Journal of Atmospheric Chemistry

, Volume 71, Issue 4, pp 253–267 | Cite as

Derived methane in the stratosphere and lower mesosphere from Aura Microwave Limb Sounder measurements of nitrous oxide, water vapor, and carbon monoxide

  • K. MinschwanerEmail author
  • G. L. Manney


The global distribution of methane (CH4) in the stratosphere and lower mesosphere has been derived using coincident measurements of water vapor (H2O), carbon monoxide (CO), and nitrous oxide (N2O) from the Microwave Limb Sounder (MLS) instrument on the Aura satellite. The derivation method is based on empirical relationships between these species established using observations from the Atmospheric Chemistry Experiment—Fourier Transform Spectrometer (ACE-FTS) on the SCISAT I satellite. The observed correlation between CH4 and N2O from ACE-FTS is used to derive CH4 from MLS measurements of N2O in the lower stratosphere, extending from a pressure of 100 hPa to a range of 30–10 hPa, depending on atmospheric conditions. In the upper stratosphere and lower mesosphere, between 30–10 hPa and 0.1 hPa, correlations between CH4 and H2O are used to derive CH4 from MLS measurements of H2O. Coincident MLS measurements of CO are utilized to separate two distinct air mass regimes in the CH4 - H2O relationship. This new methane data set covers all seasons and latitudes observed by MLS over the course of the Aura mission from 2004 to 2014. Examples are shown demonstrating the consistency of MLS derived CH4 with other trace gas measurements.


Methane Stratosphere MLS ACE-FTS 



The authors thank Lucien Froidevaux and Nathaniel Livesey for useful discussions on the development of this data set. Part of this work was supported by a NASA Aura Science Team grant and by a Student Research Project subcontract 1478543 from JPL to NMT.


  1. Abbas, M.M., Gunson, M.R., Newchurch, M.J., Michelsen, H.A., Salawitch, R.J., Allen, M., Abrams, M.C., Chang, A.Y., Goldman, A., Irion, F.W., Moyer, E.J., Nagaraju, R., Rinsland, C.P., Stiller, G.P., Zander, R.: The hydrogen budget of the stratosphere inferred from ATMOS measurements of H2O and CH4. Geophys Res Lett 23, 2405–2408 (1996)CrossRefGoogle Scholar
  2. Allen, D.R., Stanford, J.L., Lopez-Valverde, M.A., Nakamura, N., Lary, D.J., Douglass, A.R., Cerniglia, M.C., Remedios, J.J., Taylor, F.W.: Observations of middle atmosphere CO from the UARS ISAMS during the early northern winter 1991/1992. J Atmos Sci 56, 563–583 (1999)CrossRefGoogle Scholar
  3. Bernath, P.F., McElroy, C.T., Abrams, M.C., Boone, C.D., Butler, M., Camy-Peyret, C., Carleer, M., Clerbaux, C., Coheur, P.F., Colin, R., DeCola, P., DeMaziere, M., Drummond, J.R., Dufour, D., Evans, W.F.J., Fast, H., Fussen, D., Gilbert, K., Jennings, D.E., Llewellyn, E.J., Lowe, R.P., Mahieu, E., McConnell, J.C., McHugh, M., McLeod, S.D., Michaud, R., Midwinter, C., Nassar, R., Nichitiu, F., Nowlan, C., Rinsland, C.P., Rochon, Y.J., Rowlands, N., Semeniuk, K., Simon, P., Skelton, R., Sloan, J.J., Soucy, M.A., Strong, K., Tremblay, P., Turnbull, D., Walker, K.A., Walkty, I., Wardle, D.A., Wehrle, V., Zander, R., Zou, J.: Atmospheric Chemistry Experiment (ACE): mission overview. Geophys Res Lett 32, L15S01 (2005). doi: 10.1029/2005GL022386 Google Scholar
