Journal of Atmospheric Chemistry

, Volume 72, Issue 3–4, pp 235–259 | Cite as

Chemical processing within and above a loblolly pine forest in North Carolina, USA

  • Xiao-Ming Hu
  • Jose D. Fuentes
  • Darin Toohey
  • Daniel Wang
Article
  • 444 Downloads

Abstract

Hydrocarbon species and related meteorological and chemical variables were measured within and immediately above a loblolly pine forest in North Carolina, USA during 15–18 July 2003. The degree of photochemical processing within the forest canopy of biogenic hydrocarbons emitted at the foliage level is investigated with the aid of a one-dimensional photochemical model. Such in-canopy photochemical processes remain poorly understood largely due to limited observations of plant-emitted gases, chemical reactions, and yields of photochemical reactions inside plant canopies. These hydrocarbons are vented into the overlying atmospheric boundary layer and participate in regional-scale photochemical processes. At the forested site, isoprene was the dominant sink for hydroxyl radicals and ozone precursor among all the volatile organic compounds. Abundances of many hydrocarbons peaked in the early morning and late afternoon/early evening due to local emissions, while reaching minima at mid-day due to intense turbulent mixing and vigorous photochemistry. Methyl vinyl ketone and methacrolein, which were produced mostly from isoprene oxidation, had elevated mixing ratios during noontime in addition to maximum levels in the early morning and early evening. Abundances of species with dominant biogenic origin (e.g., isoprene, α-pinene, β-pinene, and limonene) were higher within the canopy than above the forest. For the species produced in the atmospheric boundary layer due to photochemical reactions, abundances residing away from the canopy were higher than those just above the canopy in response to photochemical production and/or transport associated with advection. Within the forest canopy photochemical reactions destroyed approximately 10 % of the locally emitted isoprene. Chemically more reactive species such as limonene experienced greater rates of removal in response to in-canopy chemical processing. Model sensitivity studies indicated that nitrogen oxides limited the formation of oxidants at the forested study site.

Keywords

Volatile organic compounds Ozone Photochemical canopy model Isoprene Mixed layer 

Supplementary material

10874_2013_9276_MOESM1_ESM.pdf (577 kb)
Supplement A-1(PDF 577 kb)

References

  1. Andreae, M.O., Artaxo, P., Brandao, C., Carswell, F.E., Ciccioli, P., da Costa, A.L., Culf, A.D., Esteves, J.L., Gash, J.H.C., Grace, J., Kabat, P., Lelieveld, J., Malhi, Y., Manzi, A.O., Meixner, F.X., Nobre, A.D., Nobre, C., Ruivo, M.D.L.P., Silva-Dias, M.A., Stefani, P., Valentini, R., von Jouanne, J., Waterloo, M.J.: Biogeochemical cycling of carbon, water, energy, trace gases, and aerosols in Amazonia: the LBA-EUSTACH experiments. J. Geophys. Res. Atmos. 107(D20), 8066 (2002). doi:10.1029/2001jd000524 CrossRefGoogle Scholar
  2. Apel, E.C., Riemer, D.D., Hills, A., Baugh, W., Orlando, J., Faloona, I., Tan, D., Brune, W., Lamb, B., Westberg, H., Carroll, M.A., Thornberry, T., Geron, C.D: Measurement and interpretation of isoprene fluxes and isoprene, methacrolein, and methyl vinyl ketone mixing ratios at the PROPHET site during the 1998 Intensive. J. Geophys. Res. Atmos. 107(D3), (2002). doi:10.1029/2000jd000225
  3. Atkinson, R.: Atmospheric chemistry of VOCs and NOx. Atmos. Environ. 34, 2063–2101 (2000). doi:10.1016/S1352-2310(99)00460-4 CrossRefGoogle Scholar
  4. Atkinson, R., Arey, J.: Gas-phase tropospheric chemistry of biogenic volatile organic compounds: a review. Atmos. Environ. 37, S197–S219 (2003). doi:10.1016/S1352-2310(03)00391-1 CrossRefGoogle Scholar
  5. Baldocchi, D.: A Multi-layer model for estimating sulfur-dioxide deposition to a deciduous oak forest canopy. Atmos. Environ. 22(5), 869–884 (1988). doi:10.1016/0004-6981(88)90264-8 CrossRefGoogle Scholar
  6. Barr, J.G., Fuentes, J.D., Bottenheim, J.W.: Radiative forcing of phytogenic aerosols. J. Geophys. Res. Atmos. 108(D15), 4466 (2003). doi:10.1029/2002jd002978 CrossRefGoogle Scholar
  7. Beare, R.J., MacVean, M.K., Holtslag, A.A.M., Cuxart, J., Esau, I., Golaz, J.C., Jimenez, M.A., Khairoutdinov, M., Kosovic, B., Lewellen, D., Lund, T.S., Lundquist, J.K., McCabe, A., Moene, A.F., Noh, Y., Raasch, S., Sullivan, P.: An intercomparison of large-eddy simulations of the stable boundary layer. Bound.-Lay. Meteorol. 118(2), 247–272 (2006). doi:10.1007/s10546-004-2820-6 CrossRefGoogle Scholar
