Journal of Atmospheric Chemistry

, Volume 72, Issue 1, pp 19–26

Observations of high level of ozone at Qinghai Lake basin in the northeastern Qinghai-Tibetan Plateau, western China

  • Q. Y. Wang
  • R. S. Gao
  • J. J. Cao
  • J. P. Schwarz
  • D. W. Fahey
  • Z. X. Shen
  • T. F. Hu
  • P. Wang
  • X. B. Xu
  • R. -J. Huang
Article

Abstract

Measurements of surface ozone (O3), nitrogen oxides (NOx = NO + NO2), carbon monoxide (CO), and dew point were made at Qinghai Lake (QHL), China, a basin in the remote Tibetan Plateau area, in October 2010 and October 2011. The O3 mixing ratio was found to be high with average of 41 ± 9 ppb in October 2010 and 57 ± 10 ppb in October 2011. The observed diurnal pattern of O3 mixing ratio was characterized by a minimum between 07:00 and 10:00 local standard time (LST) increasing ~20 ppb to a broad peak occurring between 13:00 and 18:00 LST. This diurnal pattern differs substantially from that observed at WMO’s GAW Baseline Observatory located above the basin on Mount Waliguan, ~130 km southeast of QHL. The elevated O3 mixing ratios observed in the afternoon are attributed to in situ photochemical production in the air trapped in the QHL basin by surrounding mountains. The low O3 mixing ratios observed in the morning are most likely due to surface removal in a shallow nocturnal boundary layer. The data indicate substantial impacts of pollution on air quality even in this remote area. The high O3 values observed in 2011 may cause observable damage to the vegetation, adding stress to an ecosystem ready under the threat of desertification.

Key words

Ozone Photochemical production Qinghai-Tibetan Plateau 

Supplementary material

10874_2015_9301_MOESM1_ESM.docx (8.3 mb)
ESM 1(DOCX 8544 kb)

