Advertisement

Journal of Atmospheric Chemistry

, Volume 71, Issue 3, pp 225–251 | Cite as

WRF-Chem model estimates of equatorial Atlantic Ocean tropospheric ozone increases via June 2006 African biomass burning ozone precursor transport

  • Jonathan W. SmithEmail author
  • Gregory S. Jenkins
  • Kenneth E. Pickering
Article
  • 851 Downloads

Abstract

Long-range horizontal and local vertical transport of biomass burning ozone precursors (i.e. carbon monoxide and nitrogen oxides) from Central Africa are simulated for June 2006. Twenty-kilometer resolution combined meteorological and chemical simulations examine transport pathways, spatial distribution, and quantities of ozone precursors and ozone. Results suggest that due to biomass burning, ozone mixing ratios increase by 28–33 parts per billion by volume in the lower troposphere (850 hecto-Pascals) over the Atlantic Ocean west of Central Africa during June. The inter-hemispheric transport of biomass burning emissions from Central Africa subsides over the Gulf of Guinea with a northward extent of approximately 2–5°N. In the lower troposphere, ozone mixing ratio increases decrease from 28 parts per billion by volume in the southern Gulf of Guinea to 2–3 parts per billion by volume on the Gulf of Guinea Coast. There is middle and upper tropospheric ozone enhancement of 6–12 parts per billion over the Equatorial Atlantic Ocean which is the result of convective detrainment of ozone precursors from deep convection on the Gulf of Guinea Coast followed by transport that propagates around a broad anticyclone. The model ozone produced by biomass burning emissions is less than the observed implying that lightning-induced nitrogen oxide emissions, which are not included in this simulation, are a significant tropospheric ozone source for the eastern Equatorial Atlantic Ocean.

Keywords

Biomass burning Lightning-induced nitrogen oxides Inter-hemispheric transport Intra-hemispheric Gulf of Guinea Detrainment 

Notes

Acknowledgments

This work is funded by NSF ATM Grant # 621159 and the National Academy of Science-National Research Council Postdoctoral Associateship. From 2009 to 2013, the work was partially funded by the Earth Science Division at Goddard Space Flight Center (GSFC). The simulations were completed on the Discover supercomputer at the NASA Center for Climate Simulation at GSFC. Paul Novelli of the NOAA/Earth System Research Laboratory/Global Monitoring Division provided CCGG flask point surface CO mixing ratio data. Nickolay Krotkov and Lok Lamsal in the Atmospheric Chemistry and Dynamics Laboratory at GSFC processed and provided gridded NO2 OMI data. I thank Mary Barth of the NCAR for a constructive critique of the work in its early stages.

