Journal of Atmospheric Chemistry

, Volume 71, Issue 2, pp 145–156

Optical growth of highly viscous organic/sulfate particles



Light extinction by atmospheric particles is strongly dependent on their chemical composition and water content. Since light extinction directly impacts climate, optical measurements of atmospherically relevant aerosols at varying relative humidities (RH) are needed. Recent studies have highlighted the possibility that some atmospheric aerosols are glassy under ambient conditions. Here, the particle optical growth factor, fRHext, was measured for liquid and glassy particles using cavity ring-down aerosol extinction spectroscopy. The particles were composed of ammonium sulfate (AS), 1,2,6-hexanetriol, sucrose, raffinose, and mixed particles containing AS and either sucrose or raffinose. Both sucrose and raffinose can be glassy at room temperature. For the pure organics, the highly viscous sucrose and raffinose particles have similar optical growth curves to the liquid 1,2,6 hexanetriol particles. However, for particles composed of sucrose or raffinose mixed with AS, optical growth depends on the AS weight-percent, which in turn controls the phase state of the AS and ultimately the water uptake.


Aerosols Optical growth Growth factor Organic Glassy 

Supplementary material

10874_2014_9287_MOESM1_ESM.docx (45 kb)
Table S1(DOCX 45 kb)
10874_2014_9287_MOESM2_ESM.docx (64 kb)
Table S2(DOCX 64 kb)
10874_2014_9287_MOESM3_ESM.docx (1.5 mb)
Figure S1(DOCX 1503 kb)
10874_2014_9287_MOESM4_ESM.docx (1.7 mb)
Figure S2(DOCX 1727 kb)


