Journal of Atmospheric Chemistry

, Volume 70, Issue 1, pp 69–89 | Cite as

A global model study of natural bromine sources and the effects on tropospheric chemistry using MOZART4

  • Gabriela Sousa SantosEmail author
  • Sebastian Rast


Halogens in the atmosphere chemically destroy ozone. In the troposphere, bromine has higher ozone destruction efficiency than chlorine and is the halogen species with the widest geographical spread of natural sources. We investigate the relative strength of various sources of reactive tropospheric bromine and the influence of bromine on tropospheric chemistry using a 6-year simulation with the global chemistry transport model MOZART4. We consider the following sources: short-lived bromocarbons (CHBr3, CH2BrCl, CHBr2Cl, CHBrCl2, and CH2Br2) and CH3Br, bromine from airborne sea salt particles, and frost flowers and sea salt on or in the snowpack in polar regions. The total bromine emissions in our simulations add up to 31.7 Gmol(Br)/yr: 63 % from polar sources, 24.6 % from short-lived bromocarbons and 12.4 % from airborne sea salt particles. We conclude from our analysis that our global bromine emission is likely to be on the lower end of the range, because of too low emissions from airborne sea salt. Bromine chemistry has an effect on the oxidation capacity of the troposphere, not only due to its direct influence on ozone concentrations, but also by reactions with other key chemical species like HO x and NO x . Globally, the impact of bromine chemistry on tropospheric O3 is comparable to the impact of gas-phase sulfur chemistry, since the inclusion of bromine chemistry in MOZART4 leads to a decrease of the O3 burden in the troposphere by 6 Tg, while we get an increase by 5 Tg if gas-phase sulfur chemistry is switched off in the standard model. With decreased ozone burden, the simulated oxidizing capacity of the atmosphere decreases thus affecting species associated with the oxidation capacity of the atmosphere (CH3OOH, H2O2).


Troposphere Natural bromine sources Halocarbons Sea salt Frost flowers Global transport chemistry model 



GSS and SR are very grateful to Guy Brasseur for interesting and enlightening discussions. The authors further thank Louisa Emmons, Jean-François Lamarque, John Orlando, and Stacy Walters (in alphabetical order) for their advice in many aspects of the usage of MOZART4 and their fruitful discussion about the model setup. The authors also thank Andreas Richter and Lars Kaleschke for sharing their expertise in satellite retrievals and sea salt chemistry and physics. The authors are grateful to the reviewers who helped to improve this contribution considerably.


  1. Abbatt, J., Waschewsky, G.: Heterogeneous interactions of HOBr, HNO3, O3, and NO2 with deliquescent NaCl aerosols at room temperature. J. Phys. Chem. A 102, 3719–3725 (1998)CrossRefGoogle Scholar
  2. Adams, J., Holmes, N., Crowley, J.: Uptake and reaction of HOBr on frozen and dry NaCl/NaBr surfaces between 253 and 233 K. Atmos. Chem. Phys. 2, 79–91 (2002)CrossRefGoogle Scholar