References

  1. Barret, B., Ricaud, P., Mari, C., Attié, J.-L., Bousserez, N., Josse, B., Le Flochmoën, E., Livesey, N.J., Massart, S., Peuch, V.-H., Piacentini, A., Sauvage, B., Thouret, V., Cammas, J.-P.: Transport pathways of CO in the African upper troposphere during the monsoon season: a study based upon the assimilation of spaceborne observations. Atmos Chem Phys 8, 3231–3246 (2008)CrossRefGoogle Scholar
  2. Barret, B., Williams, J.E., Bouarar, I., Yang, X., Josse, B., Law, K., Pham, M., Le Flockmoen, E., Liousse, C., Peuch, V.H., Carver, G.D., Pyle, J.A., Sauvage, B., van Velthoven, P., Schlager, H., Mari, C., Cammas, J.–.P.: Impact of West African Monsoon convective transport and lightning NOx production upon the upper tropospheric composition: a multi-model study. Atmos Chem Phys 10, 5719–5738 (2009)CrossRefGoogle Scholar
  3. Beer, R., Glavich, T.A., Rider, D.M.: Tropospheric emission spectrometer for the earth observing system’s aura satellite. Appl Opt 40, 15 (2001)CrossRefGoogle Scholar
  4. Bouarar, I., Law, K.S., Pham, M., Liousse, C., Schlager, H., Hamburger, T., Reeves, C.E., Cammas, J.-P., Nédéléc, P., Szopa, S., Ravegnani, F., Viciani, S., D’ Amato, F., Ulanovsky, A., Richter, A.: Emission sources contributing to tropospheric ozone over Equatorial Africa during the summer monsoon. Atmos Chem Phys 11, 13395–13419 (2011)CrossRefGoogle Scholar
  5. Boyard, A., Pfister, G.G., Edwards, D.P.: Boundary layer versus free tropospheric CO budget and variability over the United State during summertime. J Geophys Res 117, D04306 (2012). doi: 10.1029/2011JD016416 Google Scholar
  6. Bucsela, E.J., Krotkov, N.A., Celarier, E.A., Lamsal, L.N., Swartz, W.H., Bhartia, P.K., Boersma, K.F., Veefkind, J.P., Gleason, J.F., Pickering, K.E.: A new stratospheric and tropospheric algorithm for retrieval of vertical column NO2 from nadir-viewing satellite instruments: applications to OMI. Atmos Meas Tech Discuss 6, 1361–1407 (2013)CrossRefGoogle Scholar
  7. Chatfield, R.B., Delaney, A.C.: Convection links biomass burning to increased tropical ozone: however, models will tend to over predict ozone. J Geophys Res 95, 411–429 (1990)Google Scholar
  8. Emmons, L.K., Walters, S., Hess, P.G., Lamarque, J.-F., Pfister, G.G., Fillmore, D., Granier, C., Guenther, A., Kinnison, D., Laepple, T., Orlando, J., Tyndall, G., Wiedenmyer, C., Baughcum, S.L., Kloster, S.: Description and evaluation of the model for ozone and related chemical tracers, version 4 (MOZART-4). Geosci Model Dev 3, 43–67 (2010)CrossRefGoogle Scholar
  9. Giglio, L., van der Werf, G.R., Randerson, J.T., Collatz, G.J., Kasibhatla, P.: Global estimation of burned area using MODIS active fire observations. Atmos Chem Phys 6, 957–974 (2006)CrossRefGoogle Scholar
  10. Grell, G.A., Devenyi, D.: A generalized approach to parameterizing convection combining ensemble and data as- simulation techniques. Geophys Res Lett 29(14), 38 (2002). doi: 10.1029/2002GL015311 CrossRefGoogle Scholar
  11. Grell, G.A., Peckham, S., Schmitz, R.S., McKeen, S., Frost, G., Skamarock, W., Eder, B.: Fully coupled “online” chemistry within the WRF model. Atmos Environ 39, 6957–6976 (2005)CrossRefGoogle Scholar
  12. Guenther, A., Karl, T., Harley, P., Wiedinmyer, C., Palmer, P. I., Geron, C.: Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature), Atmos. Chem. Phys. 6, 3181–3210 (2006) http://www.atmos-chem phys.net/6/3181/2006/
  13. Halland, J.J., Fuelburg, H.E., Pickering, K.E., Luo, M.: Identifying convective transport of carbon monoxide by comparing remotely sensed observations from TES with cloud modeling simulation. Atmos Chem Phys 9, 4279–4294 (2009)CrossRefGoogle Scholar
  14. Hawkins, M. D.: Investigation of ozone concentrations in the tropical Atlantic marine boundary layer during Saharan dust and biomass burning events, Doctoral Dissertation, Program in Atmos. Sci., Howard University, Washington, District of Colombia (2007)Google Scholar