  8. Biesenthal, T.A., Shepson, P.B.: Observations of anthropogenic inputs of the isoprene oxidation products methyl vinyl ketone and methacrolein to the atmosphere. Geophys. Res. Lett. 24(11), 1375–1378 (1997). doi:10.1029/97gl01337 CrossRefGoogle Scholar
  9. Biesenthal, T.A., Wu, Q., Shepson, P.B., Wiebe, H.A., Anlauf, K.G., Mackay, G.I.: A study of relationships between isoprene, its oxidation products, and ozone, in the Lower Fraser Valley, BC. Atmos. Environ. 31(14), 2049–2058 (1997). doi:10.1016/S1352-2310(96)00318-4 CrossRefGoogle Scholar
  10. Biesenthal, T.A., Bottenheim, J.W., Shepson, P.B., Brickell, P.C.: The chemistry of biogenic hydrocarbons at a rural site in eastern Canada. J. Geophys. Res. Atmos. 103(D19), 25487–25498 (1998). doi:10.1029/98jd01848 CrossRefGoogle Scholar
  11. Borbon, A., Fontaine, H., Veillerot, M., Locoge, N., Galloo, J.C., Guillermo, R.: An investigation into the traffic-related fraction of isoprene at an urban location. Atmos. Environ. 35(22), 3749–3760 (2001). doi:10.1016/S1352-2310(01)00170-4 CrossRefGoogle Scholar
  12. Bottenheim, J.W., Shepherd, M.F.: C2-C6 hydrocarbon measurements at 4 rural locations across Canada. Atmos. Environ. 29(6), 647–664 (1995). doi:10.1016/1352-2310(94)00318-F CrossRefGoogle Scholar
  13. Boy, M., Sogachev, A., Lauros, J., Zhou, L., Guenther, A., Smolander, S.: SOSA—a new model to simulate the concentrations of organic vapours and sulphuric acid inside the ABL - part 1: model description and initial evaluation. Atmos. Chem. Phys. 11(1), 43–51 (2011). doi:10.5194/acp-11-43-2011 CrossRefGoogle Scholar
  14. Brown, S.S., Degouw, J.A., Warneke, C., Ryerson, T.B., Dube, W.P., Atlas, E., Weber, R.J., Peltier, R.E., Neuman, J.A., Roberts, J.M., Swanson, A., Flocke, F., McKeen, S.A., Brioude, J., Sommariva, R., Trainer, M., Fehsenfeld, F.C., Ravishankara, A.R.: Nocturnal isoprene oxidation over the Northeast United States in summer and its impact on reactive nitrogen partitioning and secondary organic aerosol. Atmos. Chem. Phys. 9(9), 3027–3042 (2009)CrossRefGoogle Scholar
  15. Browne, E.C., Cohen, R.C.: Effects of biogenic nitrate chemistry on the NOx lifetime in remote continental regions. Atmos. Chem. Phys. 12(24), 11917–11932 (2012). doi:10.5194/acp-12-11917-2012 CrossRefGoogle Scholar
  16. Bryan, A.M., Bertman, S.B., Carroll, M.A., Dusanter, S., Edwards, G.D., Forkel, R., Griffith, S., Guenther, A.B.., Hansen, R.F., Helmig, D., Jobson, B.T., Keutsch, F.N., Lefer, B.L., Pressley, S.N., Shepson, P.B., Stevens, P.S., Steiner, A.L.: In-canopy gas-phase chemistry during CABINEX 2009: sensitivity of a 1-D canopy model to vertical mixing and isoprene chemistry. Atmos. Chem. Phys. 12(18), 8829–8849 (2012). doi:10.5194/acp-12-8829-2012 CrossRefGoogle Scholar
  17. Carter, W.P.L., Atkinson, R.: Development and evaluation of a detailed mechanism for the atmospheric reactions of isoprene and NOx. Int. J. Chem. Kinet. 28(7), 497–530 (1996). doi:10.1002/(Sici)1097-4601(1996)28:7<497::Aid-Kin4>3.3.Co;2–7 CrossRefGoogle Scholar
  18. Chameides, W.L., Lindsay, R.W., Richardson, J., Kiang, C.S.: The role of biogenic hydrocarbons in urban photochemical smog - Atlanta as a case-study. Science 241(4872), 1473–1475 (1988). doi:10.1126/science.3420404 CrossRefGoogle Scholar
  19. Chan, A.W.H., Chan, M.N., Surratt, J.D., Chhabra, P.S., Loza, C.L., Crounse, J.D., Yee, L.D., Flagan, R.C., Wennberg, P.O., Seinfeld, J.H.: Role of aldehyde chemistry and NOx concentrations in secondary organic aerosol formation. Atmos. Chem. Phys. 10(15), 7169–7188 (2010). doi:10.5194/acp-10-7169-2010 CrossRefGoogle Scholar
  20. Chang, C.C., Chen, T.Y., Lin, C.Y., Yuan, C.S., Liu, S.C.: Effects of reactive hydrocarbons on ozone formation in southern Taiwan. Atmos. Environ. 39(16), 2867–2878 (2005). doi:10.1016/j.atmosenv.2004.12.042 CrossRefGoogle Scholar
  21. Cheng, H.R., Guo, H., Saunders, S.M., Lam, S.H.M., Jiang, F., Wang, X.M., Simpson, I.J., Blake, D.R., Louie, P.K.K., Wang, T.J.: Assessing photochemical ozone formation in the Pearl River Delta with a photochemical trajectory model. Atmos. Environ. 44(34), 4199–4208 (2010). doi:10.1016/j.atmosenv.2010.07.019 CrossRefGoogle Scholar
  22. Curren, K., Gillespie, T., Steyn, D., Dann, T., Wang, D.: Biogenic isoprene in the Lower Fraser Valley, British Columbia. J. Geophys. Res. Atmos. 103(D19), 25467–25477 (1998)CrossRefGoogle Scholar