  1. Angell, C.A.: Formation of glasses from liquids and biopolymers. Science 267(5206), 1924–1935 (1995). doi:10.1126/science.267.5206.1924 CrossRefGoogle Scholar
  2. Baustian, K.J., Wise, M.E., Tolbert, M.A.: Depositional ice nucleation on solid ammonium sulfate and glutaric acid particles. Atmos. Chem. Phys. 10(5), 2307–2317 (2010)CrossRefGoogle Scholar
  3. Baustian, K.J., Wise, M.E., Jensen, E.J., Schill, G.P., Freedman, M.A., Tolbert, M.A.: State transformations and ice nucleation in amorphous (semi-)solid organic aerosol. Atmos. Chem. Phys. 13(11), 5615–5628 (2013). doi:10.5194/acp-13-5615-2013 CrossRefGoogle Scholar
  4. Baynard, T., Garland, R.M., Ravishankara, A.R., Tolbert, M.A., Lovejoy, E.R.: Key factors influencing the relative humidity dependence of aerosol light scattering. Geophys. Res. Lett. 33(6) (2006). doi:10.1029/2005gl024898
  5. Baynard, T., Lovejoy, E.R., Pettersson, A., Brown, S.S., Lack, D., Osthoff, H., Massoli, P., Ciciora, S., Dube, W.P., Ravishankara, A.R.: Design and application of a pulsed cavity ring-down aerosol extinction spectrometer for field measurements. Aerosol Sci. Technol. 41(4), 447–462 (2007). doi:10.1080/02786820701222801 CrossRefGoogle Scholar
  6. Beaver, M.R., Garland, R.M., Hasenkopf, C.A., Baynard, T., Ravishankara, A.R., Tolbert, M.A.: A laboratory investigation of the relative humidity dependence of light extinction by organic compounds from lignin combustion. Environ. Res. Lett. 3(4) (2008). doi:10.1088/1748-9326/3/4/045003
  7. Beaver, M.R., Freedman, M.A., Hasenkopf, C.A., Tolbert, M.A.: Cooling enhancement of aerosol particles due to surfactant precipitation. J. Phys. Chem. A 114(26), 7070–7076 (2010). doi:10.1021/jp102437q CrossRefGoogle Scholar
  8. Bodsworth, A., Zobrist, B., Bertram, A.K.: Inhibition of efflorescence in mixed organic-inorganic particles at temperatures less than 250 K. Phys. Chem. Chem. Phys. 12(38), 12259–12266 (2010). doi:10.1039/c0cp00572j
  9. Bones, D.L., Reid, J.P., Lienhard, D.M., Krieger, U.K.: Comparing the mechanism of water condensation and evaporation in glassy aerosol. PNAS 109(29), 11613–11618 (2012). doi:10.1073/pnas.1200691109 CrossRefGoogle Scholar
  10. Brooks, S.D., Garland, R.M., Wise, M.E., Prenni, A.J., Cushing, M., Hewitt, E., Tolbert, M.A.: Phase changes in internally mixed maleic acid/ammonium sulfate aerosols. J. Geophys. Res. Atmos. 108(D15) (2003). doi:10.1029/2002jd003204
  11. Burnett, D.J., Thielmann, F., Booth, J.: Determining the critical relative humidity for moisture-induced phase transitions. Int. J. Pharm. 287(1–2), 123–133 (2004). doi:10.1016/j.ijpharm.2004.09.009 CrossRefGoogle Scholar
  12. Cappa, C.D., Wilson, K.R.: Evolution of organic aerosol mass spectra upon heating: implications for OA phase and partitioning behavior. Atmos. Chem. Phys. 11(5), 1895–1911 (2011). doi:10.5194/acp-11-1895-2011 CrossRefGoogle Scholar
  13. Cziczo, D.J., Nowak, J.B., Hu, J.H., Abbatt, J.P.D.: Infrared spectroscopy of model tropospheric aerosols as a function of relative humidity: Observation of deliquescence and crystallization. J. Geophys. Res. Atmos. 102(D15), 18843–18850 (1997). doi:10.1029/97jd01361 CrossRefGoogle Scholar
  14. Dai, Q., Hu, J., Salmeron, M.: Adsorption of water on NaCl (100) surfaces: role of atomic steps. J. Phys. Chem. B 101(11), 1994–1998 (1997). doi:10.1021/jp9625772 CrossRefGoogle Scholar
  15. Debenedetti, P.G., Stillinger, F.H.: Supercooled liquids and the glass transition. Nature 410(6825), 259–267 (2001). doi:10.1038/35065704 CrossRefGoogle Scholar
  16. Hasenkopf, C.A., Freedman, M.A., Beaver, M.R., Toon, O.B., Tolbert, M.A.: Potential climatic impact of organic haze on early earth. Astrobiology 11(2), 135–149 (2011). doi:10.1089/ast.2010.0541 CrossRefGoogle Scholar