  4. Boone, C.D., Nassar, R., Walker, K.A., Rochon, Y., McLeod, S.D., Rinsland, C.P., Bernath, P.F.: Retrievals for the atmospheric chemistry experiment Fourier-transform spectrometer. Appl Opt 44, 7218–7231 (2005)CrossRefGoogle Scholar
  5. Brasseur, G., Solomon, S.: Aeronomy of the middle atmosphere, 3rd edn. Springer, Dordrecht (2005)Google Scholar
  6. Butchart, N., Remsberg, E.E.: The area of the stratospheric polar vortex as a diagnostic for tracer transport on an isentropic surface. J Atmos Sci 43, 1319–1339 (1986)CrossRefGoogle Scholar
  7. Canty, T., Minschwaner, K.: Seasonal and solar cycle variability of OH in the middle atmosphere. J Geophys Res 107, 4737 (2002). doi: 10.1029/2002JD002278 CrossRefGoogle Scholar
  8. Chipperfield, M.P.: Multiannual simulations with a three dimensional chemical transport model. J Geophys Res 104, 1781–1805 (1999)CrossRefGoogle Scholar
  9. Chipperfield, M.P.: New version of the TOMCAT/SLIMCAT offline chemical transport model: intercomparison of stratospheric tracer experiments. Q J R Meteorol Soc 132, 1179–1203 (2006)CrossRefGoogle Scholar
  10. de Grandpre, J., Beagley, S.R., Fomichev, V.I., Griffioen, E., McConnell, J.C., Medvedev, A.S.: Ozone climatology using interactive chemistry: results from the Canadian middle atmosphere model. J Geophys Res 105, 26,475–26,491 (2000)CrossRefGoogle Scholar
  11. De Maziere, M., et al.: Validation of ACE-FTS v2.2 methane profiles from the upper troposphere to the lower mesosphere. Atmos Chem Phys 8, 2421–2435 (2008)CrossRefGoogle Scholar
  12. Dlugokencky, E.J., P.M. Lang, A.M. Crotwell, and K.A. Masarie, Atmospheric Methane Dry Air Mole Fractions from the NOAA ESRL Carbon Cycle Cooperative Global Air Sampling Network, 1983–2013, Version: 2014-06-24, Path: (2014)
  13. Elkins, J.W., Dutton, G.S.: Nitrous oxide and sulfur hexafluoride [in ‘State of the climate in 2008’]. Bull Am Meteorol Soc 90, S38–S39 (2009)Google Scholar
  14. Engel, A., Mobius, T., Haase, H.P., Bonisch, H., Wetter, T., Schmidt, U., Levin, I., Reddmann, I.T., Oelhaf, H., Wetzel, G., Grunow, K., Huret, N., Pirre, M.: Observation of mesospheric air inside the arctic stratospheric polar vortex in early 2003. Atmos Chem Phys 6, 267–282 (2006)CrossRefGoogle Scholar
  15. Engel, A., Mobius, T., Bonisch, H., Schmidt, U., Heinz, R., Levin, I., Aoki, S., Nakazawa, T., Sugawara, S., Moore, F., Hurst, D., Elkins, J., Schauffler, S., Andrews, A., Boering, K.: Age of stratospheric air unchanged within uncertainties over the past 30 years. Nat Geosci 2, 28–31 (2009). doi: 10.1038/Ngeo388 CrossRefGoogle Scholar
  16. Fisher, M., O’Neill, A., Sutton, R.: Rapid descent of mesospheric air into the stratospheric polar vortex. Geophys Res Lett 20, 1267–1270 (1993)CrossRefGoogle Scholar
  17. Johnston, H.S., Serang, O., Podolske, J.: Instantaneous global nitrous oxide photochemical loss rates. J Geophys Res 84, 5077–5082 (1979)CrossRefGoogle Scholar
  18. Jones, R.L., Pyle, J.A.: Observations of CH4 and N2O by the Nimbus7 SAMS—a comparison with in situ data and two-dimensional numerical-model calculations. J Geophys Res 89, 5263–5279 (1984)CrossRefGoogle Scholar
