Journal of Atmospheric Chemistry

, Volume 70, Issue 4, pp 317–340

Application of satellite data in a regional model to improve long-term ozone simulations

Article

Abstract

To investigate an alternative technique of providing background and transboundary transport inputs for ozone (O3) simulations on a regional scale, the EPA’s Community Multi-scale Air Quality (CMAQ) model was integrated with high spectral resolution data from the Tropospheric Emission Spectrometer (TES) aboard the NASA’s Aura satellite. This study presents a comprehensive model evaluation of O3 for the entire year of 2009 over the contiguous United States with a focus on the State of Texas using both ozonesonde and ground measurements. While improving model performance in the upper atmosphere, CMAQ’s initial and boundary conditions (IC/BC) derived from the original TES data do not improve model performance in the troposphere because the satellite data exaggerated concentration of tropospheric O3. With a 10-ppb deduction of O3 concentration from TES, the IC/BC derived from the adjusted TES improves model performance from ground level through the upper atmosphere. The mean bias of daily maximum 8-h average concentration of O3 (MDA8) from the ground monitored in Texas decreased from 7 ppb to 4 ppb. Model results also show small influences of O3 from the upper troposphere on the concentrations at the ground level. With a complete exclusion of stratospheric layers, changes of annual mean MDA8 of O3 concentrations at ground-level were smaller than 1.1 % in Dallas and Houston. In addition, limitations of satellite data are discussed and recommendations are provided regarding the future application of satellite data in regional O3 simulations.

Keywords

CMAQ Initial and boundary conditions Ozonesonde Satellite data Tropospheric Ozone 

References

  1. Allen, D., Pickering, K., Duncan, B., Damon, M.: Impact of lightning NO emissions on North American photochemistry as determined using the Global Modeling Initiative (GMI) model. J. Geophys. Res.-Atmos. 115(D22), D22301 (2010). doi:10.1029/2010jd014062
  2. Appel, K.W., Gilliland, A.B.., Sarwar, G., Gilliam, R.C.: Evaluation of the Community Multiscale Air Quality (CMAQ) model version 4.5: Sensitivities impacting model performance Part I - Ozone. Atmos. Environ. 41(40), 9603–9615 (2007)CrossRefGoogle Scholar
  3. Beer, R., Glavich, T.A., Rider, D.M.: Tropospheric emission spectrometer for the Earth Observing System's Aura Satellite. Appl. Opt. 40(15), 2356–2367 (2001)CrossRefGoogle Scholar
  4. Bey, I., Jacob, D.J., Yantosca, R.M., Logan, J.A., Field, B.D., Fiore, A.M., Li, Q.B., Liu, H.G.Y., Mickley, L.J., Schultz, M.G.: Global modeling of tropospheric chemistry with assimilated meteorology: Model description and evaluation. J. Geophys. Res.-Atmos. 106(D19), 23073–23095 (2001)CrossRefGoogle Scholar
  5. Binkowski, F.S., Roselle, S.J.: Models-3 community multiscale air quality (CMAQ) model aerosol component - 1. Model description. J. Geophys. Res.-Atmos. 108(D6), 4183 (2003). doi:10.1029/2001jd001409 Google Scholar
  6. Boylan, J.W., Russell, A.G.: PM and light extinction model performance metrics, goals, and criteria for three-dimensional air quality models. Atmos. Environ 40(26), 4946–4959 (2006). doi:10.1016/j.atmosenv.2005.09.087 CrossRefGoogle Scholar
