Journal of Atmospheric Chemistry

, Volume 69, Issue 3, pp 215–230 | Cite as

Seasonal changes in the daily emission rates of terpenes by Quercus ilex and the atmospheric concentrations of terpenes in the natural park of Montseny, NE Spain

  • Joan Llusia
  • Josep Peñuelas
  • Roger Seco
  • Iolanda Filella


We studied the daily patterns in the rates of terpene emissions by the montane holm oak, Quercus ilex, in three typical days of winter and three typical days of summer in Montseny, a natural park near Barcelona, and related them to the air concentrations of terpenes, ozone and NO2. Terpene emission rates were about 10 times higher in summer than in winter. Emissions virtually stopped in the dark. In both seasons, rates of terpene emissions were well correlated with light, air temperature and relative humidity. Rates of emissions were also correlated with stomatal conductance and the rates of transpiration and photosynthesis. Almost all the individual terpenes identified followed the same pattern as total terpenes. The most abundant terpene was α-pinene, followed by sabinene + β-pinene, limonene, myrcene, camphene and α-phellandrene. Atmospheric terpene concentrations were also about 10 times higher in summer than in winter. A significant diurnal pattern with maxima at midday was observed, especially in summer. The increase by one order of magnitude in the concentrations of these volatile isoprenoids highlights the importance of local biogenic summer emissions in these Mediterranean forested areas which also receive polluted air masses from nearby or distant anthropic sources. Atmospheric concentrations of O3 and NO2 were also significantly higher in summer and at midday hours. In both seasons, concentrations of O3 were significantly correlated with concentrations of terpenes and NO2 in the air and with rates of terpene emission.


Terpene emission rates Terpene air concentrations VOC Seasonality Quercus ilex Montseny 



This study was supported by the Spanish Government grants CGL2006-04025/BOS, CGL2010-17172, Consolider-Ingenio Montes CSD2008-00040 and Acción Complementaria DAURE CGL2007-30502-E/CLI, and the Catalan Government grant SGR 2009-00 458. Roger Seco was partially supported by an FPI fellowship (BES-2005-6989) from the Spanish Government and by a postdoctoral grant from Fundación Ramón Areces. The National Center for Atmospheric Research is sponsored by the National Science Foundation.