  23. Cuxart, J., Holtslag, A.A.M., Beare, R.J., Bazile, E., Beljaars, A., Cheng, A., Conangla, L., Ek, M., Freedman, F., Hamdi, R., Kerstein, A., Kitagawa, H., Lenderink, G., Lewellen, D., Mailhot, J., Mauritsen, T., Perov, V., Schayes, G., Steeneveld, G.J., Svensson, G., Taylor, P., Weng, W., Wunsch, S., Xu, K.M.: Single-column model intercomparison for a stably stratified atmospheric boundary layer. Bound.-Lay. Meteorol. 118(2), 273–303 (2006). doi:10.1007/s10546-005-3780-1 CrossRefGoogle Scholar
  24. de Gouw, J.A., Middlebrook, A.M., Warneke, C., Goldan, P.D., Kuster, W.C., Roberts, J.M., Fehsenfeld, F.C., Worsnop, D.R., Canagaratna, M.R., Pszenny, A.A.P., Keene, W.C., Marchewka, M., Bertman, S.B., Bates, T.S.: Budget of organic carbon in a polluted atmosphere: results from the New England air quality study in 2002. J. Geophys. Res. Atmos. 110(D16), D16305 (2005). doi:10.1029/2004jd005623 CrossRefGoogle Scholar
  25. Derwent, R.G., Jenkin, M.E., Saunders, S.M., Pilling, M.J.: Photochemical ozone creation potentials for organic compounds in northwest Europe calculated with a master chemical mechanism. Atmos. Environ. 32(14–15), 2429–2441 (1998). doi:10.1016/S1352-2310(98)00053-3 CrossRefGoogle Scholar
  26. Doughty, D., Fuentes, J., Sakai, R., Hu, X.-M., Sanchez, K.: Nocturnal isoprene declines in a semi-urban environment. J. Atmos. Chem. 1–20 (2013). doi:10.1007/s10874-012-9247-0
  27. Durana, N., Navazo, M., Gomez, M.C., Alonso, L., Garcia, J.A., Ilardia, J.L., Gangoiti, G., Iza, J.: Long term hourly measurement of 62 non-methane hydrocarbons in an urban area: main results and contribution of non-traffic sources. Atmos. Environ. 40(16), 2860–2872 (2006). doi:10.1016/j.atmosenv.2006.01.005 CrossRefGoogle Scholar
  28. Farmer, D.K., Cohen, R.C.: Observations of HNO3, ∑AN, ∑PN and NO2 fluxes: evidence for rapid HOx chemistry within a pine forest canopy. Atmos. Chem. Phys. 8(14), 3899–3917 (2008)CrossRefGoogle Scholar
  29. Finnigan, J.: Turbulence in plant canopies. Annu. Rev. Fluid Mech. 32, 519–571 (2000). doi:10.1146/annurev.fluid.32.1.519 CrossRefGoogle Scholar
  30. Fitzjarrald, D.R., Acevedo, O.C., Moore, K.E.: Climatic consequences of leaf presence in the eastern United States. J. Climate 14(4), 598–614 (2001). doi:10.1175/1520-0442(2001)014<0598:Ccolpi>2.0.Co;2 CrossRefGoogle Scholar
  31. Forkel, R., Klemm, O., Graus, M., Rappengluck, B., Stockwell, W.R., Grabmer, W., Held, A., Hansel, A., Steinbrecher, R.: Trace gas exchange and gas phase chemistry in a Norway spruce forest: a study with a coupled 1-dimensional canopy atmospheric chemistry emission model. Atmos. Environ. 40, S28–S42 (2006). doi:10.1016/j.atmosenv.2005.11.070 CrossRefGoogle Scholar
  32. Fowler, D., Pilegaard, K., Sutton, M.A., Ambus, P., Raivonen, M., Duyzer, J., Simpson, D., Fagerli, H., Fuzzi, S., Schjoerring, J.K., Granier, C., Neftel, A., Isaksen, I.S.A., Laj, P., Maione, M., Monks, P.S., Burkhardt, J., Daemmgen, U., Neirynck, J., Personne, E., Wichink-Kruit, R., Butterbach-Bahl, K., Flechard, C., Tuovinen, J.P., Coyle, M., Gerosa, G., Loubet, B., Altimir, N., Gruenhage, L., Ammann, C., Cieslik, S., Paoletti, E., Mikkelsen, T.N., Ro-Poulsen, H., Cellier, P., Cape, J.N., Horvath, L., Loreto, F., Niinemets, U., Palmer, P.I., Rinne, J., Misztal, P., Nemitz, E., Nilsson, D., Pryor, S., Gallagher, M.W., Vesala, T., Skiba, U., Brueggemann, N., Zechmeister-Boltenstern, S., Williams, J., O’Dowd, C., Facchini, M.C., de Leeuw, G., Flossman, A., Chaumerliac, N., Erisman, J.W.: Atmospheric composition change: ecosystems-atmosphere interactions. Atmos. Environ. 43(33), 5193–5267 (2009). doi:10.1016/j.atmosenv.2009.07.068 CrossRefGoogle Scholar
  33. Fuentes, J.D., Wang, D., Neumann, H.H., Gillespie, T.J., DenHartog, G., Dann, T.F.: Ambient biogenic hydrocarbons and isoprene emissions from a mixed deciduous forest. J. Atmos. Chem. 25(1), 67–95 (1996). doi:10.1007/Bf00053286 CrossRefGoogle Scholar
  34. Fuentes, J.D., Lerdau, M., Atkinson, R., Baldocchi, D., Bottenheim, J.W., Ciccioli, P., Lamb, B., Geron, C., Gu, L., Guenther, A., Sharkey, T.D., Stockwell, W.: Biogenic hydrocarbons in the atmospheric boundary layer: a review. Bull. Am. Meteorol. Soc. 81(7), 1537–1575 (2000). doi:10.1175/1520-0477(2000)081<1537:Bhitab>2.3.Co;2 CrossRefGoogle Scholar
  35. Fuentes, J.D., Hayden, B.P., Garstang, M., Lerdau, M., Fitzjarrald, D., Baldocchi, D.D., Monson, R., Lamb, B., Geron, C.: New directions: VOCs and biosphere-atmosphere feedbacks. Atmos. Environ. 35(1), 189–191 (2001). doi:10.1016/S1352-2310(00)00365-4 CrossRefGoogle Scholar
  36. Fuentes, J.D., Wang, D., Bowling, D.R., Potosnak, M., Monson, R.K., Goliff, W.S., Stockwell, W.R.: Biogenic hydrocarbon chemistry within and above a mixed deciduous forest. J. Atmos. Chem. 56(2), 165–185 (2007). doi:10.1007/s10874-006-9048-4 CrossRefGoogle Scholar