  7. Boynard, A., Clerbaux, C., Coheur, P.F., Hurtmans, D., Turquety, S., George, M., Hadji-Lazaro, J., Keim, C., Meyer-Arnek, J.: Measurements of total and tropospheric ozone from IASI: comparison with correlative satellite, ground-based and ozonesonde observations. Atmos. Chem. Phys. 9(16), 6255–6271 (2009)CrossRefGoogle Scholar
  8. Brook, R.D., Franklin, B., Cascio, W., Hong, Y.L., Howard, G., Lipsett, M., Luepker, R., Mittleman, M., Samet, J., Smith, S.C., Tager, I.: Air pollution and cardiovascular disease - A statement for healthcare professionals from the expert panel on population and prevention science of the American Heart Association. Circulation 109(21), 2655–2671 (2004)CrossRefGoogle Scholar
  9. Brunekreef, B., Holgate, S.T.: Air pollution and health. Lancet 360(9341), 1233–1242 (2002)CrossRefGoogle Scholar
  10. Bullock, O.R., Brehme, K.A.: Atmospheric mercury simulation using the CMAQ model: formulation description and analysis of wet deposition results. Atmos. Environ. 36(13), 2135–2146 (2002)CrossRefGoogle Scholar
  11. Byun, D., Schere, K.L.: Review of the governing equations, computational algorithms, and other components of the models-3 Community Multiscale Air Quality (CMAQ) modeling system. Appl. Mech. Rev. 59(1–6), 51–77 (2006)CrossRefGoogle Scholar
  12. Chappelka, A.H., Samuelson, L.J.: Ambient ozone effects on forest trees of the eastern United States: a review. New Phytol. 139(1), 91–108 (1998)CrossRefGoogle Scholar
  13. Clough, S.A., Shephard, M.W., Mlawer, E., Delamere, J.S., Iacono, M., Cady-Pereira, K., Boukabara, S., Brown, P.D.: Atmospheric radiative transfer modeling: a summary of the AER codes. J. Quant. Spectrosc. Radiat. Transfer 91(2), 233–244 (2005)CrossRefGoogle Scholar
  14. Eder, B., Yu, S.C.: A performance evaluation of the 2004 release of Models-3 CMAQ. Atmos. Environ. 40(26), 4811–4824 (2006)CrossRefGoogle Scholar
  15. Emery, C., Tai, E., Yarwood, G., Morris, R.: Investigation into approaches to reduce excessive vertical transport over complex terrain in a regional photochemical grid model. Atmos. Environ. 45(39), 7341–7351 (2011)Google Scholar
  16. Emmons, L.K., Walters, S., Hess, P.G., Lamarque, J.F., Pfister, G.G., Fillmore, D., Granier, C., Guenther, A., Kinnison, D., Laepple, T., Orlando, J., Tie, X., Tyndall, G., Wiedinmyer, C., Baughcum, S.L., Kloster, S.: Description and evaluation of the Model for Ozone and Related chemical Tracers, version 4 (MOZART-4). Geosci. Model Dev. 3(1), 43–67 (2010)CrossRefGoogle Scholar
  17. Fiore, A.M., Jacob, D.J., Bey, I., Yantosca, R.M., Field, B.D., Fusco, A.C., Wilkinson, J.G.: Background ozone over the United States in summer: Origin, trend, and contribution to pollution episodes. J. Geophys. Res.-Atmos. 107(D15), ACH 11-11–ACH 11-25 (2002). doi:10.1029/2001jd000982
  18. Fiore, A., Jacob, D.J., Liu, H., Yantosca, R.M., Fairlie, T.D., Li, Q.: Variability in surface ozone background over the United States: Implications for air quality policy. J. Geophys. Res.-Atmos. 108(D24), 4787 (2003). doi:10.1029/2003jd003855 Google Scholar
  19. Foley, K.M., Roselle, S.J., Appel, K.W., Bhave, P.V., Pleim, J.E., Otte, T.L., Mathur, R., Sarwar, G., Young, J.O., Gilliam, R.C., Nolte, C.G., Kelly, J.T., Gilliland, A.B.., Bash, J.O.: Incremental testing of the Community Multiscale Air Quality (CMAQ) modeling system version 4.7. Geosci. Model Dev 3(1), 205–226 (2010)CrossRefGoogle Scholar
  20. Fuhrer, J., Skarby, L., Ashmore, M.R.: Critical levels for ozone effects on vegetation in Europe. Environ. Pollut. 97(1–2), 91–106 (1997)CrossRefGoogle Scholar