References

  1. Adon, M., Galy-Lacaux, C., Delon, C., Yoboue, V., Solmon, F., Tchuente, A.T.K.: Dry deposition of nitrogen compounds (NO2, HNO3, NH3), sulfur dioxide and ozone in west and central African ecosystems using the inferential method. Atmos. Chem. Phys. 13, 11351–11374 (2013)CrossRefGoogle Scholar
  2. Ahmad, M.N., Büker, P., Khalid, S., Berg, L.V.D., Shah, H.U., Wahid, A., Emberson, L., Power, S.A., Ashmore, M.: Effects of ozone on crops in north-west Pakistan. Environ. Pollut. 174, 244–249 (2013)CrossRefGoogle Scholar
  3. Antόn, M., Mateos, D., Roman, Valenzuela, A., Alados-Arboledas, L., Olmo, F.J.: A method to determine the ozone radiative forcing in the ultraviolet range from experimental data. J. Geophys. Res. 119, 1860–1873 (2014)CrossRefGoogle Scholar
  4. Ashmore, M.: Assessing the future global impacts of ozone on vegetation. Plant Cell Environ. 28, 949–964 (2005)CrossRefGoogle Scholar
  5. Carter, W.P.L., Seinfeld, J.H.: Winter ozone formation and VOC incremental reactivities in the Upper Green River Basin of Wyoming. Atmos. Environ. 50, 255–266 (2012)CrossRefGoogle Scholar
  6. Chameides, W.L., Li, X., Tang, X., Zhou, X., Chao, L., Kiang, C.S., John, J.S., Saylor, R.D., Liu, S.C., Lam, K.S., Wang, T., Giorgi, F.: Is ozone pollution affecting crop yields in China? Geophys. Res. Lett. 26, 867–870 (1999)CrossRefGoogle Scholar
  7. Chen, X.L., Ma, Y.M., Kelder, H., Su, Z., Yang, K.: On the behaviour of the tropopause folding events over the Tibetan Plateau. Atmos. Chem. Phys. 11, 5113–5122 (2011)CrossRefGoogle Scholar
  8. Cooper, O.R., Gao, R.S., Tarasick, D., Leblanc, T., Sweeney, C.: Long-term ozone trends at rural ozone monitoring sites across the United States, 1990–2010. J. Geophys. Res. 117, D22307 (2012). doi:10.1029/2012JD018261 Google Scholar
  9. Cristofanelli, P., Bracci, A., Sprenger, M., Marinoni, A., Bonafe, U., Calzolari, F., Duchi, R., Laj, P., Pichon, J.M., Roccato, F., Venzac, H., Vuillermoz, E., Bonasoni, P.: Tropospheric ozone variations at the Nepal climagte observatory-pyramid (Himalayas, 5079 m a.s.l.) and influence of deep stratospheric intrusion events. Atmos. Chem. Phys. 10, 6537–6549 (2010)CrossRefGoogle Scholar
  10. Crutzen, P.: A discussion of the chemistry of some minor constituents in the stratosphere and troposphere. Pure Appl. Geophys. 106, 1385–1399 (1973)CrossRefGoogle Scholar
  11. Guttikunda, S.K., Tang, Y., Carmichael, G.R., Kurata, G., Pan, L., Streets, D.G., Woo, J.H., Thongboonchoo, N., Fried, A.: Impacts of Asian megacity emissions on regional air quality during spring 2001. J. Geophys. Res. 110, D20301 (2005). doi:10.1029/2004JD004921 CrossRefGoogle Scholar
  12. Hassler, B., Young, P.J., Portmann, R.W., Bodeker, G.E., Daniel, J.S., Rosenlof, K.H., Solomon, S.: Comparison of three vertically resolved ozone data sets: climatology, trends and radiative forcings. Atmos. Chem. Phys. 13, 5533–5550 (2013)CrossRefGoogle Scholar
  13. Jiang, F., Zhou, P., Liu, Q., Wang, T., Zhuang, B., Wang, X.: Modeling tropospheric ozone formation over East China in springtime. J. Atmos. Chem. 69, 303–319 (2012)CrossRefGoogle Scholar
  14. Kumar, R., Naja, M., Venkataramani, S., Wild, O.: Variations in surface ozone at Nainital: a high-altitude site in the central Himalayas. J. Geophys. Res. 115, D16302 (2010). doi:10.1029/2009JD013715 CrossRefGoogle Scholar
  15. Kumar, A., Wu, S., Weise, M., Honrath, R., Owen, R., Helmig, D., Kramer, L., Val Martin, M., Li, Q.: Free-troposphere ozone and carbon monoxide over the North Atlantic for 2001–2011. Atmos. Chem. Phys. 13, 12537–12547 (2013)CrossRefGoogle Scholar
  16. Li, J., Wang, Z., Akimoto, H., Tang, J., Uno, I.: Modeling of the impacts of China’s anthropogenic pollutants on the surface ozone summer maximum on the northern Tibetan Plateau. Geophys. Res. Lett. 36, L24802 (2009). doi:10.1029/2009GL041123 CrossRefGoogle Scholar
  17. Liu, Q., Zheng, X., Luo, C., Ding, G., Li, X., Zhou, X.: Ozone vertical profile characteristics over Qinghai Plateau measured by electrochemical concentration cell ozonesondes. Adv. Atmos. Sci. 14, 481–490 (1997)CrossRefGoogle Scholar
  18. Liu, C., Liu, Y., Cai, Z., Gao, S., Bian, J., Liu, X., Chance, K.: Dynamic formation of extreme ozone minimum events over the Tibetan Plateau during northern winters 1987–2001. J. Geophys. Res. 115, D18311 (2010). doi:10.1029/2009JD013130 CrossRefGoogle Scholar
  19. Mauzerall, D.L., Wang, X.P.: Protecting agricultural crops from the effects of tropospheric ozone exposure: reconciling science and standard setting in the United States, Europe, and Asia. Annu. Rev. Energy Environ. 26, 237–268 (2001)CrossRefGoogle Scholar
  20. Mudway, I., Kelly, F.: Ozone and the lung: a sensitive issue. Mol. Asp. Med. 21, 1–48 (2000)CrossRefGoogle Scholar
