Journal of Atmospheric Chemistry

, Volume 71, Issue 3, pp 195–212 | Cite as

The trace metal signature of atmospheric aerosols sampled at a European regional background site (puy de Dôme, France)

  • Ivan VlastelicEmail author
  • Krzysztof Suchorski
  • Karine Sellegri
  • Aurélie Colomb
  • François Nauret
  • Laetitia Bouvier
  • Jean-Luc Piro


Trace metal composition of atmospheric aerosols provides clues as to emission sources and history of air masses. Atmospheric trace metal concentrations measured between 2011 and 2013 at puy de Dôme (1,465 m elevation, central France) are, on average, intermediate between low-altitude urban sites and Atlantic remote environment (115 ng/m3 Al, 0.55 ng/m3 Sr, 0.136 ng/m3 Ce, 1.34 ng/m3 Pb). Three main factors control trace metal variability: (1) the concentrations markedly decrease at night while the site is generally located in the free troposphere/nocturnal residual layer (average of 43 ng/m3 Al, 0.27 ng/m3 Sr, 0.052 ng/m3 Ce, 0.25 ng/m3 Pb during 2012 summer nights). The nocturnal depletion is greater for refractory crustal elements (Al, Fe, Ti and rare earth elements) than for B, Na and chalcophile/siderophile elements (e.g., Tl, In, Sb, Zn, Cd, Cu, Bi, Mo, Re, Pt and Pd), which probably partition into the gas phase and/or a fine mode fraction. (2) Cr, Ni, Mo, Ag, Pb and Pt record a greater influence of anthropogenic sources (combustion, iron/steel industry, and automobile exhaust catalysts) in winter, and/or in the continental air mass that most frequently influences the site during the cold season. (3) Air masses reaching the site have distinct trace element fingerprints depending on their origin. The African air has crustal like signatures (Al/Ti, La/Sm). The Atlantic air is enriched in B, Cu, Bi, Co, W, Re and Ag and depleted in Tl, Sb and Se relatively to Al. Continental air is enriched in Cr and Ni and depleted in Na. Local air (France) is enriched in chalcophile elements (Zn, Pb, Se, As, Sb, Tl) and to a lesser extent in alkalis and rare earth elements, likely due to limited activation and scavenging of primary particles during a short-history of transport.


Aerosols Trace metals Free troposphere Puy de Dôme 



This paper benefited from the constructive comments of two anonymous reviewers. Thanks to E. Atlas (Editor) who handled this manuscript. C. Bosq is thanked for technical assistance in the clean room. This work benefited from financial support from the Observatoire de Physique du Globe de Clermont Ferrand, the French Government Laboratory of Excellence initiative n°ANR-10-LABX-0006, the Région Auvergne and the European Regional Development Funds. This is Laboratory of Excellence ClerVolc contribution number 119.

Supplementary material

10874_2014_9290_MOESM1_ESM.xls (114 kb)
Supplementary Table A (XLS 114 kb)
10874_2014_9290_Fig7_ESM.gif (285 kb)
Supplementary Figure A

(GIF 284 kb)

10874_2014_9290_MOESM2_ESM.eps (10.8 mb)
High Resolution Image (EPS 11032 kb)