  21. Gilliam, R.C., Pleim, J.E.: Performance assessment of new land surface and planetary boundary layer physics in the WRF-ARW. J. Appl. Meteor. Climatol. 49(4), 760–774 (2010)CrossRefGoogle Scholar
  22. Granier, C., Lamarque, J.F., Mieville, A., Muller, J.F., Olivier, J., Orlando, J., Peters, J., Petron, G., Tyndall, G., Wallens, S.: POET, a database of surface emissions of ozone precursors. http://eccad.sedoo.fr (2005). Accessed 5 April 2012
  23. Grell, G.A., Peckham, S.E., Schmitz, R., McKeen, S.A., Frost, G., Skamarock, W.C., Eder, B.: Fully coupled “online” chemistry within the WRF model. Atmos. Environ. 39(37), 6957–6975 (2005)CrossRefGoogle Scholar
  24. Guenther, A., Karl, T., Harley, P., Wiedinmyer, C., Palmer, P.I., Geron, C.: Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature). Atmos. Chem. Phys. 6, 3181–3210 (2006)CrossRefGoogle Scholar
  25. Hogrefe, C., Hao, W., Zalewsky, E.E., Ku, J.Y., Lynn, B., Rosenzweig, C., Schultz, M.G., Rast, S., Newchurch, M.J., Wang, L., Kinney, P.L., Sistla, G.: An analysis of long-term regional-scale ozone simulations over the Northeastern United States: variability and trends. Atmos. Chem. Phys. 11(2), 567–582 (2011)CrossRefGoogle Scholar
  26. Hong, S.-Y., Lim, K.-S.S., Lee, Y.-H., Ha, J.-C., Kim, H.-W., Ham, S.-J., Dudhia, J.: Evaluation of the WRF Double-Moment 6-Class Microphysics Scheme for Precipitating Convection. Adv. Meteor. 2010 (2010). doi:10.1155/2010/707253
  27. Jimenez, P., Parra, R., Baldasano, J.M.: Influence of initial and boundary conditions for ozone modeling in very complex terrains: A case study in the northeastern Iberian Peninsula. Environ. Model. Software 22(9), 1294–1306 (2007)CrossRefGoogle Scholar
  28. Jonson, J.E., Stohl, A., Fiore, A.M., Hess, P., Szopa, S., Wild, O., Zeng, G., Dentener, F.J., Lupu, A., Schultz, M.G., Duncan, B.N., Sudo, K., Wind, P., Schulz, M., Marmer, E., Cuvelier, C., Keating, T., Zuber, A., Valdebenito, A., Dorokhov, V., De Backer, H., Davies, J., Chen, G.H., Johnson, B., Tarasick, D.W., Stuebi, R., Newchurch, M.J., von der Gathen, P., Steinbrecht, W., Claude, H.: A multi-model analysis of vertical ozone profiles. Atmos. Chem. Phys. 10(12), 5759–5783 (2010)CrossRefGoogle Scholar
  29. Jourdain, L., Kulawik, S.S., Worden, H.M., Pickering, K.E., Worden, J., Thompson, A.M.: Lightning NOx emissions over the USA constrained by TES ozone observations and the GEOS-Chem model. Atmos. Chem. Phys. 10(1), 107–119 (2010)CrossRefGoogle Scholar
  30. Kain, J.S.: The Kain-Fritsch convective parameterization: An update. J. Appl. Meteor. 43(1), 170–181 (2004)CrossRefGoogle Scholar
  31. Karamchandani, P., Zhang, Y., Chen, S.Y., Balmori-Bronson, R.: Development of an extended chemical mechanism for global-through-urban applications. Atmos. Poll. Res. 3(1), 1–24 (2012)Google Scholar
  32. Krzyzanowski, M., Cohen, A.: Update of WHO air quality guidelines. Air Qual. Atmos. Health 1(1), 7–13 (2008)CrossRefGoogle Scholar
  33. Kusterer, J.M.: TES Level 3 Data Sets. NASA Langley Research Center Atmospheric Science Data Center. http://eosweb.larc.nasa.gov/project/tes/products/level3.html (2012). Accessed 21 February 2012
  34. Lin, C.J., Ho, T.C., Chu, H.W., Yang, H., Chandru, S., Krishnarajanagar, N., Chiou, P., Hopper, J.R.: Sensitivity analysis of ground-level ozone concentration to emission changes in two urban regions of southeast Texas. J. Environ. Manage. 75(4), 315–323 (2005)CrossRefGoogle Scholar