  3. Aguzzi, A., Rossi, M.: The kinetics of the heterogeneous reaction of BrONO2 with solid alkali halides at ambient temperature. A comparison with the interaction of ClONO2 on NaCl and KBr. Phys. Chem. Chem. Phys. 106(1), 4337–4346 (1999)CrossRefGoogle Scholar
  4. Alexander, B., Park, R., Jacob, D., Li, Q., Yantosca, R.: Sulfate formation in sea-salt aerosols: constraints from oxygen isotopes. J. Geophys. Res. 110 (2005). doi: 10.1029/2004JD005,659
  5. Andreas, E.: A new sea spray generation function for wind speeds up to 32 m s − 1. J. Phys. Oceanogr. 28, 2175–2184 (1998)CrossRefGoogle Scholar
  6. Ayers, G., Gillett, R., Cainey, J., Dick, A.: Chloride and bromide loss from sea-salt particles in southern ocean air. J. Atmos. Chem. 33, 299–319 (1999)CrossRefGoogle Scholar
  7. Bobrowski, N., von Glasow, R., Aiuppa, A., Inguaggiato, S., Louban, I., Ibrahim, O., Platt, U.: Reactive halogen chemistry in volcanic plumes. J. Geophys. Res. 112, D06,311 (2007). doi: 10.1029/2006JD007,206 Google Scholar
  8. Carpenter, L., Liss, P.: On temperate sources of bromoform and other reactive organic bromine gases. J. Geophys. Res. 105(D16), 20,539–20,547 (2000)CrossRefGoogle Scholar
  9. Choi, S., Wang, Y., Salawitch, R., Canty, T., Joiner, J., Zeng, T., Kurosu, T., Chance, K., Richter, A., Huey, L., Neuman, J.L.J., Nowak, J., Dibb, J., Weinheimer, A., Ryerson, G.D.T., da Silva, A., Curry, J., Kinnison, D., Tilmes, S., Levelt, P.: Analysis of satellite-derived arctic tropospheric BrO columns in conjunction with aircraft measurements during ARCTAS and ARCPAC. Atmos. Chem. Phys. 12, 1255–1285 (2012)CrossRefGoogle Scholar
  10. Davis, D., Chen, G., Kasibhatla, P., Jefferson, A., Tanner, D., Eisele, F., Lenschow, D., Neff, W., Berresheim, H.: DMS oxidation in the antarctic marine boundary layer: comparison of model simulations and field observations of DMS, DMSO, DMSO2, H2SO4(g), MSA(g), MSA(p). J. Geophys. Res. 103, 1657–1678 (1998)CrossRefGoogle Scholar
  11. Deiber, G., George, C., Calvé, S.L., Schweitzer, F., Mirabel, P.: Uptake study of ClONO2 and BrONO2 by halide containing droplets. Atmos. Chem. Phys. 4, 1291–1299 (2004)CrossRefGoogle Scholar
  12. Emmons, L., Walters, S., Hess, P., Lamarque, J.F., Pfister, G., Fillmore, D., Granier, C., Guenther, A., Kinnison, D., Laepple, T., Orlando, J., Tie, X., Tyndall, G., Wiedinmyer, C., Baughcum, S., Kloster, S.: Description and evaluation of the model for ozone and related chemical tracers, version 4 (MOZART4). Geosci. Model Dev. 3, 43–67 (2010)CrossRefGoogle Scholar
  13. Enami, S., Vecitis, C., Cheng, J., Hoffmann, M., Colussi, A.: Global inorganic source of atmospheric bromine. J. Phys. Chem. A 111, 8749–8752 (2007)CrossRefGoogle Scholar
  14. Fickert, S., Adams, J., Crowley, J.: Activation of Br2 and BrCl via uptake of HOBr onto aqueous salt solutions. J. Geophys. Res. 104(D19), 23,719–23,727 (1999)CrossRefGoogle Scholar
  15. Fitzenberger, R., Bösch, H., Camy-Peyret, C., Chipperfield, M., Harder, H., Platt, U., Sinnhuber, B.M., Wagner, T., Pfeilsticker, K.: First profile measurements of tropospheric BrO. J. Geophys. Res. Lett. 27(18), 2921–2924 (2000)CrossRefGoogle Scholar