  15. Hawkins, M. D., Morris, V. R., Nalli, N. R., Joseph, E.: Comparison of AEROSE-I and AEROSE-II surface level ozone measurements and ozonesonde profiels within Saharan dust and biomass burning plumes, presented at the 87th meeting of the American meteorological society, 19th conference on climate variability and change, measurements and modeling of aerosols, joint with ninth conference on atmospheric chemistry, San Antonio, Texas (2007)Google Scholar
  16. Herman, R., Kulawik, S. (editors), Bowman, K., Cady-Pereira, K., Eldering, A., Fisher, B., Fu, Herman, R., D., Jacob, D., Jourdain, L., Kulawik, S., Luo, M., Monarrez, R., Osterman, G., Paradise, S., Payne, V., Poosti, S., Richards, N., Rider, D., Shepard, D., Shephard, M., Vilnrotter, F., Worden, H., Worden, J., Yun, H., Zhang., L. (contributors): Level 2 (L2) Data User’s Guide, Version 6.0 (2013) D-38042Google Scholar
  17. Hoyle, C.R., Mare’cal, V., Russo, M.R., Allen, G., Arteta, J., Chemel, C., Chipperfield, M.P., D’Amato, F., Dessens, O., Feng, W., Hamilton, J.F., Harris, N.R.P., Hosking, J.S., Lewis, A.C., Morgenstern, O., Peter, T., Pyle, J.A., Reddmann, T., Richards, N.A.D., Telford, P.J., Tian, W., Viciani, S., Volz-Thomas, A., Wild, O., Yang, X., Zeng, G.: Representation of tropical deep convection in atmospheric models-Part 2: tracer transport. Atmos Chem Phys 11, 8103–8131 (2011)CrossRefGoogle Scholar
  18. Huang, L., Fu, R., Jiang, J.H., Wright, J.S., Luo, M.: Geographic and seasonal distributions of CO transport pathways and their roles in determining CO centers in the upper troposphere. Atmos Chem Phys 12, 4683–4698 (2012)CrossRefGoogle Scholar
  19. Janicot, S., Thorncroft, C.D., Ali, A., Asencio, N., Berry, G., Bock, O., Bourles, B., Caniaux, G., Chauvin, F., Deme, A., Kergoat, L., Lafore, J.-P., Lavaysse, C., Lebel, T., Marticorena, B., Mounier, F., Nédéléc, P., Redelsperger, J.-L., Ravegnani, F., Reeves, C.E., Roca, R., de Rosnay, P., Schlager, H., Sultan, Tomasini, B.M., Ulanovsky, A.: ACMAD forecasters team: Large‐scale overview of the summer monsoon over West and Central Africa during the AMMA field experiment in 2006. Ann Geophys 26, 2569–2595 (2008)CrossRefGoogle Scholar
  20. Jenkins, G.S., Mohr, K., Morris, V.R., Arino, O.: The role of convective processes over the Zaire-Congo Basin to the Southern Hemispheric ozone maximum. J Geophys Res 102, 18963–18980 (1997)CrossRefGoogle Scholar
  21. Jenkins, G.S., Camara, M., Ndiaye, M.: Observational evidence of enhanced middle/upper tropospheric ozone via convective processes over the Equatorial tropical Atlantic during the summer of 2006. Geophys Res Lett 35, L12806 (2008). doi: 10.1029/2008GL033954. 7 ppGoogle Scholar
  22. Jenkins, G.S., Robjhon, M.L., Smith, J.W., Clark, J., Mendes, L.: The influence of the SAL and lightning on tropospheric ozone variability over the Northern Tropical Atlantic: results from Cape Verde during 2010. Geophys Res Lett 39, L20810 (2012). doi: 10.1029/2012GL053532. 7 ppCrossRefGoogle Scholar
  23. Jenkins, G.S., Robjhon, M.L., Demoz, B., Stockwell, W.R., Ndiaye, S.A., Drame, M.S., Gueye, M., Smith, J.W., Luna-Cruz, Y., Clark, J., Holt, J., Paulin, C., Brickhouse, A., Williams, A., Abdullah, A., Reyes, A., Mendes, L., Valentine, A., Camara, M.: Multi-site tropospheric ozone measurements across the North Tropical Atlantic during the summer of 2010. Atmos Environ 70, 131–148 (2013)CrossRefGoogle Scholar
  24. Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y., Leetmaa, A., Reynolds, R., Chelliah, M., Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K.C., Ropelewski, C., Wang, J., Jenne, R., Joseph, D.: The NCEP/NCAR 40-Year reanalysis project. J Atmos Res 77, 437–471 (1996)Google Scholar
  25. Lin, Y.-L., Farley, R.D., Orville, H.D.: Bulk parameterization of the snow field in a cloud model. J Clim Appl Meteorol 22, 1065–1092 (1983)CrossRefGoogle Scholar
  26. Liu, X., Bhartia, P.K., Chance, K., Spurr, R.J.D., Kurosu, T.P.: Ozone profile retrievals from the Ozone Monitoring Instrument. Atmos Chem Phys 10, 2521–2537 (2010)CrossRefGoogle Scholar