  35. Lin, M.Y., Oki, T., Holloway, T., Streets, D.G., Bengtsson, M., Kanae, S.: Long-range transport of acidifying substances in East Asia - Part I - Model evaluation and sensitivity studies. Atmos. Environ. 42(24), 5939–5955 (2008)CrossRefGoogle Scholar
  36. Lin, C.J., Pan, L., Streets, D.G., Shetty, S.K., Jang, C., Feng, X., Chu, H.W., Ho, T.C.: Estimating mercury emission outflow from East Asia using CMAQ-Hg. Atmos. Chem. Phys. 10(4), 1853–1864 (2010)CrossRefGoogle Scholar
  37. Lippmann, M.: Health effects of ozone. A critical review. JAPCA 39(5), 672–695 (1989)CrossRefGoogle Scholar
  38. Luo, M., Gluck, S., Madatyan, M., Shepard, D.: Tropospheric Emission Spectrometer (TES) Level 3 (L3) Data/Plot User’s Guide - Version 1.0. http://tes.jpl.nasa.gov/uploadedfiles/Level3_UserGuide_v1.0.pdf (2007). Accessed 27 August 2013
  39. Martin, R.V.: Satellite remote sensing of surface air quality. Atmos. Environ. 42(34), 7823–7843 (2008)CrossRefGoogle Scholar
  40. McPeters, R.: Ozone Data. http://toms.gsfc.nasa.gov/ozone/ozone_v8.html (2009). Accessed 17 November 2009
  41. Nassar, R., Logan, J.A., Worden, H.M., Megretskaia, I.A., Bowman, K.W., Osterman, G.B., Thompson, A.M., Tarasick, D.W., Austin, S., Claude, H., Dubey, M.K., Hocking, W.K., Johnson, B.J., Joseph, E., Merrill, J., Morris, G.A., Newchurch, M., Oltmans, S.J., Posny, F., Schmidlin, F.J., Voemel, H., Whiteman, D.N., Witte, J.C.: Validation of Tropospheric Emission Spectrometer (TES) nadir ozone profiles using ozonesonde measurements. J. Geophys. Res.-Atmos. 113 (D15), D15S17 (2008). doi:10.1029/2007jd008819
  42. Otte, T.L., Pleim, J.E.: The Meteorology-Chemistry Interface Processor (MCIP) for the CMAQ modeling system: updates through MCIPv3.4.1. Geosci. Model Dev 3(1), 243–256 (2010)CrossRefGoogle Scholar
  43. Petelina, S.V., Llewellyn, E.J., Degenstein, D.A., Lloyd, N.D., Gattinger, R.L., Haley, C.S., von Savigny, C., Griffioen, E., McDade, I.C., Evans, W.F.J., Murtagh, D.P., de La Noe, J.: Comparison of the Odin/OSIRIS stratospheric ozone profiles with coincident POAM III and ozonesonde measurements. Geophys. Res. Lett. 31(7), L07104 (2004). doi:10.1029/2003gl019299
  44. Pfister, G.G., Emmons, L.K., Hess, P.G., Lamarque, J.F., Thompson, A.M., Yorks, J.E.: Analysis of the Summer 2004 ozone budget over the United States using Intercontinental Transport Experiment Ozonesonde Network Study (IONS) observations and Model of Ozone and Related Tracers (MOZART-4) simulations. J. Geophys. Res.-Atmos. 113(D23), D23306 (2008). doi:10.1029/2008jd010190
  45. Pirrone, N., Keating, T., United Nations. Economic Commission for Europe.: Hemispheric Transport of Air Pollution 2010. Part B, Mercury. United Nations, New York; Geneva (2010)Google Scholar
  46. Pleim, J.E.: A combined local and nonlocal closure model for the atmospheric boundary layer. Part II: Application and evaluation in a mesoscale meteorological model. J. Appl. Meteor. Climatol. 46(9), 1396–1409 (2007)CrossRefGoogle Scholar
  47. Pleim, J.E., Xiu, A.: Development and testing of a surface flux and planetary boundary-layer model for application in mesoscale models. J. Appl. Meteor. 34(1), 16–32 (1995)CrossRefGoogle Scholar
  48. Pongprueksa, P., Lin, C.J., Lindberg, S.E., Jang, C., Braverman, T., Bullock, O.R., Ho, T.C., Chu, H.W.: Scientific uncertainties in atmospheric mercury models III: Boundary and initial conditions, model grid resolution, and Hg(II) reduction mechanism. Atmos. Environ. 42(8), 1828–1845 (2008)CrossRefGoogle Scholar