  16. Friess, U., Hollwedel, J., Koenig-Langlo, G., Wagner, T., Platt, U.: Dynamics and chemistry of tropospheric explosion events in the Arctic coastal region. J. Geophys. Res. 109, D06,305 (2004). doi: 10.1029/2003JD004,133 CrossRefGoogle Scholar
  17. Gerber, H.: Relative-humidity parameterization of the Navy aerosol model (NAM). In: NRL Rep. 8956, Natl. Res. Lab. Washington, D.C. (1985)Google Scholar
  18. Gong, S., Barrie, L., Blanchet, J.P.: Modeling sea-salt aerosols in the atmosphere: 1. Model development. J. Geophys. Res. 102(D3), 3805–3818 (1997)CrossRefGoogle Scholar
  19. Granier, C., Lamarque, J.F., Mieville, A., Muller, J., Olivier, J., Orlando, J., Peters, J., Petron, G., Tyndall, G., Wallens, S.: POET, a database of surface emissions of ozone precursors, available on internet at (2005). Last Accessed 18 Jan 2008
  20. Gribble, W.: The natural production of organobromine compounds. Environ. Sci. Pollut. Res. 7(1), 37–49 (2000)CrossRefGoogle Scholar
  21. Hanson, D.: Reactivity of BrONO2 and HOBr on sulfuric acid solutions at low temperatures. J. Geophys. Res. 108(D8) (2003). doi: 10.1029/2002JD002,519
  22. Hanson, D., Ravishankara, A., Solomon, S.: Heterogeneous reactions in sulfuric acid aerosols: a framework for model calculations. J. Geophys. Res. 99(D2), 3615–3629 (1994)CrossRefGoogle Scholar
  23. Hanson, D., Ravishankara, A., Lovejoy, E.: Reaction of BrONO2 with H2O on submicron sulfuric acid aerosol and the implications for the lower stratosphere. J. Geophys. Res. 101(D4), 9063–9069 (1996)CrossRefGoogle Scholar
  24. Harder, H., Camy-Peyret, C., Ferlemann, F., Fitzenberger, R., Hawat, T., Osterkamp, H., Schneider, M., Perner, D., Platt, U., Vradelis, P., Pfeilsticker, K.: Stratospheric BrO profiles measured at different latitudes and seasons: atmospheric observations. Geophys. Res. Lett. 25, 3843–3846 (1998)CrossRefGoogle Scholar
  25. Hassol, S.J.: Impacts of a Warming Arctic, International Geophysics Series, Arctic Climate Impact Assessment. Cambridge University Press (2004)Google Scholar
  26. Hebestreit, K., Stutz, J., Rosen, D., Matveev, V., Peleg, M., Luria, M., Platt, U.: DOAS measurements of tropospheric bromine oxide in mid-latitudes. Science 283, 55–57 (1999)CrossRefGoogle Scholar
  27. Hegels, E., Crutzen, P., Klüpfel, T., Perner, D.: Global distribution of atmospheric bromine-monoxide from GOME on earth observing satellite ERS-2. Geophys. Res. Lett. 25, 3127–3130 (1998)CrossRefGoogle Scholar
  28. Hendrick, F., Roozendael, M.V., Chipperfield, M., Dorf, M., Goutail, F., Yang, X., Fayt, C., Hermans, C., Pfeilsticker, K., Pommereau, J.P., Pyle, J., Theys, N., Mazière, M.D.: Retrieval of stratospheric and tropospheric BrO profiles and columns using ground-based zenith-sky DOAS observations at Harestua, 60 °N. Atmos. Chem. Phys. 7, 4869–4885 (2007)CrossRefGoogle Scholar
  29. Huff, A., Abbatt, J.: Kinetics and product yields in the heterogeneous reactions of HOBr with ice surfaces containing NaBr and NaCl. J. Phys. Chem. A 106, 5279–5287 (2002)CrossRefGoogle Scholar