  19. Kumer, J.B., Mergenthaler, J.L., Roche, A.E.: CLAES CH4, N2O, and CCl2F2 (F12) global data. Geophys Res Lett 20, 1239–1242 (1993)CrossRefGoogle Scholar
  20. Lambert, A., et al.: Validation of the Aura Microwave Limb Sounder middle atmosphere water vapor and nitrous oxide measurements. J Geophys Res 112, D24S36 (2007). doi: 10.1029/2007JD008724 Google Scholar
  21. Lee, J.N., Wu, D.L., Manney, G.L., Schwartz, M.J., Lambert, A., Livesey, N.J., Minschwaner, K., Pumphrey, H.C., Read, W.G.: Aura Microwave Limb Sounder observations of the polar middle atmosphere: dynamics and transport of CO and H2O. J Geophys Res 115, D05110 (2011). doi: 10.1029/2010JD014608 Google Scholar
  22. Livesey, N. J., et al., Aura Microwave Limb Sounder (MLS) Version 3.3 Level 2 Data Quality and Description Document, JPL D-33509 (2011)Google Scholar
  23. Manney, G.L., Zurek, R.W., O’Neill, A., Swinbank, R.: On the motion of air through the stratospheric polar vortex. J Atmos Sci 51, 2973–2994 (1994)CrossRefGoogle Scholar
  24. Manney, G.L., et al.: Solar occultation satellite data and derived meteorological products: sampling issues and Comparisons with Aura MLS. J Geophys Res 112, D24S50 (2007). doi: 10.1029/2007JD008709 Google Scholar
  25. Manney, G.L., et al.: The evolution of the stratopause during the 2006 major warming: satellite data and assimilated meteorological analyses. J Geophys Res 113, D11115 (2008a). doi: 10.1029/2007JD009097 CrossRefGoogle Scholar
  26. Manney, G.L., Daffer, W.H., Strawbridge, K.B., Walker, K.A., Boone, C.D., Bernath, P.F., Kerzenmacher, T., Schwartz, M.J., Strong, K., Sica, R.J., Krüger, K., Pumphrey, H.C., Lambert, A., Santee, M.L., Livesey, N.J., Remsberg, E.E., Mlynczak, M.G., Russell III, J.R.: The high Arctic in extreme winters: vortex, temperature, and MLS and ACE-FTS trace gas evolution. Atmos Chem Phys 8, 505–522 (2008b)CrossRefGoogle Scholar
  27. Manney, G.L., Harwood, R.S., MacKenzie, I.A., Minschwaner, K., Allen, D.R., Santee, M.L., Walker, K.A., Hegglin, M.I., Lambert, A., Pumphrey, H.C., Bernath, P.F., Boone, C.D., Schwartz, M.J., Livesey, N.J., Daffer, W.H., Fuller, R.A.: Satellite observations and modelling of transport in the upper troposphere through the lower mesosphere during the 2006 major stratospheric sudden warming. Atmos Chem Phys 9, 4775–4795 (2009a)CrossRefGoogle Scholar
  28. Manney, G.L., Schwartz, M.J., Kruger, K., Santee, M.L., Pawson, S., Lee, J.N., Daffer, W.H., Fuller, R.A., Livesey, N.J.: Aura Microwave Limb Sounder observations of dynamics and transport during the record-breaking 2009 Arctic stratospheric major warming. Geophys Res Lett 36, L12815 (2009b). doi: 10.1029/2009GL038586
  29. McDonald, A.J., Smith, M.: A technique to identify vortex air using carbon monoxide observations. J Geophys Res 118, 12719–12733 (2013). doi: 10.1002/2012JD019257 Google Scholar
  30. Michelsen, H.A., Manney, G.L., Gunson, M.R., Rinsland, C.P., Zander, R.: Correlations of stratospheric abundances of CH4 and N2O derived from ATMOS measurements. Geophys Res Lett 25, 2777–2780 (1998a)CrossRefGoogle Scholar