  49. Pongprueksa, P., Lin, C.J., Singhasuk, P., Pan, L., Ho, T.C., Chu, H.W.: Application of CMAQ at a hemispheric scale for atmospheric mercury simulations. Geosci. Model Dev. Discuss. 4(3), 1723–1754 (2011)CrossRefGoogle Scholar
  50. Pour-Biazar, A., Khan, M., Wang, L., Park, Y.-H., Newchurch, M., McNider, R.T., Liu, X., Byun, D.W., Cameron, R.: Utilization of satellite observation of ozone and aerosols in providing initial and boundary condition for regional air quality studies. J. Geophys. Res.: Atmos. 116(D18), D18309 (2011). doi:10.1029/2010jd015200
  51. Prather, M.J., Zhu, X., Tang, Q., Hsu, J.N., Neu, J.L.: An atmospheric chemist in search of the tropopause. J. Geophys. Res.-Atmos. 116(D4), D04306 (2011). doi:10.1029/2010jd014939
  52. Randall, C.E., Rusch, D.W., Bevilacqua, R.M., Hoppel, K.W., Lumpe, J.D., Shettle, E., Thompson, E., Deaver, L., Zawodny, J., Kyro, E., Johnson, B., Kelder, H., Dorokhov, V.M., Konig-Langlo, G., Gil, M.: Validation of POAM III ozone: Comparisons with ozonesonde and satellite data. J. Geophys. Res.-Atmos. 108(D12), 4367 (2003). doi:10.1029/2002jd002944 Google Scholar
  53. Riahi, K., Grübler, A., Nakicenovic, N.: Scenarios of long-term socio-economic and environmental development under climate stabilization. Technol. Forecast. Soc. Change 74(7), 887–935 (2007)CrossRefGoogle Scholar
  54. Richards, N.A.D., Osterman, G.B., Browell, E.V., Hair, J.W., Avery, M., Li, Q.B.: Validation of Tropospheric Emission Spectrometer ozone profiles with aircraft observations during the intercontinental chemical transport experiment-B. J. Geophys. Res.-Atmos. 113(D16), D16S29 (2008). doi:10.1029/2007jd008815
  55. Ritter, M., Muller, M.D., Jorba, O., Parlow, E., Liu, L.J.S.: Impact of chemical and meteorological boundary and initial conditions on air quality modeling: WRF-Chem sensitivity evaluation for a European domain. Meteorol. Atmos. Phys. 119(1–2), 59–70 (2013)CrossRefGoogle Scholar
  56. Rosenbrock, H.H.: Some general implicit processes for the numerical solution of differential equations. Comput. J. 5(4), 329–330 (1963). doi:10.1093/comjnl/5.4.329 CrossRefGoogle Scholar
  57. Rotman, D.A., Atherton, C.S., Bergmann, D.J., Cameron-Smith, P.J., Chuang, C.C., Connell, P.S., Dignon, J.E., Franz, A., Grant, K.E., Kinnison, D.E., Molenkamp, C.R., Proctor, D.D., Tannahill, J.R.: IMPACT, the LLNL 3-D global atmospheric chemical transport model for the combined troposphere and stratosphere: Model description and analysis of ozone and other trace gases. J. Geophys. Res.-Atmos. 109(D4), D04303 (2004). doi:10.1029/2002jd003155
  58. Samaali, M., Moran, M.D., Bouchet, V.S., Pavlovic, R., Cousineau, S., Sassi, M.: On the influence of chemical initial and boundary conditions on annual regional air quality model simulations for North America. Atmos. Environ. 43(32), 4873–4885 (2009)CrossRefGoogle Scholar
  59. Sandu, A., Verwer, J.G., Blom, J.G., Spee, E.J., Carmichael, G.R., Potra, F.A.: Benchmarking stiff ODE solvers for atmospheric chemistry problems .2. Rosenbrock solvers. Atmos. Environ 31(20), 3459–3472 (1997)CrossRefGoogle Scholar
  60. Sarwar, G., Luecken, D., Yarwood, G., Whitten, G.Z., Carter, W.P.L.: Impact of an updated carbon bond mechanism on predictions from the CMAQ modeling system: Preliminary assessment. J. Appl. Meteor. Climatol. 47(1), 3–14 (2008)CrossRefGoogle Scholar
  61. Sasano, Y., Nakajima, H., Kanzawa, H., Suzuki, M., Yokota, T., Nakane, H., Gernandt, H., Schmidt, A., Herber, A., Yushkov, V., Dorokhov, V., Deshler, T.: Validation of ILAS Version 3.10 ozone with ozonesonde measurements. Geophys. Res. Lett 26(7), 831–834 (1999)CrossRefGoogle Scholar
