J., Reid, J.S., Karl, T., et al.: Emission factors for open and domestic biomass burning for use in atmospheric models. Atmos. Chem. Phys. 11, 4039–4072 (2011). doi: 10.5194/acp-11-4039-2011 CrossRefGoogle Scholar
  2. Akagi, S.K., Craven, J.S., Taylor, J.W., McMeeking, G.R., Yokelson, R.J., Burling, I.R., et al.: Evolution of trace gases and particles emitted by a chaparral fire in California. Atmos. Chem. Phys. 12, 1397–1421 (2012)CrossRefGoogle Scholar
  3. Alam, M.S., West, C.E., Scarlett, A.G., Rowland, S.J., Harrison, R.M.: Application of 2D-GCMS reveals many industrial chemicals in airborne particulate matter. Atmos. Environ. 65, 101–111 (2013)CrossRefGoogle Scholar
  4. Almeida, J., Schobesberger, S., Kürten, A., Ortega, I.K., Kupiainen-Määttä, O., Praplan, A.P., et al.: Molecular understanding of sulphuric acid—amine particle nucleation in the atmosphere. Nature 502, 359–363 (2013)CrossRefGoogle Scholar
  5. Alves, C.A., Vicente, A., Evtyugina, M., Pio, C.A., Hoffer, A., Kiss, G., et al.: Characterisation of hydrocarbons in atmospheric aerosols from different European sites. World Acad. Sci. Eng. Technol. 57, 236–242 (2009)Google Scholar
  6. Arsene, C., Vione, D., Grinberg, N., Olariu, R.I.: GCxGC-MS hyphenated techniques for the analysis of volatile organic compounds in air. J. Liq. Chromatogr. Relat. Technol. 34(13), 1077–1111 (2011)CrossRefGoogle Scholar
  7. ATSDR: Agency for toxic substances and disease registry. A toxicological profile for iodine. U.S. Department of Health and Human Services. http://www.atsdr.cdc.gov/ToxProfiles/tp158.pdf (2004). Accessed 25 Nov 2013
  8. Barrero, M.A., Cantón, L.: Organic composition of atmospheric urban aerosol: variations and sources of aliphatic and polycyclic aromatic hydrocarbons. Atmos. Res. 85, 288–299 (2007)CrossRefGoogle Scholar
  9. Beukes, J.P., Vakkari, V., Van Zyl, P.G., Venter, A.D., Josipovic, M., Jaars, K., et al: Source region plume characterisation of the interior of South Africa, as measured at Welgegund. In preparation for submission to Atmospheric Chemistry and Physics (2014)Google Scholar
  10. Bredenkamp, G., Joubert, A., Bezuidenhout, H.: A reconnaissance survey of the vegetation of the Potchefstroom-Fochville-Parys area. S. Afr. J. Bot. 55, 199–206 (1989)Google Scholar
  11. Castillo, S., Mattila, I., Miettinene, J., Oresic, M., Hyötyläinen, T.: Data analysis tool for comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry. Anal. Chem. 83(8), 3058–3067 (2011)CrossRefGoogle Scholar
  12. Chacon-Madrid, H.J., Presto, A.A., Donahue, N.M.: Fragmentation vs. functionalization: chemical aging and organic aerosol formation. Atmos. Chem. Phys. 11, 10553–10563 (2011)CrossRefGoogle Scholar
  13. Dewulf, J., Van Langenhove, H: Hydrocarbons in the atmosphere. In: Environmental and Ecological Chemistry II, pp. 1–24. United Nations Educational, Scientific and Cultural Organization: Encyclopedia of Life Support Systems (EOLSS) (2003)Google Scholar
  14. Dockery, D.W., Pope, L.A., Xu, X., Spengler, J.D., Ware, J.H., Fay, M.E., et al.: An association between air pollution and mortality in six U.S. cities. N. Engl. J. Med. 329(24), 1753–1759 (1993)CrossRefGoogle Scholar
  15. Forbes, P.B.C., Karg, E.W., Zimmerman, R., Rohwer, E.R.: The use of multi-channel silicone rubber traps as denuders for polycyclic aromatic hydrocarbons. Anal. Chim. Acta 730, 71–79 (2012)CrossRefGoogle Scholar
  16. Ge, X., Wexler, A.S., Clegg, S.L.: Atmospheric amines—part 1. A review. Atmos. Environ. 45(3), 524–546 (2011)CrossRefGoogle Scholar
  17. George, I.J., Abbatt, J.P.D.: Heterogeneous oxidation of atmospheric aerosol particles by gas-phase radicals. Nat. Geosci. 2, 713–722 (2010)Google Scholar