  30. Iraci, L., Michelsen, R., Ashbourn, S., Rammer, T., Golden, D.: Uptake of hypobromous acid (HOBr) by aqueous sulfuric acid solutions: low-temperature solubility and reaction. Atmos. Chem. Phys. 5, 1577–1587 (2005)CrossRefGoogle Scholar
  31. Jaeglé, L., Quinn, P., Bates, T., Alexander, B., Lin, J.T.: Global distribution of sea salt aerosols: new constraints from in situ and remote sensing observations. Atmos. Chem. Phys. 11, 3137–3157 (2011). doi: 10.5194/acp-11-3137-2011 CrossRefGoogle Scholar
  32. Jones, A., Anderson, P., Begoin, M., Brough, N., Hutterli, M., Marshall, G., Richter, A., Roscoe, H., Wolff, E.: BrO, blizzards, and drivers of polar tropospheric ozone depletion events. Atmos. Chem. Phys. 9, 4639–4652 (2009)CrossRefGoogle Scholar
  33. Kaleschke, L., Richter, A., Burrows, J., Afe, O., Heygster, G., Notholt, J., Rankin, A.M., Roscoe, H.K., Hollwedel, J., Wagner, T., Jacobi, H.W.: Frost flowers on sea ice as a source of sea salt and their influence on tropospheric halogen chemistry. Geophys. Res. Lett. 31, L16,114 (2004). doi: 10.1029/2004GL020,655 Google Scholar
  34. Kistler, R., Kalnay, E., Collins, W., Saha, S., White, G., Woollen, J., Chelliah, M., Ebisuzaki, W., Kanamitsu, M., Kousky, V., van den Dool, H., Jenne, R., Fiorinono, M.: The NCEP/NCAR 50-year reanalysis: monthly means CD-ROM and documentation. Bull. Am. Meteorol. Soc. 82, 247–268 (2001)CrossRefGoogle Scholar
  35. Kloster, S., Feichter, J., Maier-Reimer, E., Six, K., Wetzel, PSP.: DMS cycle in the marine ocean-atmosphere system—a global model study. Biogeosciences 3, 29–51 (2006)CrossRefGoogle Scholar
  36. Koop, T., Kapilashrami, A., Molina, L., Molina, M.: Phase transitions of sea-salt/water mixtures at low temperatures: implications for ozone chemistry in the polar marine boundary layer. J. Geophys. Res. 105, 26,393–26,402 (2000)Google Scholar
  37. Larichev, M., Maguin, F., Bras, G.L., Poulet, G.: Kinetics and mechanism of the BrO + HO2 reaction. J. Phys. Chem. 99, 15,911–15,918 (1995)CrossRefGoogle Scholar
  38. Lary, D.: Gas phase atmospheric bromine photochemistry. J. Geophys. Res. 101, 1505–1516 (1996)CrossRefGoogle Scholar
  39. Lee, C., Kim, Y., Tanimoto, H., Bobrowski, N., Platt, U., Mori, T., Yamamoto, K., Hong, C.: High ClO and ozone depletion observed in the plume of Sakurajima volcano, Japan. Geophys. Res. Lett. 32, L21,809 (2005). doi: 10.1029/2005GL023,785 Google Scholar
  40. Lehrer, E., Hönninger, G., Platt, U.: A one dimensional model study of the mechanism of halogen liberation and vertical transport in the polar troposphere. Atmos. Chem. Phys. 4, 2427–2440 (2004)CrossRefGoogle Scholar
  41. Leser, H., Hönninger, G., Platt, U.: MAX-DOAS measurements of BrO and NO2 in the marine boundary layer. Geophys. Res. Lett. 30(10) (2003). doi: 10.1029/2002GL015,811
  42. Martin, M., Pöhler, D., Seitz, K., Sinreich, R., Platt, U.: BrO measurements over the Eastern North-Atlantic. Atmos. Chem. Phys. 9, 9545–9554 (2009)CrossRefGoogle Scholar
  43. Matveev, V., Peleg, M., Rosen, D., Tov-Alper, D., Stutz, J., Hebestreit, K., Platt, U., Blake, D., Luria, M.: Bromine oxide-ozone interaction over the Dead Sea. J. Geophys. Res. 106, 10,375–10,378 (2001)CrossRefGoogle Scholar