  62. Shi, C., Fernando, H.J.S., Seto, E.W., Muller, J.-P.: The efficacy of satellite information in improving CMAQ/Models-3 prediction of ozone episodes in the US-Mexico border. Air Qual. Atmos. Health 3(3), 159–169 (2010)CrossRefGoogle Scholar
  63. Shi, C., Fernando, H.J.S., Hyde, P.: CMAQ predictions of tropospheric ozone in the U.S. southwest: Influence of lateral boundary and synoptic conditions. Sci. Total Environ 416(0), 374–384 (2012)CrossRefGoogle Scholar
  64. Simon, H., Beck, L., Bhave, P.V., Divita, F., Hsu, Y., Luecken, D., Mobley, J.D., Pouliot, G.A., Reff, A., Sarwar, G., Strum, M.: The development and uses of EPA’s SPECIATE database. Atmos. Poll. Res. 1(4), 196–206 (2010)CrossRefGoogle Scholar
  65. Simon, H., Baker, K.R., Phillips, S.: Compilation and interpretation of photochemical model performance statistics published between 2006 and 2012. Atmos. Environ. 61, 124–139 (2012)CrossRefGoogle Scholar
  66. Stavrakou, T., Guenther, A., Razavi, A., Clarisse, L., Clerbaux, C., Coheur, P.F., Hurtmans, D., Karagulian, F., De Maziere, M., Vigouroux, C., Amelynck, C., Schoon, N., Laffineur, Q., Heinesch, B., Aubinet, M., Rinsland, C., Muller, J.F.: First space-based derivation of the global atmospheric methanol emission fluxes. Atmos. Chem. Phys. 11(10), 4873–4898 (2011)CrossRefGoogle Scholar
  67. Tanaka, P.L., Allen, D.T., McDonald-Buller, E.C., Chang, S.H., Kimura, Y., Mullins, C.B., Yarwood, G., Neece, J.D.: Development of a chlorine mechanism for use in the carbon bond IV chemistry model. J. Geophys. Res.-Atmos. 108(D4), 4145 (2003). doi:10.1029/2002jd002432 Google Scholar
  68. Tang, Y.H., Carmichael, G.R., Thongboonchoo, N., Chai, T.F., Horowitz, L.W., Pierce, R.B., Al-Saadi, J.A., Pfister, G., Vukovich, J.M., Avery, M.A., Sachse, G.W., Ryerson, T.B., Holloway, J.S., Atlas, E.L., Flocke, F.M., Weber, R.J., Huey, L.G., Dibb, J.E., Streets, D.G., Brune, W.H.: Influence of lateral and top boundary conditions on regional air quality prediction: A multiscale study coupling regional and global chemical transport models. J. Geophys. Res.-Atmos. 112(D10), D10S18 (2007). doi:10.1029/2006jd007515
  69. Tang, Y., Lee, P., Tsidulko, M., Huang, H.-C., McQueen, J., DiMego, G., Emmons, L., Pierce, R., Thompson, A., Lin, H.-M., Kang, D., Tong, D., Yu, S., Mathur, R., Pleim, J., Otte, T., Pouliot, G., Young, J., Schere, K., Davidson, P., Stajner, I.: The impact of chemical lateral boundary conditions on CMAQ predictions of tropospheric ozone over the continental United States. Environ. Fluid Mech. 9(1), 43–58 (2009)CrossRefGoogle Scholar
  70. Tarasick, D.W., Moran, M.D., Thompson, A.M., Carey-Smith, T., Rochon, Y., Bouchet, V.S., Gong, W., Makar, P.A., Stroud, C., Menard, S., Crevier, L.P., Cousineau, S., Pudykiewicz, J.A., Kallaur, A., Moffet, R., Menard, R., Robichaud, A., Cooper, O.R., Oltmans, S.J., Witte, J.C., Forbes, G., Johnson, B.J., Merrill, J., Moody, J.L., Morris, G., Newchurch, M.J., Schmidlin, F.J., Joseph, E.: Comparison of Canadian air quality forecast models with tropospheric ozone profile measurements above midlatitude North America during the IONS/ICARTT campaign: Evidence for stratospheric input. J. Geophys. Res.-Atmos. 112(D12), D12S22 (2007). doi:10.1029/2006jd007782