  37. Ganzeveld, L.N., Lelieveld, J., Dentener, F.J., Krol, M.C., Roelofs, G.J.: Atmosphere-biosphere trace gas exchanges simulated with a single-column model. J. Geophys. Res. Atmos. 107(D16), (2002). doi: 10.1029/2001jd000684
  38. Gao, W., Wesely, M.L., Doskey, P.V.: Numerical modeling of the turbulent-diffusion and chemistry of Nox, O3, isoprene, and other reactive trace gases in and above a forest canopy. J. Geophys. Res. Atmos. 98(D10), 18339–18353 (1993). doi:10.1029/93jd01862 CrossRefGoogle Scholar
  39. Geron, C.: Carbonaceous aerosol characteristics over a Pinus taeda plantation: results from the CELTIC experiment. Atmos. Environ. 45(3), 794–801 (2011). doi:10.1016/j.atmosenv.2010.07.015 CrossRefGoogle Scholar
  40. Geron, C., Guenther, A., Sharkey, T., Arnts, R.R.: Temporal variability in basal isoprene emission factor. Tree Physiol. 20(12), 799–805 (2000)CrossRefGoogle Scholar
  41. Geron, C., Harley, P., Guenther, A.: Isoprene emission capacity for US tree species. Atmos. Environ. 35(19), 3341–3352 (2001). doi:10.1016/S1352-2310(00)00407-6 CrossRefGoogle Scholar
  42. Goldan, P.D., Kuster, W.C., Fehsenfeld, F.C., Montzka, S.A.: Hydrocarbon measurements in the southeastern United States: the Rural Oxidants in the Southern Environment (ROSE) program 1990. J. Geophys. Res. Atmos. 100(D12), 25945–25963 (1995a). doi:10.1029/95jd02607 CrossRefGoogle Scholar
  43. Goldan, P.D., Trainer, M., Kuster, W.C., Parrish, D.D., Carpenter, J., Roberts, J.M., Yee, J.E., Fehsenfeld, F.C.: Measurements of hydrocarbons, oxygenated hydrocarbons, carbon-monoxide, and nitrogen-oxides in an urban basin in Colorado—implications for emission inventories. J. Geophys. Res. Atmos. 100(D11), 22771–22783 (1995b). doi:10.1029/95jd01369 CrossRefGoogle Scholar
  44. Goldstein, A.H., McKay, M., Kurpius, M.R., Schade, G.W., Lee, A., Holzinger, R., Rasmussen, R.A.: Forest thinning experiment confirms ozone deposition to forest canopy is dominated by reaction with biogenic VOCs. Geophys. Res. Lett. 31(22), L22106 (2004). doi:10.1029/2004gl021259 CrossRefGoogle Scholar
  45. Grant, D.D., Fuentes, J.D., Chan, S., Stockwell, W.R., Wang, D., Ndiaye, S.A.: Volatile organic compounds at a rural site in western Senegal. J. Atmos. Chem. 60(1), 19–35 (2008). doi:10.1007/s10874-008-9106-1 CrossRefGoogle Scholar
  46. Guenther, A.B.., Monson, R.K., Fall, R.: Isoprene and monoterpene emission rate variability—observations with eucalyptus and emission rate algorithm development. J. Geophys. Res. Atmos. 96(D6), 10799–10808 (1991). doi:10.1029/91jd00960 CrossRefGoogle Scholar
  47. Guenther, A.B.., Zimmerman, P.R., Harley, P.C., Monson, R.K., Fall, R.: Isoprene and monoterpene emission rate variability—model evaluations and sensitivity analyses. J. Geophys. Res. Atmos. 98(D7), 12609–12617 (1993). doi:10.1029/93jd00527 CrossRefGoogle Scholar
  48. Guenther, A., Hewitt, C.N., Erickson, D., Fall, R., Geron, C., Graedel, T., Harley, P., Klinger, L., Lerdau, M., Mckay, W.A., Pierce, T., Scholes, B., Steinbrecher, R., Tallamraju, R., Taylor, J., Zimmerman, P.: A global-model of natural volatile organic-compound emissions. J. Geophys. Res. Atmos. 100(D5), 8873–8892 (1995). doi:10.1029/94jd02950 CrossRefGoogle Scholar
  49. Guenther, A., Karl, T., Harley, P., Wiedinmyer, C., Palmer, P.I., Geron, C.: Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature). Atmos. Chem. Phys. 6, 3181–3210 (2006)CrossRefGoogle Scholar
  50. Gut, A., van Dijk, S.M., Scheibe, M., Rummel, U., Welling, M., Ammann, C., Meixner, F.X., Kirkman, G.A., Andreae, M.O., Lehmann, B.E.: NO emission from an Amazonian rain forest soil: continuous measurements of NO flux and soil concentration. J. Geophys. Res. Atmos. 107(D20), 8057 (2002). doi:10.1029/2001jd000521 CrossRefGoogle Scholar
  51. Hallquist, M., Wenger, J.C., Baltensperger, U., Rudich, Y., Simpson, D., Claeys, M., Dommen, J., Donahue, N.M., George, C., Goldstein, A.H., Hamilton, J.F., Herrmann, H., Hoffmann, T., Iinuma, Y., Jang, M., Jenkin, M.E., Jimenez, J.L., Kiendler-Scharr, A., Maenhaut, W., McFiggans, G., Mentel, T.F., Monod, A., Prevot, A.S.H., Seinfeld, J.H., Surratt, J.D., Szmigielski, R., Wildt, J.: The formation, properties and impact of secondary organic aerosol: current and emerging issues. Atmos. Chem. Phys. 9(14), 5155–5236 (2009)CrossRefGoogle Scholar
  52. Hellen, H., Tykka, T., Hakola, H.: Importance of monoterpenes and isoprene in urban air in northern Europe. Atmos. Environ. 59, 59–66 (2012). doi:10.1016/j.atmosenv.2012.04.049 CrossRefGoogle Scholar