  21. Ping, X., Jiang, Z., Li, C.: Status and future perspectives of energy consumption and its ecological impacts in the Qinghai–Tibet region. Renew. Sust. Energ. Rev. 15, 514–523 (2011)CrossRefGoogle Scholar
  22. Schnell, R.C., Oltmans, S.J., Neely, R.R., Endres, M.S., Molenar, J.V., White, A.B...: Rapid photochemical production of ozone at high concentrations in a rural site during winter. Nat. Geosci. 2, 120–122 (2009)CrossRefGoogle Scholar
  23. Selin, N.E., Wu, S., Nam, K.M., Reilly, J.M., Paltsev, S., Prinn, R.G., Webster, M.D.: Global health and economic impacts of future ozone pollution. Environ. Res. Lett. 4, 044014 (2009). doi:10.1088/1748-9326/4/4/044014 CrossRefGoogle Scholar
  24. Sitch, S., Cox, P., Collins, W., Huntingford, C.: Indirect radiative forcing of climate change through ozone effects on the land-carbon sink. Nature 448, 791–794 (2007)CrossRefGoogle Scholar
  25. Stohl, A., Bonasoni, P., Cristofanelli, P., Collins, W., Feichter, J., Frank, A., Forster, C., Gerasopoulos, E., Gäggeler, H., James, P.: Stratosphere-troposphere exchange: a review, and what we have learned from STACCATO. J. Geophys. Res. 108, D12 8516 (2003). doi:10.1029/2002JD002490 Google Scholar
  26. Tian, W., Chipperfield, M., Huang, Q.: Effects of the Tibetan Plateau on total column ozone distribution. Tellus 60B, 622–635 (2008)CrossRefGoogle Scholar
  27. Tie, X., Geng, F., Guenther, A., Cao, J., Greenberg, J., Zhang, R., Apel, E., Li, G., Weinheimer, A., Chen, J., Cai, C.: Megacity impacts on regional ozone formation: observations and WRF-Chem modeling for the MIRAGE-Shanghai field campaign. Atmos. Chem. Phys. 13, 5655–5669 (2013)CrossRefGoogle Scholar
  28. Wang, H., Zhou, L., Tang, X.: Ozone concentrations in rural regions of the Yangtze Delta in China. J. Atmos. Chem. 54, 255–265 (2006a)CrossRefGoogle Scholar
  29. Wang, T., Wong, H.L.A., Tang, J., Ding, A., Wu, W., Zhang, X.: On the origin of surface ozone and reactive nitrogen observed at a remote mountain site in the northeastern Qinghai-Tibetan Plateau, western China. J. Geophys. Res. 111, D08303 (2006b). doi:10.1029/2005JD006527 Google Scholar
  30. Wang, Y.H., Hu, B., Ji, D.S., Liu, Z.R., Tang, G.Q., Xin, J.Y., Zhang, H.X., Song, T., Wang, L.L., Gao, W.K., Wang, X.K., Wang, Y.S.: Ozone weekend effects in the Beijing-Tianjin-Hebei metropolitan area. China. Atmos. Chem. Phys. 14, 2419–2429 (2014)CrossRefGoogle Scholar
  31. Whiteman, C.D., Muschinski, A., Zhong, S., Fritts, D., Hoch, S.W., Hahnenberger, M., Yao, W., Hohreiter, V., Behn, M., Cheon, Y., Clements, C.B., Horst, T.W., Brown, W.O.J., Oncley, S.P.: METCRAX 2006 meteorological experiments in Arizona’s Meteor Crater. Bull. Am. Meteorol. Soc. 89, 1665–1680 (2008)CrossRefGoogle Scholar
  32. Whiteman, C.D., Hoch, S.W., Lehner, M., Haiden, T.: Nocturnal cold-air intrusions into a closed basin: observational evidence and conceptual model. J. Appl. Meteorol. Climatol. 49, 1894–1905 (2010)CrossRefGoogle Scholar
  33. Xue, L.K., Wang, T., Zhang, J.M., Zhang, X.C., Deliger, P.C.N., Ding, A.J., Zhou, X.H., Wu, W.S., Tang, J., Zhang, Q.Z., Wang, W.X.: Source of surface ozone and reactive nitrogen speciation at Mount Waliguan in western China: new insights from the 2006 summer study. J. Geophys. Res. 116, D07306 (2011). doi:10.1029/2010JD014735 Google Scholar
  34. Ye, Z., Xu, Y.: Climate characteristics of ozone over Tibetan Plateau. J. Geophys. Res. 108(D20), 4654 (2003). doi:10.1029/2002JD003139 CrossRefGoogle Scholar
  35. Zhu, B., Akimoto, H., Wang, Z., Sudo, K., Tang, J., Uno, I.: Why does surface ozone peak in summertime at Waliguan? Geophys. Res. Lett. 31, L17104 (2004). doi:10.1029/2004GL020609 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Q. Y. Wang
    • 1
  • R. S. Gao
    • 2
  • J. J. Cao
    • 1
    • 3
  • J. P. Schwarz
    • 2
    • 4
  • D. W. Fahey
    • 2
    • 4
  • Z. X. Shen
    • 5
  • T. F. Hu
    • 1
  • P. Wang
    • 1
  • X. B. Xu
    • 6
  • R. -J. Huang
    • 1
    • 7
    • 8
  1. 1.Key Laboratory of Aerosol Chemistry and Physics, Institute of Earth EnvironmentChinese Academy of SciencesXi’anChina
  2. 2.Chemical Sciences Division, Earth System Research LaboratoryNational Oceanic and Atmospheric AdministrationBoulderUSA
  3. 3.Institute of Global Environmental ChangeXi’an Jiaotong UniversityXi’anChina
  4. 4.Cooperative Institute for Research in Environmental SciencesUniversity of ColoradoBoulderUSA
  5. 5.Department of Environmental Science and EngineeringXi’an Jiaotong UniversityXi’anChina
  6. 6.Key Laboratory for Atmospheric Chemistry, Center for Atmospheric Watch and ServicesChinese Academy of Meteorological Sciences, CMABeijingChina
  7. 7.Laboratory of Atmospheric ChemistryPaul Scherrer Institute (PSI)VilligenSwitzerland
  8. 8.Centre for Climate and Air Pollution Studies, Ryan InstituteNational University of Ireland GalwayGalwayIreland

Personalised recommendations