  1. Anderson, M.J., Gorley, R.N., Clarke, K.R.: PERMANOVA + for PRIMER: guide to software and statistical methods. PRIMER-E, Plymouth (2008)Google Scholar
  2. Andreae, M.O., Crutzen, P.J.: Atmospheric aerosols: biogeochemical sources and role in atmospheric chemistry. Science 276(5315), 1052–1058 (1997)CrossRefGoogle Scholar
  3. Arey, J., Crowley, D.E., Crowley, M., Resketo, M., Lester, J.: Hydrocarbon emissions from natural vegetation in California’s South Coast Air Basin. Atmos. Environ. 29, 2977–2988 (1995)CrossRefGoogle Scholar
  4. Avila, A., Rodrigo, A.: Trace metal fluxes in bulk deposition, throughfall and stemflow at two evergreen oak stands in NE Spain subject to different exposure to the industrial environment. Atmos. Environ. 38(2), 171–180 (2004)CrossRefGoogle Scholar
  5. BEMA: BEMA: An European Commission Project on Biogenic Emissions in the Mediterranean Area. Atmos. Environ. 31(SI), 1–256 (1997)Google Scholar
  6. Bertin, N., Staudt, M.: Effect of water stress on monoterpene emissions from young potted holm oak (Quercus ilex L) trees. Oecologia 107(4), 456–462 (1996)CrossRefGoogle Scholar
  7. Bertin, N., Staudt, M., Hansen, U., Seufert, G., Ciccioli, P., Foster, P., Fugit, J.L., Torres, L.: Diurnal and seasonal course of monoterpene emissions from Quercus ilex (L.) under natural conditions–applications of light and temperature algorithms. Atmos. Environ. 31, 135–144 (1997)CrossRefGoogle Scholar
  8. Blanch, J.S., Peñuelas, J., Sardans, J., Llusia, J.: Drought, warming and soil fertilization effects on leaf volatile terpene concentrations in Pinus halepensis and Quercus ilex. Acta Physiol. Plant. 31(1), 207–218 (2009)CrossRefGoogle Scholar
  9. Bolòs, O.: La Vegetació del Montseny. Barcelona, Barcelona (1983)Google Scholar
  10. Bolòs, O., Vigo, J.: Flora dels Països Catalans. Barcino, Barcelona (1990)Google Scholar
  11. Bonn, B., Hirsikko, A., Hakola, H., Kurtén, T., Laakso, L., Boy, M., Dal Maso, M., Mäkelä, J. M., Kulmala, M.: Ambient sesquiterpene concentration and its link to air ion measurements. Atmos. Chem. Phys. 7, 2893–2916 (2007)Google Scholar
  12. Calogirou, A., Nicollin, B., Duane, M., Kotzias, D., Kettrup, A.: Impact of biogenic hydrocarbons on photochemical ozone formation–preliminary results. Fresenius Environ. Bull. 5(9–10), 523–527 (1996)Google Scholar
  13. Castroviejo, S., Aedo, C., Cirujano, S., Laínz, M., Montserrat, P., Morales, R., Muñoz Garmandia, F., Navarro, C., Paiva, J., Soriano, C.: Plantas Vasculares de la Península Ibérica e Islas Baleares. Flora Ibérica. Real Jardín Botánico, CSIC, Madrid (1996)Google Scholar
  14. Ciccioli, P., Fabozzi, C., Brancaleoni, E., Cecinato, A., Frattoni, M., Cieslik, S., Kotzias, D., Seufert, G., Foster, P., Steinbrecher, R.: Biogenic emission from the Mediterranean Pseudosteppe ecosystem present in Castelporziano. Atmos. Environ. 31, 167–175 (1997)CrossRefGoogle Scholar
  15. Copolovici, L.O., Filella, I., Llusia, J., Niinemets, U., Peñuelas, J.: The capacity for thermal protection of photosynthetic electron transport varies for different monoterpenes in Quercus ilex. Plant Physiol. 139(1), 485–496 (2005)CrossRefGoogle Scholar
  16. Dement, W.A., Tyson, B.J., Mooney, H.A.: Mechanism of monoterpene volatilization in Salvia mellifera. Phytochemistry 14, 2555–2557 (1975)CrossRefGoogle Scholar
  17. Di Castri, F.: Climatographical comparisons between Chile and the western coast of North America. Mediterranean type ecosystems. Springer, Berlin (1973)Google Scholar
  18. Diaz-de-Quijano, M., Peñuelas, J., Ribas, A.: Increasing interannual and altitudinal ozone mixing ratios in the Catalan Pyrenees. Atmos. Environ. 43(38), 6049–6057 (2009)CrossRefGoogle Scholar
  19. Díaz-de-Quijano, M., Schaub, M., Bassin, S., Volk, M., Peñuelas, J.: Ozone visible symptoms and reduced root biomass in the subalpine species Pinus uncinata after 2 years of free-air ozone fumigation. Environ. Pollut. (2012). doi: 10.1016/j.envpol.1002.1011
  20. Duhl, T.R., Helmig, D., Guenther, A.: Sesquiterpene emissions from vegetation: a review. Biogeosciences 5, 761–777 (2008)CrossRefGoogle Scholar
  21. Ebel, R.C., Mattheis, J.P., Buchanan, D.A.: Drought stress of apple-trees alters leaf emissions of volatile compounds. Physiol. Plant. 93(4), 709–712 (1995)CrossRefGoogle Scholar
  22. Emeis, S., Schoenemeyer, T., Richter, K., Ruckdeschel, W.: Sensitivity of ozone production to VOC and NOx emissions—a case study with the box-model BAYROZON. Meteorol. Z. 6(2), 60–72 (1997)Google Scholar