  18. Goldstein, A.H., Galbally, I.E.: Known and unexplored organic constituents in the Earth’s atmosphere. Environ. Sci. Technol. 41(5), 1514–1521 (2007)CrossRefGoogle Scholar
  19. Graedel, T.E., Hawkins, D.T., Claxton, L.D.: Carboxylic Acids in Atmospheric Chemical Compounds: Occurrence and Bioassay. Academic, Orlando (1986)Google Scholar
  20. Hamilton, J., Webb, P., Lewis, A., Hopkins, J., Smith, S., Davy, P.: Partially oxidised organic components in urban aerosol using GCxGC-TOF/MS. Atmos. Chem. Phys. Discuss. 4(2), 1393–1423 (2004)CrossRefGoogle Scholar
  21. Han, H.-Y., Huang, G.-D., Jin, S.-P., Zheng, P.-C., Xu, G.-H., Li, J.-Q., et al.: Determination of alcohol compounds using corona discharge ion mobility spectrometry. J. Environ. Sci. 19(6), 751–755 (2007)CrossRefGoogle Scholar
  22. Hirsikko, A., Vakkari, V., Tiitta, P., Manninen, H.E., Gagne, S., Laakso, H., et al.: Characterisation of sub-micron particle number concentrations and formation events in the western Bushveld Igneous Complex, South Africa. Atmos. Chem. Phys. 12, 3951–3967 (2012). doi: 10.5194/acpd-12-3951-2012 CrossRefGoogle Scholar
  23. Hobbs, P.V., Sinha, P., Yokelson, R.J., Christian, T.J., Blake, D.R., Gao, S., et al.: Evolution of gases and particles from a savanna fire in South Africa. J. Geophys. Res. 108(D13), 8485 (2003). doi: 10.1029/2002JD002352 CrossRefGoogle Scholar
  24. Hummel, J., Strehmel, N., Selbig, J., Walther, D., Kopka, J.: Decision tree supported substructure prediction of metabolites from GC-MS profiles. Metabolomics 6, 322–333 (2010)CrossRefGoogle Scholar
  25. Jaars, K., Beukes, J.P., Van Zyl, P.G., Venter, A.D., Josipovic, M., Pienaar, J.J., et al.: Ambient aromatic hydrocarbon measurements at Welgegund, South Africa. Atmos. Chem. Phys. 14, 7075–7089 (2014). doi: 10.5194/acp-14-7075-2014 CrossRefGoogle Scholar
  26. Jiang, C.M., Yu, W.T., Ma, Q., Xu, Y.G., Zou, H., Zhang, S.C., et al.: Atmospheric organic nitrogen deposition: analysis of nationwide date and a case study in Northeast China. Environ. Pollut. 182, 430–436 (2013)CrossRefGoogle Scholar
  27. Jimenez, J.L., Canagaratna, M.R., Donahue, N.M., Prevot, A.S.H., Zhang, Q., Kroll, J.H., et al.: Evolution of organic aerosols in the atmosphere. Science 326, 1525–1529 (2009)CrossRefGoogle Scholar
  28. Kallio, M., Hyötylainen, T., Lehtonen, M., Jussila, M., Harto-nen, K., Shimmo, M., et al.: Comprehensive two-dimensional gas chromatography in the analysis of urban aerosols. J. Chromatogr. A 1019, 251–260 (2003)CrossRefGoogle Scholar
  29. Kallio, M., Jussila, M., Rissanen, T., Anttila, P., Hartonen, K., Reissell, A., et al.: Comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry in the identification of organic compounds in atmospheric aerosols from coniferous forest. J. Chromatogr. A 1125, 234–243 (2006)CrossRefGoogle Scholar
  30. Kanakidou, M., Seinfeld, J.H., Pandis, S.N., Barnes, I., Dentener, F.J., Facchini, M., et al.: Organic aerosol and global climate modelling: a review. Atmos. Chem. Phys. 5(4), 1053–1123 (2005)CrossRefGoogle Scholar
  31. König, G., Brunda, M., Puxbaum, H., Hewitt, C.N., Duckham, S.G., Rudolph, J.: Relative contribution of oxygenated hydrocarbons to the total biogenic VOC emissions of selected mid-European agricultural and natural plant species. Atmos. Environ. 29(8), 861–874 (1995)CrossRefGoogle Scholar
  32. Kopperi, M., Ruiz-Jiménez, J., Hukkinen, J.I., Riekkola, M.-L.: New way to quantify multiple steroidal compounds in wastewater by comprehensive two-dimensional gas chromatography–time-of-flight mass spectrometry. Anal. Chim. Acta 761, 217–226 (2013)CrossRefGoogle Scholar