  1. Aitken, J.: On the number of dust particles in the atmosphere. Nature 37, 428–430 (1988)CrossRefGoogle Scholar
  2. Allen, A.G., Nemitz, E., Shi, J.P., Harrison, R.M., Greenwood, J.C.: Size distributions of trace metals in atmospheric aerosols in the United Kingdom. Atmos Environ 35, 4581–4591 (2001)CrossRefGoogle Scholar
  3. Arimoto, R., Duce, R.A., Ray, B.J., Ellis, W.G., Cullen, J.D., Merrill, J.T.: Trace elements in the atmosphere over the North Atlantic. J Geophys Res 100, 1199–1213 (1995)CrossRefGoogle Scholar
  4. Asmi, E., Freney, E., Hervo, M., Picard, D., Rose, C., Colomb, A., Sellegri, K.: Aerosol cloud activation in summer and winter at puy-de-Dôme high altitude site in France. Atmos Chem Phys 12, 11589–11607 (2012)CrossRefGoogle Scholar
  5. Ayrault, S., Senhou, A., Moskura, M., Gaudry, A.: Atmospheric trace element concentrations in total suspended particles near Paris, France. Atmos Environ 44, 3700–3707 (2010)CrossRefGoogle Scholar
  6. Berg, T., Royset, O., Steinnes, E., Vadset, M.: Atmospheric trace element deposition: principal component analysis of ICP-MS data from moss samples. Environ Pollut 88, 67–77 (1995)CrossRefGoogle Scholar
  7. Berg, T., Ass, W., Pacyna, J., Uggerud, H.T., Vadset, M.: Atmospheric trace metal concentrations at Norwegian background sites during 25 years and its relation to European emissions. Atmos Environ 42, 7494–7501 (2008)CrossRefGoogle Scholar
  8. Boulon, J., Sellegri, K., Hervo, M., Picard, D., Pichon, J.M., Fréville, P., Laj, P.: Investigation of nucleation events vertical extent: a long term study at two different altitude sites. Atmos Chem Phys 11, 5625–5639 (2011)CrossRefGoogle Scholar
  9. Bourcier, L., Sellegri, K., Chausse, P., Pichon, J.M., Laj, P.: Seasonal variation of water-soluble inorganic component in size-segregated aerosol at the puy de Dôme station (1465 m a.s.l.), France. J Atmos Chem 69, 47–66 (2012)CrossRefGoogle Scholar
  10. Cattel, F.C.R., Scott, W.D.: Copper in aerosol particles produced by the Ocean. Science 202, 429–430 (1978)CrossRefGoogle Scholar
  11. Connan, O., Maro, D., Hébert, D., Roupsard, P., Goujon, R., Letellier, B., Le Cavelier, S.: Wet and dry deposition of particles associated metals (Cd, Pb, Zn, Ni, Hg) in a rural wetland site, Marais Vernier, France. Atmos Environ 67, 394–403 (2013)CrossRefGoogle Scholar
  12. Duce, R.A., Hoffman, G.L., Zoller, W.H.: Atmospheric trace metals at remote northern and southern hemisphere sites: pollution or natural? Science 187, 59–61 (1975)CrossRefGoogle Scholar
  13. Fomba, K.W., Müller, K., van Pinxteren, D., Herrmann, H.: Aerosol size-resolved trace metal composition in remote northern tropical Atlantic marine environment: case study Cape Verde islands. Atmos Chem Phys 13, 4801–4814 (2013)CrossRefGoogle Scholar
  14. Freney, E.J., Sellegri, K., Canonaco, F., Boulon, J., Hervo, M., Weigel, R., Pichon, J.M., Clomb, A., Prévôt, A.S.H., Laj, P.: Seasonal variations in aerosol particle composition at the puy-de-Dôme research station in France. Atmos Chem Phys 11, 13047–13059 (2011)CrossRefGoogle Scholar
  15. Gelencsér, A., May, B., Simpson, D., Sanchez-Ochoa, A., Kasper-Giebl, A., Puxbaum, H., Caseiro, A., Pio, C., Legrand, M.: Source apportionment of PM2.5 aerosol over Europe: primary/secondary, natural/anthropogenic, and fossil/biogenic origin. J. Geophys. Res. 112, (2007). doi: 10.1029/2006JD008094
  16. Hammer, S., Wagenbach, D., Preunkert, S., Pio, C., Schlosser, C., Meinhardt, F.: Lead-210 observations within CARBOSOL: A diagnostic tool for assessing the spatiotemporal variability of related chemical aerosol species? J. Geophys. Res. 112, (2007). doi: 10.1029/2006JD008065