  44. McElroy, C., McLinden, C., McConnell, J.: Evidence for bromine monoxide in the free troposphere during the Arctic polar sunrise. Nature 397, 338–341 (1999)CrossRefGoogle Scholar
  45. McGivern, W., Sorkhabi, O., Suits, A., Derecskei-Kovacs, A., North, S.: Primary and secondary processes in the photodissociation of CHBr3. J. Phys. Chem. 104, 10,085–10,091 (2000)Google Scholar
  46. McGivern, W., Francisco, J., North, S.: Investigation of the atmospheric oxidation pathways of bromoform: initiation via OH/Cl reactions. J. Phys. Chem. 106, 6,395–6,400 (2002)CrossRefGoogle Scholar
  47. Millero, S.: Chemical Oceanography. CRC Press (1996)Google Scholar
  48. Monahan, E., Spiel, D., Davidson, K.: A model of marine aerosol generation via whitecaps and wave disruption. In: Monahan, E., Niocaill, G.M. (eds.) Oceanic Whitecaps and Their Role in Air-Sea Exchange, pp. 167–174. D. Reidel, Norwell, Mass. (1986)CrossRefGoogle Scholar
  49. Morin, S., Savarino, J., Bekki, S., Gong, S., Bottenheim, J.: Signature of Arctic surface ozone depletion events in the isotope anomaly (δ 17O) of atmospheric nitrate. Atmos. Chem. Phys. 7, 1451–1569 (2007)CrossRefGoogle Scholar
  50. National Aeronautics and Space Administration (NASA): Chemical kinetics and photochemical data for use in atmospheric studies. In: Sander, S., Friedl, R., Ravishankara, A., Golden, D., Kolb, C., Kurylo, M., Huie, R., Orkin, V., Molina, M., Moortgat, G., Rudek, H., Wine, P., Finlayson-Pitts, B. (eds.) Jet Propulsion Laboratory—JPL Publication 06-02. California Institute of Technology, Pasadena (2006)Google Scholar
  51. Oltmans, S., Lefohn, A., Scheel, H., Harris, J., Il, H.L., Galbally, I., Brunke, E., Meyer, C., Lathrop, J., Johnson, B., Shadwick, D., Cuevas, E., Schmidlin, F., Tarasick, D., Claude, H., Kerr, J., Uchino, O., Mohnen, V.: Trends of ozone in the troposphere. Geophys. Res. Lett. 25(2), 139–142 (1998)CrossRefGoogle Scholar
  52. Ordónez, C., Lamarque, J., Tilmes, S., Kinnison, D., Atlas, E., Blake, D., Santos, G.S., Brasseur, G., Saiz-Lopez, A.: Bromine and iodine chemistry in a global chemistry-climate model: descriprion and evaluation of very short-lived oceanic sources. Atmos. Chem. Phys. 12, 1423–1447 (2012)CrossRefGoogle Scholar
  53. Perovich, D., Richter-Menge, J.: Surface characteristics of lead ice. J. Geophys. Res. 99, 16,341–16,350 (1994)Google Scholar
  54. Piot, M., von Glasow, R.: The potential importance of frost flowers, recycling on snow, and open leads for ozone depletion events. Atmos. Chem. Phys. 8, 2437–2467 (2008)CrossRefGoogle Scholar
  55. Platt, U., Hoenninger, G.: The role of halogen species in the troposphere. Chemosphere 52, 325–338 (2003)CrossRefGoogle Scholar
  56. Pozzoli, L., Bey, I., Rast, S., Schultz, M., Stier, P., Feichter, J.: Trace gas amd aerosol interactions in the fully coupled model of aerosol-chemistry-climate ECHAM5-HAMMOZ: 1. Model description and insights from the spring 2001 TRACE-P experiment. J. Geophys. Res. 113 (2008). doi: 10.1029/2007JD009,007