  33. Laakso, L., Vakkari, V., Virkkula, A., Laakso, H., Backman, J., Kulmala, M., et al.: South African EUCAARI measurements: seasonal variation of trace gases and aerosol optical properties. Atmos. Chem. Phys. 12, 1847–1864 (2012). doi: 10.5194/acp-12-1847-2012 CrossRefGoogle Scholar
  34. Laakso, L., Merikanto, J., Vakkari, V., Laakso, H., Kulmala, M., Molefe, M., et al.: Boundary layer nucleation as a source of new CCN in savannah environment. Atmos. Chem. Phys. 13, 1957–1972 (2013). doi: 10.5194/acp-13-1957-2013 CrossRefGoogle Scholar
  35. Laitinen, T., Martín, S.H., Parshintsev, J., Hyötyläinen, T., Hartonen, K., Riekkola, M., et al.: Determination of organic compounds from wood combustion aerosol nanoparticles by different gas chromatographic systems and by aerosol mass spectrometry. J. Chromatogr. A 1217, 151–159 (2010)CrossRefGoogle Scholar
  36. Lewis, A.C., Carslaw, N., Marriott, P.J., Kinghorn, R.M., Mor-rison, P., Lee, A.L., et al.: A larger pool of ozone-forming carbon compounds in urban atmospheres. Nature 405, 778–781 (2000)CrossRefGoogle Scholar
  37. Murphy, S.M., Sorooshian, A., Kroll, J.H., Ng, N.L., Chhabra, P., Tong, C., et al.: Secondary aerosol formation from atmospheric reactions of aliphatic amines. Atmos. Chem. Phys. 7, 2313–2337 (2007)CrossRefGoogle Scholar
  38. O’Doherty, S.J., Carpenter, L.J.: Halogenated volatile organic compounds. In: Volatile Organic Compounds in the Atmosphere, pp. 173–220. Blackwell Publishing, Germany (2007)CrossRefGoogle Scholar
  39. Özel, M.Z., Ward, M.W., Hamilton, J.F., Lewis, A.C., Raventos-Duran, T., Harrison, R.M.: Analysis of organic nitrogen compounds in urban aerosol samples using GCxGC-TOF/MS. Aerosol Sci. Technol. 44, 109–116 (2010)CrossRefGoogle Scholar
  40. Özel, M.Z., Hamilton, J.F., Lewis, A.C.: New sensitive and quantitative analysis method for organic nitrogen compounds in urban aerosol samples. Environ. Sci. Technol. 45, 1497–1505 (2011)CrossRefGoogle Scholar
  41. Pope, C.A., Burnett, R.T.: Lung cancer, cardiopulmonary mortality and longterm exposure to fine particulate air pollution. J. Am. Med. Assoc. 287(9), 1132–1141 (2002)CrossRefGoogle Scholar
  42. Pöschl, U.: Atmospheric aerosols: composition, transformation, climate and health effects. Angew. Chem. Int. Ed. 44(46), 7520–7540 (2005)CrossRefGoogle Scholar
  43. Ringuet, J., Leoz-Garziandia, E., Budzinski, H., Villenave, E., Albinet, A.: Particle size distribution of nitrated and oxygenated polycyclic aromatic hydrocarbons (NPAHs and OPAHs) on traffic and suburban sites of a European megacity: Paris (France). Atmos. Chem. Phys. 12, 8877–8887 (2012)CrossRefGoogle Scholar
  44. Ruiz-Jimenez, J., Parshintsev, J., Hartonen, K., Riekkola, M.-L., Petäjä, T., Virkkula, A., et al.: Aerosolomics profiling: application to biogenic and anthropogenic samples. Report Series in Aerosol Science, Finnish Association for Aerosol Research (2010)Google Scholar
  45. Ruiz-Jimenez, J., Parshintsev, J., Laitinen, T., Hartonen, K., Riekkola, M.-L., Petäjä, T., et al.: A complete methodology for the reliable collection, sample preparation, separation and determination of organic compounds in ultrafine 30 nm, 40 nm and 50 nm atmospheric aerosol particles. Anal. Methods 3(2501–2509), 2011 (2011a). doi: 10.1039/C1AY05362K Google Scholar
  46. Ruiz-Jimenez, J., Parshintsev, J., Laitinene, T., Hartonen, K., Riekkola, M., Petäjä, T., et al.: Comprehensive two-dimensional gas chromatography, a valuable technique for screening and semiquantification of different chemical compounds in ultrafine 30 nm and 50 nm aerosol particles. J. Environ. Monit. 13, 2994–3003 (2011b). doi: 10.1039/c1em10486a CrossRefGoogle Scholar