  53. Helmig, D., Ortega, J., Guenther, A., Herrick, J.D., Geron, C.: Sesquiterpene emissions from loblolly pine and their potential contribution to biogenic aerosol formation in the Southeastern US. Atmos. Environ. 40(22), 4150–4157 (2006). doi:10.1016/j.atmosenv.2006.02.035 CrossRefGoogle Scholar
  54. Holzinger, R., Lee, A., Paw, K.T., Goldstein, A.H.: Observations of oxidation products above a forest imply biogenic emissions of very reactive compounds. Atmos. Chem. Phys. 5, 67–75 (2005)CrossRefGoogle Scholar
  55. Hu, X.-M. (2008), Incorporation of the model of aerosol dynamics, reaction, ionization, and dissolution (MADRID) into the Weather Research and Forecasting Model with Chemistry (WRF/Chem): Model development and retrospective applications, Ph.D. dissertation, N. C. State Univ., Raleigh, JulyGoogle Scholar
  56. Hu, X.-M., Doughty, D.C., Sanchez, K.J., Joseph, E., Fuentes, J.D.: Ozone variability in the atmospheric boundary layer in Maryland and its implications for vertical transport model. Atmos. Environ. 46, 354–364 (2012). doi:10.1016/j.atmosenv.2011.09.054 CrossRefGoogle Scholar
  57. Hu, X.-M., Klein, P.M., Xue, M., Zhang, F., Doughty, D.C., Forkel, R., Joseph, E., Fuentes, J.D.: Impact of the vertical mixing induced by low-level jets on boundary layer ozone concentration. Atmos. Environ. 70, 123–130 (2013). doi:10.1016/j.atmosenv.2012.12.046 CrossRefGoogle Scholar
  58. Jonsson, A., Persson, K.A., Grigoriadis, V.: Measurements of some low molecular-weight oxygenated, aromatic, and chlorinated hydrocarbons in ambient air and in vehicle emissions. Environ. Int. 11(2–4), 383–392 (1985). doi:10.1016/0160-4120(85)90033-9 CrossRefGoogle Scholar
  59. Karl, T., Potosnak, M., Guenther, A., Clark, D., Walker, J., Herrick, J.D., Geron, C.: Exchange processes of volatile organic compounds above a tropical rain forest: implications for modeling tropospheric chemistry above dense vegetation. J. Geophys. Res. Atmos. 109(D18), D18306 (2004). doi:10.1029/2004jd004738 CrossRefGoogle Scholar
  60. Karl, T., Guenther, A., Turnipseed, A., Tyndall, G., Artaxo, P., Martin, S.: Rapid formation of isoprene photo-oxidation products observed in Amazonia. Atmos. Chem. Phys. 9(20), 7753–7767 (2009)CrossRefGoogle Scholar
  61. Kesselmeier, J., Staudt, M.: Biogenic volatile organic compounds (VOC): an overview on emission, physiology and ecology. J. Atmos. Chem. 33(1), 23–88 (1999). doi:10.1023/A:1006127516791 CrossRefGoogle Scholar
  62. Kesselmeier, J., Kuhn, U., Rottenberger, S., Biesenthal, T., Wolf, A., Schebeske, G., Andreae, M.O., Ciccioli, P., Brancaleoni, E., Frattoni, M., Oliva, S.T., Botelho, M.L., Silva, C.M.A., Tavares, T.M.: Concentrations and species composition of atmospheric volatile organic compounds (VOCs) as observed during the wet and dry season in Rondonia (Amazonia). J. Geophys. Res. Atmos. 107(D20), 8053 (2002). doi:10.1029/2000jd000267 CrossRefGoogle Scholar
  63. Kiefer, M.T., Zhong, S., Heilman, W.E., Charney, J.J., Bian, X.: Evaluation of an ARPS-based canopy flow modeling system for use in future operational smoke prediction efforts. J. Geophys. Res. Atmos. (2013). doi:10.1002/jgrd.50491 Google Scholar
  64. Kurpius, M.R., Goldstein, A.H.: Gas-phase chemistry dominates O3 loss to a forest, implying a source of aerosols and hydroxyl radicals to the atmosphere. Geophys. Res. Lett. 30(7), 1371 (2003). doi:10.1029/2002gl016785 CrossRefGoogle Scholar
  65. Lamb, B., Guenther, A., Gay, D., Westberg, H.: A national inventory of biogenic hydrocarbon emissions. Atmos. Environ. 21(8), 1695–1705 (1987). doi:10.1016/0004-6981(87)90108-9 CrossRefGoogle Scholar
  66. Lee, B.-S., Wang, J.-L.: Concentration variation of isoprene and its implications for peak ozone concentration. Atmos. Environ. 40(28), 5486–5495 (2006). doi:10.1016/j.atmosenv.2006.03.035 CrossRefGoogle Scholar
  67. Lelieveld, J., Butler, T.M., Crowley, J.N., Dillon, T.J., Fischer, H., Ganzeveld, L., Harder, H., Lawrence, M.G., Martinez, M., Taraborrelli, D., Williams, J.: Atmospheric oxidation capacity sustained by a tropical forest. Nature 452(7188), 737–740 (2008). doi:10.1038/Nature06870 CrossRefGoogle Scholar
  68. Liao, H., Henze, D.K., Seinfeld, J.H., Wu, S.L., Mickley, L.J.: Biogenic secondary organic aerosol over the United States: comparison of climatological simulations with observations. J. Geophys. Res. Atmos. 112(D6), D06201 (2007). doi:10.1029/2006jd007813 CrossRefGoogle Scholar