  57. Pratte, P., Rossi, M.: The heterogeneous kinetics of HOBr and HOCl on acidified sea salt and model aerosol at 40–90 % relative humidity and ambient temperature. Phys. Chem. Chem. Phys. 8, 3988–4001 (2006)CrossRefGoogle Scholar
  58. Pszenny, A., Moldanová, J., Keene, W., Sander, R., Maben, J., Martinez, M., Crutzen, P., Perner, D., Prinn, R.: Halogen cycling and aerosol pH in the Hawaiian marine boundary layer. Atmos. Chem. Phys. 4, 147–168 (2004)CrossRefGoogle Scholar
  59. Putaud, J., Mihalopoulos, N., Nguyen, B., Campin, J., Belviso, S.: Seasonal-variations of atmospheric sulfur-dioxide and dimethylsulfide concentrations at amsterdam island in the southern indian-ocean. J. Atmos. Chem. 15, 117–131 (1992)CrossRefGoogle Scholar
  60. Quack, B., Wallace, D.: Air-sea flux of bromoform: controls, rates and implications. Glob. Biogeochem. Cycles 17(1) (2003). doi: 10.1029/2002GB001,890
  61. Rankin, A., Wolff, E., Martin, S.: Frost flowers: implications for tropospheric chemistry and ice core interpretation. J. Geophys. Res. 107, 4683 (2002). doi: 10.1029/2002JD002,492 CrossRefGoogle Scholar
  62. Read, K., Mahajan, A., Carpenter, L., Evans, M., Faria, B., Heard, D., Hopkins, J., Lee, J., Moller, S., Lewis, A., Mendes, L., McQuaid, J., Oetjen, H., Saiz-Lopez, A., Pilling, M., Plane, J.: Extensive halogen-mediated ozone destruction over the tropic Atlantic ocean. Nature 453, 1232–1235 (2008). doi: 10.1038/nature07035 CrossRefGoogle Scholar
  63. Richter, A., Wittrock, F., Eisinger, M., Burrows, J.: GOME observations of tropospheric BrO in northern hemispheric spring and summer 1997. Geophys. Res. Lett. 25, 2683–2686 (1998)CrossRefGoogle Scholar
  64. Saiz-Lopez, A., Mahajan, A., Salmon, R., Bauguitte, S.J.B., Jones, A., Roscoe, H., Plane, J.: Boundary layer halogens in coastal antarctica. Science 317, 348–351 (2007)CrossRefGoogle Scholar
  65. Saiz-Lopez, A., Lamarque, J., Kinnison, D., Tilmes, S., Ordónez, C., Orlando, J., Conley, A., Plane, J., Mahajan, A., Santos, G.S., Atlas, E., Blake, D., Sander, S., Schauffler, S., Thompson, A., Brasseur, G.: Estimating the climate significance of halogen-driven ozone loss in the tropical marine troposphere. Atmos. Chem. Phys. 12, 3939–3949 (2012)CrossRefGoogle Scholar
  66. Sander, R., Crutzen, P.: Model study indicating halogen activation and ozone destruction in polluted air masses transported to the sea. J. Geophys. Res. 101(D4), 9121–9138 (1996)CrossRefGoogle Scholar
  67. Sander, R., Keene, W., Pszenny, A., Arimoto, R., Ayers, G., Baboukas, E., Cainey, J., Crutzen, P., Duce, R., Hoenninger, G., Huebert, B., Maenhaut, W., Mihalopoulos, N., Turekian, V., van Dingenen, R.: Inorganic bromine in the boundary layer: a critical review. Atmos. Chem. Phys. 3, 1301–1336 (2003)CrossRefGoogle Scholar
  68. Santos, G.S.: The effect of halogens on global tropospheric ozone. PhD Thesis, International Max Planck Research School on Earth System Modelling. Hamburg, Germany. (2008)