  27. Mari, C.H., Cailley, G., Corre, L., Saunois, M., Attié, J.L., Thouret, V., Stohl, A.: Tracing biomass burning plumes from the Southern Hemisphere during the AMMA 2006 wet season experiment. Atmos Chem Phys 8, 3951–3961 (2008)CrossRefGoogle Scholar
  28. Martin, R.V., Sauvage, B., Folkins, I., Sioris, C.E., Boone, C., Bernath, P., Ziemke, J.: Space-based constraints on the production of nitric oxide by lightning. J Geophys Res 112, D09309 (2007). doi: 10.1029/2006JD007831 Google Scholar
  29. Morris, V., Clemente-Colon, P., Nalli, N.R., Joseph, E., Armstrong, R.A., Detres, Y., Minnet, P.J., Lumpkin, R.: Measuring trans-Atlantic aerosol transport from Africa. Eos 87, 565–580 (2006)CrossRefGoogle Scholar
  30. Nalli, N.R., Joseph, E., Morris, V.R., Barnet, C.D., Wolf, W.W., Wolfe, D., Minnett, P.J., Szczodrak, M., Izaguirre, M.A., Lumpkin, R., Xie, H., Smirnov, A., King, T.S., Wei, J.: Multi-year observations of the tropical Atlantic atmosphere: multidisciplinary applications of the NOAA Aerosols and Ocean Science Expeditions (AEROSE). Bull Am Meteorol Soc 92(6), 765–789 (2011)CrossRefGoogle Scholar
  31. National Centers for Environmental Prediction, National Weather Service, NOAA, U.S. Department of commerce: NCEP FNL operational model global tropospheric analyses, continuing from July 1999, http://rda.ucar.edu/datasets/ds083.2, research data archive at the national center for atmospheric research, computational and information systems laboratory, Boulder, Colo. (Updated daily, 2000)
  32. Nicholson, S.E., Grist, J.P.: The seasonal evolution of the atmospheric circulation over West Africa and equatorial Africa. J Clim 16(7), 1013–1030 (2003)CrossRefGoogle Scholar
  33. Pickering, K.E., Thompson, A.M., Wang, Y., Tao, W.-K., McNamara, D.P., Kirchhoff, V.W.J.H., Heikes, B.G., Sachse, G.W., Bradshaw, J.D., Gregory, G.L., Blake, D.R.: Convective transport of biomass burning emissions over Brazil during TRACE A. J Geophys Res 101, D19 (1996). doi: 10.1029/96JD00346 CrossRefGoogle Scholar
  34. Real, E., Orlandi, E., Law, K.S., Fierli, F., Josset, D., Cairo, F., Schlager, H., Borrmann, S., Kunkel, D., Volk, C.M., McQuaid, J.B., Stewart, D.J., Lewis, A.C., Hopkins, J.R., Ravegnani, F., Ulanovski, A., Liousse, C.: Inter-hemispheric transport of central African biomass burning pollutants: implications for downwind ozone production. Atmos Chem Phys 10, 3027–3046 (2010)CrossRefGoogle Scholar
  35. Redelsperger, J.-L., Thorncroft, C.D., Diedhiou, A., Lebel, T., Parker, D.J., Polcher, J.: African monsoon multidisciplinary analysis: an international research project and field campaign. Bull Am Meteorol Soc 87, 1739–1746 (2006)CrossRefGoogle Scholar
  36. Reeves, C.E., Formenti, P., Afif, C., Ancellet, G., Attie, J.-L., Bechara, J., Borbon, A., Cairo, F., Coe, H., Crumeyrolle, S., Fierli, F., Flamant, C., Gomes, L., Hamburger, T., Jambert, C., Law, K.S., Mar, C., Jones, R.L., Matsuki, A., Mead, M.I., Methven, J., Mills, G.P., Minikin, A., Murphy, J.G., Nielsen, J.K., Oram, D.E., Parker, D.J., Richter, A., Schlager, H., Schwarzenboeck, A., Thouret, V.: Chemical and aerosol characterisation of the troposphere over West Africa during the monsoon period as part of AMMA. Atmos Chem Phys 10, 7575–7601 (2010). doi: 10.5194/acp-10-7575-2010 CrossRefGoogle Scholar
  37. Sauvage, B., Martin, R.V., van Donkelaar, A., Ziemke, J.R.: Quantification of the factors controlling tropical tropospheric ozone and the South Atlantic maximum. J Geophys Res 112, D11309 (2007). doi: 10.1029/2006JD008008 CrossRefGoogle Scholar
  38. Schultz, M., Rast, S., van het Bolscher, M., Pulles, T., Brand, R., Pereira, J., Mota, B., Spessa, A., Dalsøren, S., van Nojie, T., Szopa, S.: Emission data sets and methodologies for estimating emissions, RETRO project report D1-6, Hamburg, 26, (http://retro.enes.org/reports/D1-6_final.pdf (2007)
  39. Smith, J. W.: WRF-Chem estimates of lightning NOx and biomass burning contributions to middle and upper tropospheric ozone during the AEROSE II Cruise, Doctoral Dissertation, Program in Atmos. Sci., Howard University, Washington, District of Colombia (2012)Google Scholar