  69. Lin, Y.H., Zhang, H.F., Pye, H.O.T., Zhang, Z.F., Marth, W.J., Park, S., Arashiro, M., Cui, T.Q., Budisulistiorini, H., Sexton, K.G., Vizuete, W., Xie, Y., Luecken, D.J., Piletic, I.R., Edney, E.O., Bartolotti, L.J., Gold, A., Surratt, J.D.: Epoxide as a precursor to secondary organic aerosol formation from isoprene photooxidation in the presence of nitrogen oxides. Proc. Natl. Acad. Sci. U. S. A. 110(17), 6718–6723 (2013). doi:10.1073/pnas.1221150110 CrossRefGoogle Scholar
  70. Makar, P.A., Fuentes, J.D., Wang, D., Staebler, R.M., Wiebe, H.A.: Chemical processing of biogenic hydrocarbons within and above a temperate deciduous forest. J. Geophys. Res. Atmos. 104(D3), 3581–3603 (1999). doi:10.1029/1998jd100065 CrossRefGoogle Scholar
  71. Mao, J., Paulot, F., Jacob, D.J., Cohen, R.C., Crounse, J.D., Wennberg, P.O., Keller, C.A., Hudman, R.C., Barkley, M.P., Horowitz, L.W.: Ozone and organic nitrates over the eastern united states: sensitivity to isoprene chemistry. J. Geophys. Res. Atmos. (2013). doi:10.1002/jgrd.50817 Google Scholar
  72. Montzka, S.A., Trainer, M., Goldan, P.D., Kuster, W.C., Fehsenfeld, F.C.: Isoprene and its oxidation-products, methyl vinyl ketone and methacrolein, in the rural troposphere. J. Geophys. Res. Atmos. 98(D1), 1101–1111 (1993). doi:10.1029/92jd02382 CrossRefGoogle Scholar
  73. Papiez, M.R., Potosnak, M.J., Goliff, W.S., Guenther, A.B.., Matsunaga, S.N., Stockwell, W.R.: The impacts of reactive terpene emissions from plants on air quality in Las Vegas, Nevada. Atmos. Environ. 43(27), 4109–4123 (2009). doi:10.1016/j.atmosenv.2009.05.048 CrossRefGoogle Scholar
  74. Park, C., Schade, G.W., Boedeker, I.: Flux measurements of volatile organic compounds by the relaxed eddy accumulation method combined with a GC-FID system in urban Houston, Texas. Atmos. Environ. 44(21–22), 2605–2614 (2010). doi:10.1016/j.atmosenv.2010.04.016 CrossRefGoogle Scholar
  75. Park, C., Schade, G.W., Boedeker, I.: Characteristics of the flux of isoprene and its oxidation products in an urban area. J. Geophys. Res. Atmos. 116, (2011). doi:10.1029/2011jd015856
  76. Parrish, D.D., Stohl, A., Forster, C., Atlas, E.L., Blake, D.R., Goldan, P.D., Kuster, W.C., de Gouw, J.A.: Effects of mixing on evolution of hydrocarbon ratios in the troposphere. J. Geophys. Res. Atmos. 112(D10), D10S34 (2007). doi:10.1029/2006jd007583 CrossRefGoogle Scholar
  77. Paulot, F., Crounse, J.D., Kjaergaard, H.G., Kurten, A., St Clair, J.M., Seinfeld, J.H., Wennberg, P.O.: Unexpected epoxide formation in the gas-phase photooxidation of isoprene. Science 325(5941), 730–733 (2009). doi:10.1126/science.1172910 CrossRefGoogle Scholar
  78. Perring, A.E., Bertram, T.H., Farmer, D.K., Wooldridge, P.J., Dibb, J., Blake, N.J., Blake, D.R., Singh, H.B., Fuelberg, H., Diskin, G., Sachse, G., Cohen, R.C.: The production and persistence of sigma RONO2 in the Mexico City plume. Atmos. Chem. Phys. 10(15), 7215–7229 (2010). doi:10.5194/acp-10-7215-2010 CrossRefGoogle Scholar
  79. Pierce, T., Geron, C., Bender, L., Dennis, R., Tonnesen, G., Guenther, A.: Influence of increased isoprene emissions on regional ozone modeling. J. Geophys. Res. Atmos. 103(D19), 25611–25629 (1998). doi:10.1029/98jd01804 CrossRefGoogle Scholar
  80. Pratt, K.A., Mielke, L.H., Shepson, P.B., Bryan, A.M., Steiner, A.L., Ortega, J., Daly, R., Helmig, D., Vogel, C.S., Griffith, S., Dusanter, S., Stevens, P.S., Alaghmand, M.: Contributions of individual reactive biogenic volatile organic compounds to organic nitrates above a mixed forest. Atmos. Chem. Phys. 12(21), 10125–10143 (2012). doi:10.5194/acp-12-10125-2012 CrossRefGoogle Scholar
  81. Reimann, S., Calanca, P., Hofer, P.: The anthropogenic contribution to isoprene concentrations in a rural atmosphere. Atmos. Environ. 34(1), 109–115 (2000). doi:10.1016/S1352-2310(99)00285-X CrossRefGoogle Scholar
  82. Riemer, D., Pos, W., Milne, P., Farmer, C., Zika, R., Apel, E., Olszyna, K., Kliendienst, T., Lonneman, W., Bertman, S., Shepson, P., Starn, T.: Observations of nonmethane hydrocarbons and oxygenated volatile organic compounds at a rural site in the southeastern United States. J. Geophys. Res. Atmos. 103(D21), 28111–28128 (1998). doi:10.1029/98jd02677 CrossRefGoogle Scholar
  83. Roberts, J.M., Fehsenfeld, F.C., Liu, S.C., Bollinger, M.J., Hahn, C., Albritton, D.L., Sievers, R.E.: Measurements of aromatic hydrocarbon ratios and NOx concentrations in the rural troposphere—observation of air-mass photochemical aging and NOx removal. Atmos. Environ. 18(11), 2421–2432 (1984). doi:10.1016/0004-6981(84)90012-X CrossRefGoogle Scholar