  69. Schauffler, S., Atlas, E., Blake, D., Flocke, F., Lueb, R., Lee-Taylor, J., Stroud, V., Travnicek, W.: Distributions of brominated organic compounds in the troposphere and lower stratosphere. J. Geophys. Res. 104(D17), 21,513–21,535 (1999)CrossRefGoogle Scholar
  70. Schofield, R., Kreher, K., Connor, B., Johnston, P., Thomas, A., Shooter, D., Chipperfield, M., Rodgers, C., Mount, G.: Retrieved tropospheric and stratospheric BrO columns over Lauder, New Zealand. J. Geophys. Res. 109(D14304) (2004). doi: 10.1029/2003JD004,463
  71. Schofield, R., Johnston, P., Thomas, A., Kreher, K., Connor, B., Wood, S., Shooter, D., Chipperfield, M., Richter, A., von Glasow, C.D., Rodgers, R.: Tropospheric and stratospheric BrO columns over Arrival Heights, Antarctica, 2002. J. Geophys. Res. 111(D22310) (2006). doi: 10.1029/2005JD007,022
  72. Schulz, M., de Leeuw, G., Balkanski, Y.: Sea-salt aerosol source functions and emissions. In: Granier, C., Netto, P., Dordrecht, C. (eds.) Emission of Atmospheric Trace Compounds, pp. 333–359. Kluwer Academic Publishers, Boston (2004)CrossRefGoogle Scholar
  73. Sciare, J., Mihalopoulos, N., Dentener, F.: Interannual variability of atmospheric dimethylsulfide in the southern indian ocean. J. Geophys. Res. 105, 26 369–26 337 (2000)Google Scholar
  74. Seinfeld, J.H., Pandis, S.N.: Atmospheric Chemistry and Physics: From Air Pollution to Climate Change. John Wiley & Sons, Inc. (1998)Google Scholar
  75. Simpson, W., Carlson, D., Hönninger, G., Douglas, T., Sturm, M., Perovich, D., Platt, U.: First-year sea-ice contact predicts bromine monoxide (BrO) levels at barrow, alaska better than potential frost flowers contac. Atmos. Chem. Phys. 7, 621–627 (2007a)CrossRefGoogle Scholar
  76. Simpson, W., von Glasow, R., Riedel, K., Anderson, P., Ariya, P., Bottenheim, J., Burrows, J., Carpenter, L., Friess, U., Goodsite, M., Heard, D., Jacobi, M.H.H.W., Kaleschke, L., Neff, B., Plane, J., Platt, U., Richter, A., Roscoe, H., Sander, R., Shepson, P., Sodeau, J., Steffen, A., Wagner, T., Wolff, E.: Halogens and their role in polar boundary-layer ozone depletion. Atmos. Chem. Phys. 7, 4375–4418 (2007b)CrossRefGoogle Scholar
  77. Smith, M., Park, P., Consterdine, I.: Marine aerosol concentrations and estimated fluxes over the sea. QJR Meteorol. Soc. 119, 809–824 (1993)CrossRefGoogle Scholar
  78. Sturges, W.: Excess particulate and gaseous bromine at a remote coastal location. Atmos. Environ. 24A(1), 167–171 (1990)Google Scholar
  79. Tang, T., McConnell, J.: Autocatalytic release of bromine from arctic snow pack during polar sunrise. Geophys. Res. Lett. 23, 2633–2636 (1996)CrossRefGoogle Scholar
  80. Tarasick, D., Bottenheim, J.: Surface ozone depletion episodes in the Arctic and Antarctic from historical ozonesonde records. Atmos. Chem. Phys. 2, 197–205 (2002)CrossRefGoogle Scholar
  81. Theys, N., Roozendael, M.V., Hendrick, F., Fayt, C., Hermans, C., Baray, J.L., Goutail, F., Pommereau, J.P., Mazière, M.D.: Retrieval of stratospheric and tropospheric BrO columns from multi-axis DOAS measurements at Reunion Island (21 °S, 56 °E). Atmos. Chem. Phys. 7, 4733–4749 (2007)CrossRefGoogle Scholar