  17. Heimbürger, L.-E., Migon, C., Dufour, A., Chiffoleau, J.-F., Cossa, D.: Trace metal concentrations in the North-western Mediterranean atmospheric aerosol between 1986 and 2008: seasonal pattern and decadal trends. Sci Total Environ 408, 2629–2638 (2010)CrossRefGoogle Scholar
  18. Henne, S., Brunner, D., Folini, D., Solberg, S., Klausen, J., Buchmann, B.: Assessment of parameters describing representativeness of air quality in-situ measurement sites. Atmos Chem Phys 10, 3561–3581 (2010)CrossRefGoogle Scholar
  19. Ilyin, I., Rozovskaya, O., Travnikov, O., Varygina, M., Aas, W., Uggerud, H.T.,: Heavy metal transboundary pollution of the environment. EMEP Status report 2/2013, (June 2013)Google Scholar
  20. Marx, S.K., Kamber, B.S., McGowan, H.A.: Scavenging of atmospheric trace metal pollutants by mineral dusts: Inter-regional transport of Australian trace metal pollution to New Zealand. Atmos Environ 42, 2460–2478 (2008)CrossRefGoogle Scholar
  21. Mbengue, S., Alleman, L.Y., Flament, P.: Size-distributed metallic elements in submicronic and ultrafine atmospheric particles from urban and industrial areas in northern France. Atmos Res 135–136, 35–37 (2014)CrossRefGoogle Scholar
  22. Migon, C., Robin, T., Dufour, A., Gentili, B.: Decrease of lead concentrations in the Western Mediterranean atmosphere during the last 20 years. Atmos Environ 42, 815–821 (2008)CrossRefGoogle Scholar
  23. Millner, T., Neugebauer, J.: Volatility of the oxides of tungsten and molybdenum in the presence of water vapour. Nature 163, 601–602 (1949)CrossRefGoogle Scholar
  24. Moreno, T., Querol, X., Castillo, S., Alastuey, A., Cuevas, E., Herrmann, L., Mounkaila, M., Elvira, J., Gibbons, W.: Geochemical variations in Aeolian mineral particles from the Sahara-Sahel dust corridor. Chemosphere 65, 261–270 (2006)CrossRefGoogle Scholar
  25. Pacyna, J.M., Pacyna, E.G.: An assessment of global and regional emissions of trace metals to the atmosphere from anthropogenic sources worldwide. Environ Rev 9, 269–298 (2001)CrossRefGoogle Scholar
  26. Pacyna, J., Pacyna, E., Ass, W.: Changes of emissions and atmospheric deposition of mercury, lead, and cadmium. Atmos Environ 43, 117–127 (2009)CrossRefGoogle Scholar
  27. Pio, C.A., Legrand, M., Oliviera, T., Afonso, J., Saontos, C., Caseiro, A., Fialho, P., Barata, F., Puxbaum, H., Sanchez-Ochoa, A., Kasper-Giebl, A., Gelencser, A., Preunkert, S., Schock, M.: Climatology of aerosol composition (organic versus inorganic) at nonurban sites on a west-east transect across Europe. J. Geophys. Res. 112, (2007). doi: 10.1029/2006JD008038
  28. Pöschl, U.: Atmospheric aerosols: composition, transformation, climate and health effects. Angew Chem Int Ed 44, 7520–7540 (2005)CrossRefGoogle Scholar
  29. Raes, F., Van Dingenen, R., Vignati, E., Wilson, J., Putaud, J.P., Seinfeld, J.H., Adams, P.: Formation and cycling of aerosols in the global troposphere. Atmos Environ 34, 4215–4240 (2000)CrossRefGoogle Scholar
  30. Rauch, S., Hemond, H.F., Barbante, C., Owari, M., Morrison, G.M., Peucker-Ehrenbrink, B., Wass, B.: Importance of automobile exhaust catalyst emission for the deposition of Platinum, Palladium, and Rhodium in the Northern Hemisphere. Environ Sci Technol 39, 8156–8162 (2005)CrossRefGoogle Scholar
  31. Reimann, C., de Caritat, P.: Distinguishing between natural and anthropogenic sources for elements in the environment: regional geochemical surveys versus enrichment factors. Sci Total Environ 337, 91–107 (2005)CrossRefGoogle Scholar