  47. Salma, I., Bors’os, T., Weidinger, T., Aalto, P., Hussein, T., Dal Maso, M., et al.: Production, growth and properties of ultrafine atmospheric aerosol particles in an urban environment. Atmos. Chem. Phys. 11(3), 1339–1353 (2001)CrossRefGoogle Scholar
  48. Samet, J.M., Dominici, F., Curriero, F.C., Coursca, I., Zeger, S.L.: Fine particulate air pollution and mortality in 20 US cities 1987–1994. N. Engl. J. Med. 343, 1742–1749 (2000)CrossRefGoogle Scholar
  49. Seinfeld, J.H., Pandis, S.N.: Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, 2nd edn. John Wiley and sons, New York (2006)Google Scholar
  50. Subramanian, M.S.: Organic air pollutants. In: Environmental Chemistry and Analysis, pp. 2063–2101. India Atmospheric Environment, Indian Institute of Technology Madras (2000)Google Scholar
  51. Tasic, M., Rajsic, S., Novakovic, V., Mijic, Z.: Atmospheric aerosols and their influence on air quality in urban areas. Phys. Chem. Technol. 4(1), 83–91 (2006)Google Scholar
  52. Tiitta, P., Vakkari, V., Josipovic, M., Croteau, P., Beukes, J.P., Van Zyl, P.G., et al.: Chemical composition, main sources and temporal variability of PM1 aerosols in southern African grassland. Atmos. Chem. Phys. 14, 1909–1927 (2014). doi: 10.5194/acp-14-1909-2014 CrossRefGoogle Scholar
  53. Vakkari, V., Beukes, J.P., Laakso, H., Mabaso, D., Pienaar, J.J., Kulmala, M., et al.: Long-term observations of aerosol size distributions in semi-clean and polluted savannah in South Africa. Atmos. Chem. Phys. 13, 1751–1770 (2013). doi: 10.5194/acp-13-1751-2013 CrossRefGoogle Scholar
  54. Vakkari, V., Kerminen, V.-M., Beukes, J.P., Tiitta, P., van Zyl, P.G., Josipovic, M., et al.: Rapid changes in biomass burning aerosols by atmospheric oxidation. Geophys. Res. Lett. 41, 2644–2651 (2014). doi: 10.1002/2014GL059396 CrossRefGoogle Scholar
  55. Venter A.D., Jaars K., Booyens W., Beukes J.P., van Zyl P.G., Josipovic M., et al.: Plume characterisation of a typical South African braai. Submitted for publication to South African Journal of Science (2014)Google Scholar
  56. Walgraeve, C., Demeestere, K., Dewulf, J., Zimmermann, R., Van Langenhove, H.: Oxygenated polycyclic aromatic hydrocarbons in atmospheric particulate matter: molecular characterization and occurrence. Atmos. Environ. 44(15), 1831–1846 (2010)CrossRefGoogle Scholar
  57. Welthagen, W., Schnelle-Kreis, J., Zimmermann, R.: Search criteria and rules for comprehensive two-dimensional gas chromatography-time-of-flight-mass spectrometry analysis of airborne particulate matter. J. Chromatogr. A 1019, 233–249 (2003)CrossRefGoogle Scholar
  58. Wichmann, H.E., Peters, A.: Epidemiological evidence for the effects of ultrafine particle exposure. Phil. Trans. R. Soc. A 358, 2751–2769 (2000)CrossRefGoogle Scholar
  59. WMO/UNEP: World Meteorological Organization / United Nations Environment Programme. Scientific Assessment of Ozone Depletion. http://www.esrl.noaa.gov/csd/assessments/ozone/1998/ExecSum98.pdf (1998). Accessed 25 Nov 2013

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Wanda Booyens
    • 1
  • Pieter G. Van Zyl
    • 1
  • Johan P. Beukes
    • 1
  • Jose Ruiz-Jimenez
    • 2
  • Matias Kopperi
    • 2
  • Marja-Liisa Riekkola
    • 2
  • Miroslav Josipovic
    • 1
  • Andrew D. Venter
    • 1
  • Kerneels Jaars
    • 1
  • Lauri Laakso
    • 1
    • 3
  • Ville Vakkari
    • 3
    • 4
  • Markku Kulmala
    • 4
  • Jacobus J. Pienaar
    • 1
  1. 1.Unit for Environmental Science and ManagementNorth-West UniversityPotchefstroomSouth Africa
  2. 2.Department of ChemistryUniversity of HelsinkiHelsinkiFinland
  3. 3.Finnish Meteorological InstituteHelsinkiFinland
  4. 4.Department of Physical SciencesUniversity of HelsinkiHelsinkiFinland

Personalised recommendations