  82. Tuckermann, M., Ackermann, R., Gölz, C., Lorenzen-Schmidt, H., Senne, T., Stutz, J., Trost, B., Unold, W., Platt, U.: DOAS-observation of halogen radical-catalysed Arctic boundary layer ozone destruction during the ARCTOC-campaigns 1995 and 1996 in Ny-Alesund, Spitsbergen. Tellus 49B, 533–555 (1997)Google Scholar
  83. Van Roozendael, M., Wagner, T., Richter, A., Pundt, I., Arlander, D.W., Burrows, J.P., Chipperfield, M., Fayt, C., Johnston, P.V., Lambert, J.-C., Kreher, K., Pfeilsticker, K., Platt, U., Pommereau, J.-P., Sinnhuber, B.-M., Tornkvist, K.K., Wittrock, F.: Intercomparison of BrO measurements from ERS-2 GOME, ground-based and balloon platforms. Adv. Space Res. 29(11), 1661–1666 (2002)CrossRefGoogle Scholar
  84. Vogt, R., Crutzen, P., Sander, R.: A mechanism for halogen release from sea-salt aerosol in the remote boundary layer. Nature 383, 327–330 (1996)CrossRefGoogle Scholar
  85. von Glasow, R., von Kuhlmann, R., Lawrence, M., Platt, U., Crutzen, P.: Impact of reactive bromine chemistry in the troposphere. Atmos. Chem. Phys. 4, 2481–2497 (2004)CrossRefGoogle Scholar
  86. Wachsmuth, M., Gäggeler, H., von Glasow, R., Ammann, M.: Accommodation coefficient of hobr on deliquescent sodium bromine aerosol particles. Atmos. Chem. Phys. 2, 121–131 (2002)CrossRefGoogle Scholar
  87. Wagner, T., Platt, U.: Observation of tropospheric BrO from GOME satellite. Nature 395, 486–490 (1998)CrossRefGoogle Scholar
  88. Wagner, T., Leue, C., Wenig, M., Pfeilsticker, K., Platt, U.: Spatial and temporal distribution of enhanced boundary layer BrO concentrations measured by the GOME instrument aboard ERS-2. J. Geophys. Res. 106(D20), 24,225–24,235 (2001)CrossRefGoogle Scholar
  89. Wagner, T., Ibrahim, O., Sinreich, R., Friess, U., von Glasow, R., Platt, U.: Enhanced tropospheric BrO over Antarctic sea ice in mid winter observed by MAX-DOAS on board the research vessel Polarstern. Atmos. Chem. Phys. 7, 3129–3142 (2007)CrossRefGoogle Scholar
  90. Warneck, P.: Chemistry of the Natural Atmosphere. International Geophysics Series, vol. 71, 2nd edn. Academic Press (1999)Google Scholar
  91. Wennberg, P., Hanisco, T., Jaegle, T., Jacob, D., Hintsa, E., Lanzendorf, E., Gao, J.A.R., Keim, E., Donnelly, S., Negro, L., Fahey, D., McKeen, S., Salawitch, R., Webster, C., May, R., Herman, R., Proffitt, M., Margitan, J., Atlas, E., Schauffler, S., Flocke, F., McElroy, C., Bui, T.: Hydrogen radicals, nitrogen radicals, and the production of O3 in the upper troposphere. Science 279, 49–53 (1998)CrossRefGoogle Scholar
  92. World Meteorological Organization: Scientific Assessment of Ozone Depletion: 20010. Global Ozone Research and Monitoring Project—Report n. 52. WMO, Geneva (2010)Google Scholar
  93. Yang, X., Cox, R., Warwick, N., Pyle, J., Carver, G., O’Connor, F., Savage, N.: Tropospheric bromine chemistry and its impacts on ozone: a model study. J. Geophys. Res. 110(D23311) (2005). doi: 10.1029/2005JD006244

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Institute for Atmospheric and Climate ScienceETHZZurichSwitzerland
  2. 2.Max Planck Institut for MeteorologyHamburgGermany

Personalised recommendations