  71. Teyssèdre, H., Michou, M., Clark, H.L., Josse, B., Karcher, F., Olivié, D., Peuch, V.H., Saint-Martin, D., Cariolle, D., Attié, J.L., Nédélec, P., Ricaud, P., Thouret, V., van der A, R.J., Volz-Thomas, A., Chéroux, F.: A new tropospheric and stratospheric Chemistry and Transport Model MOCAGE-Climat for multi-year studies: evaluation of the present-day climatology and sensitivity to surface processes. Atmos. Chem. Phys. 7(22), 5815–5860 (2007). doi:10.5194/acp-7-5815-2007 Google Scholar
  72. Tong, D.Q., Mauzerall, D.L.: Spatial variability of summertime tropospheric ozone over the continental United States: Implications of an evaluation of the CMAQ model. Atmos. Environ. 40(17), 3041–3056 (2006)CrossRefGoogle Scholar
  73. van Vuuren, D.P., Edmonds, J.A., Kainuma, M., Riahi, K., Weyant, J.: A special issue on the RCPs. Clim. Change 109(1–2), 1–4 (2011)CrossRefGoogle Scholar
  74. Wang, K., Zhang, Y., Jang, C., Phillips, S., Wang, B.Y.: Modeling intercontinental air pollution transport over the trans-Pacific region in 2001 using the Community Multiscale Air Quality modeling system. J. Geophys. Res.-Atmos. 114(D4), D04307 (2009). doi:10.1029/2008jd010807
  75. Wang, W., Bruyère, C., Duda, M., Dudhia, J., Gill, D., Kavulich, M., Keene, K., Lin, H.-C., Michalakes, J., Rizvi, S., Zhang, X.: Weather Research & Forcasting ARW: Version 3 Modeling System User’s Guide. http://www.mmm.ucar.edu/wrf/users/docs/user_guide_V3/ARWUsersGuideV3.pdf (2012). Accessed 4 May 2013
  76. Wang, L.H., Newchurch, M.J., Pour-Biazar, A., Kuang, S., Khan, M., Liu, X., Koshak, W., Chance, K.: Estimating the influence of lightning on upper tropospheric ozone using NLDN lightning data and CMAQ model. Atmos. Environ. 67, 219–228 (2013)CrossRefGoogle Scholar
  77. Weisman, M.L., Davis, C., Wang, W., Manning, K.W., Klemp, J.B.: Experiences with 0-36-h explicit convective forecasts with the WRF-ARW model. Wea. Forecasting 23(3), 407–437 (2008)CrossRefGoogle Scholar
  78. Xiu, A.J., Pleim, J.E.: Development of a land surface model. Part I: Application in a mesoscale meteorological model. J. Appl. Meteor. 40(2), 192–209 (2001)CrossRefGoogle Scholar
  79. Yarwood, G., Rao, S., Yocke, M., G.Z., G.Z.W.: Updates to the Carbon Bond Mechanism: CB05. http://www.camx.com/publ/pdfs/cb05_final_report_120805.pdf (2005). Accessed 26 August 2013
  80. Yu, S., Mathur, R., Schere, K., Kang, D., Pleim, J., Otte, T.L.: A detailed evaluation of the Eta-CMAQ forecast model performance for O-3, its related precursors, and meteorological parameters during the 2004 ICARTT study. J. Geophys. Res.-Atmos. 112(D12), D12S14 (2007). doi:10.1029/2006jd007715
  81. Zhang, L., Jacob, D.J., Boersma, K.F., Jaffe, D.A., Olson, J.R., Bowman, K.W., Worden, J.R., Thompson, A.M., Avery, M.A., Cohen, R.C., Dibb, J.E., Flock, F.M., Fuelberg, H.E., Huey, L.G., McMillan, W.W., Singh, H.B., Weinheimer, A.J.: Transpacific transport of ozone pollution and the effect of recent Asian emission increases on air quality in North America: an integrated analysis using satellite, aircraft, ozonesonde, and surface observations. Atmos. Chem. Phys. 8(20), 6117–6136 (2008)CrossRefGoogle Scholar
  82. Zhang, Y., Karamchandani, P., Glotfelty, T., Streets, D.G., Grell, G., Nenes, A., Yu, F.Q., Bennartz, R.: Development and initial application of the global-through-urban weather research and forecasting model with chemistry (GU-WRF/Chem). J. Geophys. Res.-Atmos. 117(D20), D20206 (2012). doi:10.1029/2012jd017966

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringLamar UniversityBeaumontUSA

Personalised recommendations