  31. Michelsen, H.A., Manney, G.L., Gunson, M.R., Zander, R.: Correlations of stratospheric abundances of NOy, O3, N2O, and CH4 derived from ATMOS measurements. J Geophys Res 103(D21), 28,347–28,359 (1998b)CrossRefGoogle Scholar
  32. Minschwaner, K., Dessler, A.E., Elkins, J.W., Volk, C.M., Fahey, D.W., Loewenstein, M., Podolske, J.R., Roche, A.E., Chan, K.R.: Bulk properties of isentropic mixing into the tropics in the lower stratosphere. J Geophys Res 101, 9433–9439 (1996)CrossRefGoogle Scholar
  33. Minschwaner, K., Manney, G.L., Livesey, N.J., Pumphrey, H.C., Pickett, H.M., Froidevaux, L., Lambert, A., Schwartz, M.J., Bernath, P.F., Walker, K.A., Boone, C.D.: The photochemistry of carbon monoxide in the stratosphere and mesosphere evaluated from observations by the microwave limb sounder on the aura satellite. J Geophys Res 115, D13303 (2010). doi: 10.1029/2009JD012654 CrossRefGoogle Scholar
  34. Myhre, G., Shindell, D., Bréon, F.-M., Collins, W., Fuglestvedt, J., Huang, J., Koch, D., Lamarque, J.-F., Lee, D., Mendoza, B., Nakajima, T., Robock, A., Stephens, G., Takemura, T., Zhang, H.: Climate change 2013: the physical science basis. Contribution of Working Group I to the fifth assessment report of the intergovernmental panel on climate change. In: Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M. (eds.) Anthropogenic and natural radiative forcing. Cambridge University Press, Cambridge (2013)Google Scholar
  35. Nassar, R., Bernath, P.F., Boone, C.D., Manney, G.L., McLeod, S.D., Rinsland, C.P., Skelton, R., Walker, K.A.: Stratospheric abundances of water and methane based on ACE-FTS measurements. Geophys Res Lett 32, L15S04 (2005). doi: 10.1029/2005GL022383 Google Scholar
  36. Nicolet, M.: On the photodissociation of water vapour in the mesosphere. Planet Space Sci 32, 871–880 (1984)CrossRefGoogle Scholar
  37. Payan, S., et al.: Validation of version-4.61 methane and nitrous oxide observed by MIPAS. Atmos Chem Phys 9, 413–442 (2009)CrossRefGoogle Scholar
  38. Plumb, R.A.: A “tropical pipe” model of stratospheric transport. J Geophys Res 101, 3957–3972 (1996)CrossRefGoogle Scholar
  39. Plumb, R.A., Ko, M.K.W.: Interrelationships between mixing ratios of long-lived stratospheric constituents. J Geophys Res 97, 10145–10156 (1992)CrossRefGoogle Scholar
  40. Plumb, R.A., Waugh, D.W., Chipperfield, M.P.: The effects of mixing on tracer relationships in the polar vortices. J Geophys Res 105, 10,047–10,062 (2000)CrossRefGoogle Scholar
  41. Polavarapu, S., Ren, S., Rochon, Y., Sankey, D., Ek, N., Koshyk, J., Tarasick, D.: Data assimilation with the Canadian Middle Atmosphere Model. Atmosphere-Ocean 43, 77–100 (2005)CrossRefGoogle Scholar
  42. Pumphrey, H.C., et al.: Validation of middle-atmosphere carbon monoxide retrievals from the Microwave Limb Sounder on Aura. J Geophys Res 112, D24S38 (2007). doi: 10.1029/2007JD008723 Google Scholar
  43. Randall, C.E., Harvey, V.L., Singleton, C.S., Bernath, P.F., Boone, C.D., Kozyra, J.U.: Enhanced NOx in 2006 linked to strong upper stratospheric Arctic vortex. Geophys Res Lett 33, L18811 (2006). doi: 10.1029/2006GL027160 CrossRefGoogle Scholar