  17. Jimenez, J.L., Canagaratna, M.R., Donahue, N.M., Prevot, A.S.H., Zhang, Q., Kroll, J.H., DeCarlo, P.F., Allan, J.D., Coe, H., Ng, N.L., Aiken, A.C., Docherty, K.S., Ulbrich, I.M., Grieshop, A.P., Robinson, A.L., Duplissy, J., Smith, J.D., Wilson, K.R., Lanz, V.A., Hueglin, C., Sun, Y.L., Tian, J., Laaksonen, A., Raatikainen, T., Rautiainen, J., Vaattovaara, P., Ehn, M., Kulmala, M., Tomlinson, J.M., Collins, D.R., Cubison, M.J., Dunlea, E.J., Huffman, J.A., Onasch, T.B., Alfarra, M.R., Williams, P.I., Bower, K., Kondo, Y., Schneider, J., Drewnick, F., Borrmann, S., Weimer, S., Demerjian, K., Salcedo, D., Cottrell, L., Griffin, R., Takami, A., Miyoshi, T., Hatakeyama, S., Shimono, A., Sun, J.Y., Zhang, Y.M., Dzepina, K., Kimmel, J.R., Sueper, D., Jayne, J.T., Herndon, S.C., Trimborn, A.M., Williams, L.R., Wood, E.C., Middlebrook, A.M., Kolb, C.E., Baltensperger, U., Worsnop, D.R.: Evolution of organic aerosols in the atmosphere. Science 326(5959), 1525–1529 (2009). doi:10.1126/science.1180353 CrossRefGoogle Scholar
  18. Koop, T., Bookhold, J., Shiraiwa, M., Poschl, U.: Glass transition and phase state of organic compounds: dependency on molecular properties and implications for secondary organic aerosols in the atmosphere. Phys. Chem. Chem. Phys. 13(43), 19238–19255 (2011). doi:10.1039/c1cp22617g CrossRefGoogle Scholar
  19. Marcolli, C., Luo, B., Peter, T.: Mixing of the organic aerosol fractions: liquids as the thermodynamically stable phases. J. Phys. Chem. A 108(12), 2216–2224 (2004). doi:10.1021/jp036080l CrossRefGoogle Scholar
  20. Martin, S.T.: Phase transitions of aqueous atmospheric particles. Chem. Rev. 100(9), 3403–3453 (2000). doi:10.1021/cr990034t CrossRefGoogle Scholar
  21. Mikhailov, E., Vlasenko, S., Martin, S.T., Koop, T., Poschl, U.: Amorphous and crystalline aerosol particles interacting with water vapor: conceptual framework and experimental evidence for restructuring, phase transitions and kinetic limitations. Atmos. Chem. Phys. 9(24), 9491–9522 (2009)CrossRefGoogle Scholar
  22. Murphy, D.M., Cziczo, D.J., Froyd, K.D., Hudson, P.K., Matthew, B.M., Middlebrook, A.M., Peltier, R.E., Sullivan, A., Thomson, D.S., Weber, R.J.: Single-particle mass spectrometry of tropospheric aerosol particles. J. Geophys. Res. Atmos. 111(D23) (2006). doi:10.1029/2006jd007340
  23. Parsons, M.T., Mak, J., Lipetz, S.R., Bertram, A.K.: Deliquescence of malonic, succinic, glutaric, and adipic acid particles. J. Geophys. Res. Atmos. 109(D6), D06212 (2004). doi:10.1029/2003jd004075 CrossRefGoogle Scholar
  24. Perraud, V., Bruns, E.A., Ezell, M.J., Johnson, S.N., Yu, Y., Alexander, M.L., Zelenyuk, A., Imre, D., Chang, W.L., Dabdub, D., Pankow, J.F., Finlayson-Pitts, B.J.: Nonequilibrium atmospheric secondary organic aerosol formation and growth. PNAS 109(8), 2836–2841 (2012). doi:10.1073/pnas.1119909109 CrossRefGoogle Scholar
  25. Pettersson, A., Lovejoy, E.R., Brock, C.A., Brown, S.S., Ravishankara, A.R.: Measurement of aerosol optical extinction at 532 nm with pulsed cavity ring down spectroscopy. J. Aerosol Sci. 35(8), 995–1011 (2004). doi:10.1016/j.jaerosci.2004.02.008 CrossRefGoogle Scholar
  26. Pratt, K.A., Prather, K.A.: Aircraft measurements of vertical profiles of aerosol mixing states. J. Geophys. Res. Atmos. 115 (2010). doi:10.1029/2009jd013150
  27. Renbaum-Wolff, L., Grayson, J.W., Bateman, A.P., Kuwata, M., Sellier, M., Murray, B.J., Shilling, J.E., Martin, S.T., Bertram, A.K.: Viscosity of alpha-pinene secondary organic material and implications for particle growth and reactivity. PNAS 110(20), 8014–8019 (2013). doi:10.1073/pnas.1219548110 CrossRefGoogle Scholar