  40. Thompson, A.M., Witte, J.C., McPeters, R.D., Oltmans, S.J., Schmidlin, F.J., Logan, J.A., Fujiwara, M., Kirchhoff, V.W.J.H., Posny, F., Coetzee, G.J.R., Hoegger, B., Kawakami, S., Ogawa, T., Johnson, B.J., Vömel, H., Labow, G.: Southern Hemisphere Additional Ozonesondes (SHADOZ) 1998–2000 tropical ozone climatology 1. Comparison with Total Ozone Mapping Spectrometer (TOMS) and ground-based measurements. J Geophys Res 108(D2), 8238 (2003). doi: 10.1029/2001JD000967 CrossRefGoogle Scholar
  41. Thompson, A.M., Miller, S.K., Tilmes, S., Kollonige, D.W., Witte, J.C., Oltmans, S.J., Johnson, B.J., Fujiwara, M., Schmidlin, F.J., Coetzee, G.J.R., Komala, N., Maata, M., Mohamad, M.B., Nguyo, J., Mutai, C., Ogino, S.Y., Da Silva, F.R., Leme, N.M.P., Posny, F., Scheele, R., Selkirk, H.B., Shiotani, M., Stübi, R., Levrat, G., Calpini, B., Thouret, V., Tsuruta, H., Canossa, J.V., Vömel, H., Yonemura, S., Diaz, J.A., Thanh, N.T.T., Ha, H.T.T.: Southern Hemisphere Additional Ozonesondes (SHADOZ) ozone climatology (2005–2009): Tropospheric and Tropical Tropopause Layer (TTL) profiles with comparisons to OMI-based ozone products. J Geophys Res 117, D23 (2012). doi: 10.1029/2011JD016911 Google Scholar
  42. Thouret, V., Saunois, M., Minga, A., Mariscal, A., Sauvage, B., Solete, A., Agbangla, D., Nédéléc, P., Mari, C., Reeves, C.E., Schlanger, H.: An overview of two years of ozone radio soundings over Cotonou as part of AMMA. Atmos Chem Phys 9, 6157–6174 (2009)CrossRefGoogle Scholar
  43. van der Werf, G.R., Randerson, J.T., Giglio, L., Collatz, G.J., Kasibhatla, P.S., Arellano Jr., A.F.: Interannual variability in global biomass burning emissions from 1997 to 2004. Atmos Chem Phys 6, 3423–3441 (2006)CrossRefGoogle Scholar
  44. Wild, O., Zhu, X., Prather, M.J.: Fast-J: accurate simulation of in- and below-cloud photolysis in tropospheric chemical models. J Atmos Chem 37, 245–282 (2000)CrossRefGoogle Scholar
  45. Williams, J.E., Scheele, M.P., van Velthoven, P.F.J., Thouret, V., Saunois, M., Reeves, C.E., Cammas, J.-P.: The influence of biomass burning and transport on tropospheric composition over the tropical Atlantic Ocean and Equatorial Africa during the West African monsoon in 2006. Atmos Chem Phys 10, 9797–9817 (2010). doi: 10.5194/acp-10-9797-2010 CrossRefGoogle Scholar
  46. Williams, J.E., van Weele, M., van Velthoven, P.F.J., Scheele, M.P., Thouret, V., Liousse, C., van der Werf, G.R.: The impact of uncertainties in African biomass burning emission estimates on modeling global air quality, long range transport and tropospheric chemical lifetimes. Atmos 3, 132–163 (2012). doi: 10.3390/atmos3010132 CrossRefGoogle Scholar
  47. Zaveri, R.A., Peters, L.K.: A new lumped structure photochemical mechanism for large-scale applications. J Geophys Res 104, 30387–30415 (1999)CrossRefGoogle Scholar
  48. Zaveri, R.A., Easter, R.C., Fast, J.D., Peters, L.K.: Model for Simulating Aerosol Interactions and Chemistry (MOSAIC). J Geophys Res 113, D13204, 25 (2008). doi: 10.1029/2007JD008782 Google Scholar
  49. Zhang, D.-L., Chen, H.: Importance of the upper-level warm core in the rapid intensification of a tropical cyclone. Geophys Res Lett 39, L02806 (2012). doi: 10.1029/2011GL050578 Google Scholar
  50. Ziemke, J.R., Chandra, S., Duncan, B.N., Schoeberl, M.R., Torres, O., Damon, M.R., Bhartia, P.K.: Recent biomass burning in the tropics and related changes in tropospheric ozone. Geophys Res Lett 36, L15819 (2009). doi: 10.1029/2009GL039303 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Jonathan W. Smith
    • 1
    Email author
  • Gregory S. Jenkins
    • 2
  • Kenneth E. Pickering
    • 3
  1. 1.National Research Council Postdoctoral Research Associateship at NOAA/NESDIS/STAR/SMCD, NOAA/NCWCPCollege ParkUSA
  2. 2.Department of Physics and Astronomy and Howard University Program in Atmospheric ScienceHoward UniversityWashingtonUSA
  3. 3.Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight CenterGreenbeltUSA

Personalised recommendations