  84. Roberts, J.M., Williams, J., Baumann, K., Buhr, M.P., Goldan, P.D., Holloway, J., Hubler, G., Kuster, W.C., McKeen, S.A., Ryerson, T.B., Trainer, M., Williams, E.J., Fehsenfeld, F.C., Bertman, S.B., Nouaime, G., Seaver, C., Grodzinsky, G., Rodgers, M., Young, V.L.: Measurements of PAN, PPN, and MPAN made during the 1994 and 1995 Nashville intensives of the Southern Oxidant study: implications for regional ozone production from biogenic hydrocarbons. J. Geophys. Res. Atmos. 103(D17), 22473–22490 (1998). doi:10.1029/98jd01637 CrossRefGoogle Scholar
  85. Roberts, J.M., Marchewka, M., Bertman, S.B., Goldan, P., Kuster, W., de Gouw, J., Warneke, C., Williams, E., Lerner, B., Murphy, P., Apel, E., Fehsenfeld, F.C.: Analysis of the isoprene chemistry observed during the New England Air Quality Study (NEAQS) 2002 intensive experiment. J. Geophys. Res. Atmos. 111(D23), D23S12 (2006). doi:10.1029/2006jd007570 CrossRefGoogle Scholar
  86. Rudolph, J., Johnen, F.J.: Measurements of light atmospheric hydrocarbons over the Atlantic in regions of low biological-activity. J. Geophys. Res. Atmos. 95(D12), 20583–20591 (1990). doi:10.1029/Jd095id12p20583 CrossRefGoogle Scholar
  87. Rummel, U., Ammann, C., Kirkman, G.A., Moura, M.A.L., Foken, T., Andreae, M.O., Meixner, F.X.: Seasonal variation of ozone deposition to a tropical rain forest in southwest Amazonia. Atmos. Chem. Phys. 7(20), 5415–5435 (2007)CrossRefGoogle Scholar
  88. Schnitzhofer, R., Beauchamp, J., Dunkl, J., Wisthaler, A., Weber, A., Hansel, A.: Long-term measurements of CO, NO, NO2, benzene, toluene and PM10 at a motorway location in an Austrian valley. Atmos. Environ. 42(5), 1012–1024 (2008). doi:10.1016/j.atmosenv.2007.10.004 CrossRefGoogle Scholar
  89. Seinfeld, J.H., Pandis, S.N.: Atmospheric chemistry and physics: from air pollution to climate change, p. 1326. John Wiley, New York (1998)Google Scholar
  90. Sharma, U.K., Kajii, Y., Akimoto, H.: Characterization of NMHCs in downtown urban center Kathmandu and rural site Nagarkot in Nepal. Atmos. Environ. 34(20), 3297–3307 (2000). doi:10.1016/S1352-2310(99)00485-9 CrossRefGoogle Scholar
  91. So, K.L., Wang, T.: C3-C12 non-methane hydrocarbons in subtropical Hong Kong: spatial-temporal variations, source-receptor relationships and photochemical reactivity. Sci. Total Environ. 328(1–3), 161–174 (2004). doi:10.1016/j.scitotnev.2004.01.029 CrossRefGoogle Scholar
  92. Starn, T.K., Shepson, P.B., Bertman, S.B., White, J.S., Splawn, B.G., Riemer, D.D., Zika, R.G., Olszyna, K.: Observations of isoprene chemistry and its role in ozone production at a semirural site during the 1995 Southern oxidants study. J. Geophys. Res. Atmos. 103(D17), 22425–22435 (1998a). doi:10.1029/98jd01279 CrossRefGoogle Scholar
  93. Starn, T.K., Shepson, P.B., Bertman, S.B., Riemer, D.D., Zika, R.G., Olszyna, K.: Nighttime isoprene chemistry at an urban-impacted forest site. J. Geophys. Res. Atmos. 103(D17), 22437–22447 (1998b). doi:10.1029/98jd01201 CrossRefGoogle Scholar
  94. Stockwell, W.R., Kirchner, F., Kuhn, M., Seefeld, S.: A new mechanism for regional atmospheric chemistry modeling. J. Geophys. Res. Atmos. 102(D22), 25847–25879 (1997). doi:10.1029/97jd00849 CrossRefGoogle Scholar
  95. Stroud, C.A., Roberts, J.M., Goldan, P.D., Kuster, W.C., Murphy, P.C., Williams, E.J., Hereid, D., Parrish, D., Sueper, D., Trainer, M., Fehsenfeld, F.C., Apel, E.C., Riemer, D., Wert, B., Henry, B., Fried, A., Martinez-Harder, M., Harder, H., Brune, W.H., Li, G., Xie, H., Young, V.L.: Isoprene and its oxidation products, methacrolein and methylvinyl ketone, at an urban forested site during the 1999 southern oxidants study. J. Geophys. Res. Atmos. 106(D8), 8035–8046 (2001). doi:10.1029/2000jd900628 CrossRefGoogle Scholar
  96. Stroud, C.A., Roberts, J.M., Williams, E.J., Hereid, D., Angevine, W.M., Fehsenfeld, F.C., Wisthaler, A., Hansel, A., Martinez-Harder, M., Harder, H., Brune, W.H., Hoenninger, G., Stutz, J., White, A.B..: Nighttime isoprene trends at an urban forested site during the 1999 southern oxidant study. J. Geophys. Res. Atmos. 107(D16), 4291 (2002). doi:10.1029/2001jd000959 CrossRefGoogle Scholar
  97. Stroud, C., Makar, P., Karl, T., Guenther, A., Geron, C., Turnipseed, A., Nemitz, E., Baker, B., Potosnak, M., Fuentes, J.D.: Role of canopy-scale photochemistry in modifying biogenic-atmosphere exchange of reactive terpene species: results from the CELTIC field study. J. Geophys. Res. Atmos. 110(D17), D17303 (2005). doi:10.1029/2005jd005775 CrossRefGoogle Scholar