  28. Saukko, E., Lambe, A.T., Massoli, P., Koop, T., Wright, J.P., Croasdale, D.R., Pedernera, D.A., Onasch, T.B., Laaksonen, A., Davidovits, P., Worsnop, D.R., Virtanen, A.: Humidity-dependent phase state of SOA particles from biogenic and anthropogenic precursors. Atmos. Chem. Phys. 12(16), 7517–7529 (2012). doi:10.5194/acp-12-7517-2012 CrossRefGoogle Scholar
  29. Schill, G.P., Tolbert, M.A.: Heterogeneous ice nucleation on phase-separated organic-sulfate particles: effect of liquid vs. glassy coatings. Atmos. Chem. Phys. 13(9), 4681–4695 (2013). doi:10.5194/acp-13-4681-2013 CrossRefGoogle Scholar
  30. Seinfeld, J.H., Pandis, S.N.: Atmospheric Chemistry and Physics. Wiley Interscience, Hoboken (2006)Google Scholar
  31. Shindo, H., Ohashi, M., Tateishi, O., Seo, A.: Atomic force microscopic observation of step movements on NaCl(001) and NaF(001) with the help of adsorbed water. J. Chem. Soc. Faraday Trans. 93(6), 1169–1174 (1997). doi:10.1039/a606256c CrossRefGoogle Scholar
  32. Shiraiwa, M., Ammann, M., Koop, T., Poschl, U.: Gas uptake and chemical aging of semisolid organic aerosol particles. PNAS 108(27), 11003–11008 (2011). doi:10.1073/pnas.1103045108 CrossRefGoogle Scholar
  33. Shiraiwa, M., Poschl, U., Knopf, D.A.: Multiphase chemical kinetics of NO3 radicals reacting with organic aerosol components from biomass burning. Environ. Sci. Technol. 46(12), 6630–6636 (2012). doi:10.1021/es300677a CrossRefGoogle Scholar
  34. Sigma-Aldrich: 1,2,6-Hexanetriol product specification. (2011). 2014
  35. Tang, I.N., Munkelwitz, H.R.: Composition and temperature-dependence of the deliquescence properties of hygroscopic aerosols. Atmos. Environ A Gen. Top. 27(4), 467–473 (1993). doi:10.1016/0960-1686(93)90204-c CrossRefGoogle Scholar
  36. Tong, H.J., Reid, J.P., Bones, D.L., Luo, B.P., Krieger, U.K.: Measurements of the timescales for the mass transfer of water in glassy aerosol at low relative humidity and ambient temperature. Atmos. Chem. Phys. 11(10), 4739–4754 (2011). doi:10.5194/acp-11-4739-2011 CrossRefGoogle Scholar
  37. Virtanen, A., Joutsensaari, J., Koop, T., Kannosto, J., Yli-Pirila, P., Leskinen, J., Makela, J.M., Holopainen, J.K., Poschl, U., Kulmala, M., Worsnop, D.R., Laaksonen, A.: An amorphous solid state of biogenic secondary organic aerosol particles. Nature 467(7317), 824–827 (2010). doi:10.1038/nature09455 CrossRefGoogle Scholar
  38. Wang, B.B., Laskin, A., Roedel, T., Gilles, M.K., Moffet, R.C., Tivanski, A.V., Knopf, D.A.: Heterogeneous ice nucleation and water uptake by field-collected atmospheric particles below 273 K. J. Geophys. Res. Atmos. 117 (2012). doi:10.1029/2012jd017446
  39. Wise, M.E., Martin, S.T., Russell, L.M., Buseck, P.R.: Water uptake by NaCl particles prior to deliquescence and the phase rule. Aerosol Sci. Technol. 42(4), 281–294 (2008). doi:10.1080/02786820802047115 CrossRefGoogle Scholar
  40. Zhang, R.Y., Khalizov, A.F., Pagels, J., Zhang, D., Xue, H.X., McMurry, P.H.: Variability in morphology, hygroscopicity, and optical properties of soot aerosols during atmospheric processing. PNAS 105(30), 10291–10296 (2008). doi:10.1073/pnas.0804860105 CrossRefGoogle Scholar
  41. Zobrist, B., Marcolli, C., Pedernera, D.A., Koop, T.: Do atmospheric aerosols form glasses? Atmos. Chem. Phys. 8(17), 5221–5244 (2008)CrossRefGoogle Scholar
  42. Zobrist, B., Soonsin, V., Luo, B.P., Krieger, U.K., Marcolli, C., Peter, T., Koop, T.: Ultra-slow water diffusion in aqueous sucrose glasses. Phys. Chem. Chem. Phys. 13(8), 3514–3526 (2011). doi:10.1039/c0cp01273d CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • C. B. Robinson
    • 1
    • 2
  • G. P. Schill
    • 1
    • 2
  • M. A. Tolbert
    • 1
    • 2
  1. 1.Department of Chemistry and BiochemistryUniversity of Colorado-BoulderBoulderUSA
  2. 2.Cooperative Institute for Research in Environmental Sciences (CIRES)University of Colorado-BoulderBoulderUSA

Personalised recommendations