  44. Remedios, J.J., Ruth, S.L., Rodgers, C.D., Taylor, F.W., Roche, A.E., Gille, J.C., Gunson, M.R., Russell, J.M., Park, J., Zipf, E.C., Erdman, P.W.: Measurements of methane and nitrous oxide distributions by the improved stratospheric and mesospheric sounder: retrieval and validation. J Geophys Res 101, 9843–9871 (1996). doi: 10.1029/95JD02840 CrossRefGoogle Scholar
  45. Ren, S., Polavarapu, S., Beagley, S.R., Nezlin, Y., Rochon, Y.J.: The impact of gravity wave drag on mesospheric analyses of the 2006 stratospheric major warming. J Geophys Res 116, D19116 (2011). doi: 10.1029/2011JD015943 CrossRefGoogle Scholar
  46. Rohs, S., Schiller, C., Riese, M., Engel, A., Schmidt, U., Wetter, T., Levin, I., Nakazawa, T., Aoki, S.: Long-term changes of methane and hydrogen in the stratosphere in the period 1978–2003 and their impact on the abundance of stratospheric water vapor. J Geophys Res 111, D14315 (2006). doi: 10.1029/2005JD006877 CrossRefGoogle Scholar
  47. Ruth, S., Kennaugh, R., Gray, L.J., Russell III, J.M.: Seasonal, semiannual, and interannual variability seen in measurements of methane made by UARS Halogen Occultation Experiment. J Geophys Res 102, 16,189–16,199 (1997)CrossRefGoogle Scholar
  48. Scinocca, J.F., McFarlane, N.A., Lazare, M., Li, J., Plummer, D.: The CCCma third generation AGCM and its extension into the middle atmosphere. Atmos Chem Phys 8, 7055–7074 (2008). doi: 10.5194/acp-8-7055-2008 CrossRefGoogle Scholar
  49. Solomon, S., Rosenlof, K.H., Portmann, R.W., Daniel, J.S., Davis, S.M., Sanford, T.J., Plattner, G.K.: Contributions of stratospheric water vapor to decadal changes in the rate of global warming. Science 327, 1219–1223 (2010)CrossRefGoogle Scholar
  50. SPARC Report on the Lifetimes of Stratospheric Ozone-Depleting Substances, Their Replacements, and Related Species, M. Ko, P. Newman, S. Reimann, S. Strahan (Eds.), SPARC Report No. 6, WCRP-15/2013Google Scholar
  51. Volk, C.M., Elkins, J.W., Fahey, D.W., Dutton, G.S., Gilligan, J.M., Loewenstein, M., Podolske, J.R., Chan, K.R., Gunson, M.R.: Evaluation of source gas lifetimes from stratospheric observations. J Geophys Res 102, 25543–25564 (1997)CrossRefGoogle Scholar
  52. von Clarmann, T., Höpfner, M., Kellmann, S., Linden, A., Chauhan, S., Funke, B., Grabowski, U., Glatthor, N., Kiefer, M., Schieferdecker, T., Stiller, G.P., Versick, S.: Retrieval of temperature, H2O, O3, HNO3, CH4, N2O, ClONO2 and ClO from MIPAS reduced resolution nominal mode limb emission measurements. Atmos Meas Tech 2, 159–175 (2009). doi: 10.5194/amt-2-159-2009 CrossRefGoogle Scholar
  53. Waugh, D.W., et al.: Mixing of polar vortex air into middle latitudes as revealed by tracer-tracer scatterplots. J Geophys Res 102, 13,119–13,134 (1997)CrossRefGoogle Scholar
  54. Wrotny, J.E., Nedoluha, G.E., Boone, C., Stiller, G.P., McCormack, J.P.: Total hydrogen budget of the equatorial upper stratosphere. J Geophys Res 115, D04302 (2010). doi: 10.1029/2009JD012135 Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Department of PhysicsNew Mexico Institute of Mining and TechnologySocorroUSA
  2. 2.NorthWest Research AssociatesSocorroUSA

Personalised recommendations