  32. Rose, C., Boulon, J., Hervo, M., Holmgren, H., Asmi, E., Ramonet, M., Laj, P., Sellegri, K.: Long-term observations of cluster ion concentration, sources and sinks in clear sky conditions at the high-altitude site of the Puy de Dôme, France. Atmos Chem Phys 13, 11573–11594 (2013)CrossRefGoogle Scholar
  33. Roy, S., Négrel, P.: A Pb isotope and trace element study of rainwater from the Massif Central (France). Sci Total Environ 277, 225–239 (2001)CrossRefGoogle Scholar
  34. Rudnick, R.L., Gao, S.: Composition of the continental crust. Treatise Geochem 3, 1–64 (2003)CrossRefGoogle Scholar
  35. Salvador, P., Artinano, B., Pio, C., Afonso, J., Legrand, M., Puxbaum, H., Hammer, S.: Evaluation of aerosol sources at European high altitude background sites with trajectory statistical analysis methods. Atmos Environ 44, 2316–2329 (2010)CrossRefGoogle Scholar
  36. Seeker, W.M.R.: Waste combustion. Twenty-third international symposium on Combustion/The combustion institute, pp. 867–885 (1990).Google Scholar
  37. Song, F., Gao, Y.: Size distributions of trace elements associated with ambient particulate matter in the affinity of a major highway in the New Jersey- New York metropolitan area. Atmos Environ 45, 6714–6723 (2011)CrossRefGoogle Scholar
  38. Symonds, R.B., Reed, M.H., Rose, W.I.: Origin, speciation, and fluxes of trace-element gases at Augustine volcano, Alaska: insight into magma degassing and fumarolic processes. Geochim Cosmochim Acta 56, 633–657 (1992)CrossRefGoogle Scholar
  39. Travnikov, O., Ilyin, I., Rozovskaya, O., Varygina, M., Aas, W., Uggerud, H.T., Mareckova, K., Wankmueller, R.: Long-term changes of heavy metal transboundary pollution of the environment (1990–2010). EMEP Status report 2/2012, (June 2012)Google Scholar
  40. Venzac, H., Sellegri, K., Villani, P., Picard, D., Laj, P.: Seasonal variation of aerosol size distributions in the free troposphere and residual layer at the puy de Dôme station, France. Atmos Chem Phys 9, 1465–1478 (2009)CrossRefGoogle Scholar
  41. Weisel, C.P., Duce, R.A., Fasching, J.L., Heaton, R.W.: Estimates of the transport of trace metals from the ocean to the atmosphere. J Geophys Res 89, 11607–11618 (1984)CrossRefGoogle Scholar
  42. Witt, M., Baker, A.R., Jickells, T.D.: Atmospheric trace metals over the Atlantic and South Indian Oceans: investigation of metal concentrations and lead isotope ratios in coastal and remote marine aerosols. Atmos Environ 40, 5435–5451 (2006)CrossRefGoogle Scholar
  43. Wood, S.A.: Thermodynamic calculations of the volatility of the platinum group elements (PGE): the PGE content of fluids at magmatic temperatures. Geochim Cosmochim Acta 51, 3041–3050 (1987)CrossRefGoogle Scholar
  44. Zoller, W.H., Gladney, E.S., Duce, R.A.: Atmospheric concentrations and sources of trace metals at the South Pole. Science 183, 198–200 (1974)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Ivan Vlastelic
    • 1
    • 2
    • 4
    Email author
  • Krzysztof Suchorski
    • 1
    • 2
    • 4
  • Karine Sellegri
    • 3
    • 4
  • Aurélie Colomb
    • 3
    • 4
  • François Nauret
    • 1
    • 2
    • 4
  • Laetitia Bouvier
    • 3
    • 4
  • Jean-Luc Piro
    • 1
    • 2
    • 4
  1. 1.Laboratoire Magmas et VolcansClermont Université, Université Blaise PascalClermont-FerrandFrance
  2. 2.Laboratoire Magmas et VolcansCNRS, UMR 6524Clermont-FerrandFrance
  3. 3.Laboratoire Meteorologie PhysiqueClermont Université, Université Blaise PascalClermont-FerrandFrance
  4. 4.Observatoire de physique du Globe de Clermont-FerrandClermont UniversitéClermont-FerrandFrance

Personalised recommendations