  98. Stroud, C.A., Nenes, A., Jimenez, J.L., DeCarlo, P.F., Huffman, J.A., Bruintjes, R., Nemitz, E., Delia, A.E., Toohey, D.W., Guenther, A.B.., Nandi, S.: Cloud activating properties of aerosol observed during CELTIC. J. Atmos. Sci. 64(2), 441–459 (2007). doi:10.1175/Jas3843.1 CrossRefGoogle Scholar
  99. Szidat, S., Jenk, T.M., Synal, H.-A., Kalberer, M., Wacker, L., Hajdas, I., Kasper-Giebl, A., Baltensperger, U.: Contributions of fossil fuel, biomass-burning, and biogenic emissions to carbonaceous aerosols in Zurich as traced by 14C. J. Geophys. Res. Atmos. 111(D7), D07206 (2006). doi:10.1029/2005jd006590 CrossRefGoogle Scholar
  100. Utiyama, M., Fukuyama, T., Maruo, Y.Y., Ichino, T., Izumi, K., Hara, H., Takano, K., Suzuki, H., Aoki, M.: Formation and deposition of ozone in a red pine forest. Water Air Soil Poll. 151(1–4), 53–70 (2004). doi:10.1023/B:Wate.0000009891.12108.B9 CrossRefGoogle Scholar
  101. von Schneidemesser, E., Monks, P.S., Gros, V., Gauduin, J., Sanchez, O.: How important is biogenic isoprene in an urban environment? A study in London and Paris. Geophys. Res. Lett. 38, (2011). doi:10.1029/2011gl048647
  102. Walton, S., Gallagher, M.W., Duyzer, J.H.: Use of a detailed model to study the exchange of NOx and O3 above and below a deciduous canopy. Atmos. Environ. 31(18), 2915–2931 (1997). doi:10.1016/S1352-2310(97)00126-X CrossRefGoogle Scholar
  103. Wang, D., Fuentes, J.D., Travers, D., Dann, T., Connolly, T.: Non-methane hydrocarbons and carbonyls in the Lower Fraser Valley during PACIFIC 2001. Atmos. Environ. 39(29), 5261–5272 (2005). doi:10.1016/j.atmosenv.2005.05.035 CrossRefGoogle Scholar
  104. Wang, J.L., Wang, C.H., Lai, C.H., Chang, C.C., Liu, Y., Zhang, Y.H., Liu, S., Shao, M.: Characterization of ozone precursors in the Pearl River Delta by time series observation of non-methane hydrocarbons. Atmos. Environ. 42(25), 6233–6246 (2008). doi:10.1016/j.atmosenv.2008.01.050 CrossRefGoogle Scholar
  105. Wang, J.-L., Chew, C., Chang, C.-Y., Liao, W.-C., Lung, S.-C.C., Chen, W.-N., Lee, P.-J., Lin, P.-H., Chang, C.-C.: Biogenic isoprene in subtropical urban settings and implications for air quality. Atmos. Environ. (2013). doi:10.1016/j.atmosenv.2013.06.055 Google Scholar
  106. Weber, R.J., Sullivan, A.P., Peltier, R.E., Russell, A., Yan, B., Zheng, M., de Gouw, J., Warneke, C., Brock, C., Holloway, J.S., Atlas, E.L., Edgerton, E.: A study of secondary organic aerosol formation in the anthropogenic-influenced southeastern United States. J. Geophys. Res. Atmos. 112(D13), (2007). doi:10.1029/2007jd008408
  107. Williams, E.J., Hutchinson, G.L., Fehsenfeld, F.C.: NOx and N2O emissions from soil. Glob. Biogeochem. Cycles 6(4), 351–388 (1992). doi:10.1029/92gb02124 CrossRefGoogle Scholar
  108. Wolfe, G.M., Thornton, J.A.: The Chemistry of Atmosphere-Forest Exchange (CAFE) model - part 1: model description and characterization. Atmos. Chem. Phys. 11(1), 77–101 (2011). doi:10.5194/acp-11-77-2011 CrossRefGoogle Scholar
  109. Wolfe, G.M., Thornton, J.A., Bouvier-Brown, N.C., Goldstein, A.H., Park, J.H., Mckay, M., Matross, D.M., Mao, J., Brune, W.H., LaFranchi, B.W., Browne, E.C., Min, K.E., Wooldridge, P.J., Cohen, R.C., Crounse, J.D., Faloona, I.C., Gilman, J.B., Kuster, W.C., de Gouw, J.A., Huisman, A., Keutsch, F.N.: The Chemistry of Atmosphere-Forest Exchange (CAFE) model - part 2: application to BEARPEX-2007 observations. Atmos. Chem. Phys. 11(3), 1269–1294 (2011). doi:10.5194/acp-11-1269-2011 CrossRefGoogle Scholar
  110. Xie, X., Shao, M., Liu, Y., Lu, S.H., Chang, C.C., Chen, Z.M.: Estimate of initial isoprene contribution to ozone formation potential in Beijing, China. Atmos. Environ. 42(24), 6000–6010 (2008). doi:10.1016/j.atmosenv.2008.03.035 CrossRefGoogle Scholar
  111. Zhao, Y., Kreisberg, N.M., Worton, D.R., Isaacman, G., Gentner, D.R., Chan, A.W.H., Weber, R.J., Liu, S., Day, D.A., Russell, L.M., Hering, S.V., Goldstein, A.H.: Sources of organic aerosol investigated using organic compounds as tracers measured during CalNex in Bakersfield. J. Geophys. Res. Atmos. 2012JD019248, (2013). doi:10.1002/jgrd.50825

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Xiao-Ming Hu
    • 1
  • Jose D. Fuentes
    • 2
  • Darin Toohey
    • 3
  • Daniel Wang
    • 4
  1. 1.Center for Analysis and Prediction of StormsUniversity of OklahomaNormanUSA
  2. 2.Department of MeteorologyPennsylvania State UniversityUniversity ParkUSA
  3. 3.Department of Atmospheric and Oceanic SciencesUniversity of Colorado BoulderBoulderUSA
  4. 4.Analysis and Air Quality SectionEnvironment CanadaOttawaCanada

Personalised recommendations