  23. Filella, I., Wilkinson, M.J., Llusia, J., Hewitt, C.N., Peñuelas, J.: Volatile organic compounds emissions in Norway spruce (Picea abies) in response to temperature changes. Physiol. Plant. 130(1), 58–66 (2007)CrossRefGoogle Scholar
  24. Georgopoulos, P.G., Arunachalam, S., Wang, S.: Alternative metrics for assessing the relative effectiveness of NOx and VOC emission reductions in controlling ground-level ozone. J. Air Waste Manag. Assoc. 47(8), 838–850 (1997)CrossRefGoogle Scholar
  25. Gimeno, B.S., Salleras, J.M., Porcuna, J.L., Tarruel, A., Reinert, R., Velissariou, D., Davidson, A.: Assesments of ozone-induced visible injury on different commercial crops along the Spanish Eastern Mediterranean Coast/effects of air pollution on agricultural crops in Europe. CEC Air Pollution Research Report, Brussels (1993)Google Scholar
  26. Heiden, A.C., Hoffman, T., Kahl, J.: Biogenic emissions of VOCs from sunflower, rape, pine, and tobacco. Volatile organic compounds in the atmosphere. American Meteorological Society, University of Virginia, Charlottesville (1997)Google Scholar
  27. Hester, R.E., Harrison, R.M.: Volatile organic compounds in the atmosphere. The Royal Society of Chemistry, Cambridge (1995)Google Scholar
  28. Jardine, K., Serrano, A.Y., Arneth, A., Abrell, L., Jardine, A., Haren, J.van, Artaxo, P., Rizzo, L.V., Ishida, F.Y., Karl, T., Kesselmeier, J., Saleska, S., Huxman, T.: Within-canopy sesquiterpene ozonolysis in Amazonia. J. Geophys. Res. Atmos. 116(D19301), doi: 10.1029/2011JD016243 (2011)
  29. Jenkin, M.E., Hayman, G.D.: Photochemical ozone creation potentials for oxygenated volatile organic compounds: sensitivity to variations in kinetic and mechanistic parameters. Atmos. Environ. 33(8), 1275–1293 (1999)CrossRefGoogle Scholar
  30. Kesselmeier, J., Schafer, L., Ciccioli, P., Brancaleoni, E., Cecinato, A., Frattoni, M., Foster, P., Jacob, V., Denis, J., Fugit, J.L., Dutaur, L., Torres, L.: Emission of monoterpenes and isoprene from a Mediterranean oak species Quercus ilex L measured within the BEMA (Biogenic Emissions in the Mediterranean Area) project. BEMA, measuring campaign at Castel-Porziano, Rome (Italy). EUR-CEC15955 EN 1994. Atmos. Environ. 30(10–11), 1841–1850 (1996)CrossRefGoogle Scholar
  31. Kleinman, L.I., Daum, P.H., Lee, J.H., Lee, Y.N., Nunnermacker, L.J., Springston, S.R., Newman, L., Weinstein, L.J., Sillman, S.: Dependence of ozone production on NO and hydrocarbons in the troposphere. Geophys. Res. Lett. 24(18), 2299–2302 (1997)CrossRefGoogle Scholar
  32. Langenheim, J.H.: Higher-plant terpenoids—a phytocentric overview of their ecological roles. J. Chem. Ecol. 20(6), 1223–1280 (1994)CrossRefGoogle Scholar
  33. Lerdau, M., Peñuelas, J.: Los terpenos en la atmósfera: vínculos entre la biosfera y la atmósfera. Mundo Científico 131, 60–63 (1993)Google Scholar
  34. Llusia, J., Peñuelas, J.: Changes in terpene content and emission in potted Mediterranean woody plants under severe drought. Can. J. Bot. Rev. Can. Bot. 76(8), 1366–1373 (1998)CrossRefGoogle Scholar
  35. Llusia, J., Peñuelas, J.: Pinus halepensis and Quercus ilex terpene emission as affected by temperature and humidity. Biol. Plant. 42(2), 317–320 (1999)CrossRefGoogle Scholar
  36. Llusia, J., Peñuelas, J.: Seasonal patterns of terpene content and emission from seven Mediterranean woody species in field conditions. Am. J. Bot. 87(1), 133–140 (2000)CrossRefGoogle Scholar
  37. Llusia, J., Peñuelas, J.: Emission of volatile organic compounds by apple trees in response to spider mite attack and attraction of predatory mites. Exp. Appl. Acarol. 25(1), 65–77 (2001)CrossRefGoogle Scholar
  38. Llusia, J., Peñuelas, J., Alessio, G.A., Estiarte, M.: Contrasting species-specific, compound-specific, seasonal, and interannual responses of foliar isoprenoid emissions to experimental drought in a Mediterranean shrubland. Int. J. Plant Sci. 169(5), 637–645 (2008)CrossRefGoogle Scholar
  39. Llusia, J., Peñuelas, J., Alessio, G.A., Ogaya, R.: Species-specific, seasonal, inter-annual, and historically-accumulated changes in foliar terpene emission rates in Phillyrea latifolia and Quercus ilex submitted to rain exclusion in the Prades Mountains (Catalonia). Russ. J. Plant Physiol. 58(1), 126–132 (2011)CrossRefGoogle Scholar
  40. Loreto, F., Ciccioli, P., Cecinato, A., Brancaleoni, E., Frattoni, M., Fabozzi, C., Tricoli, D.: Evidence of the photosynthetic origin of monoterpenes emitted by Quercus ilex L leaves by C-13 labeling. Plant Physiol. 110(4), 1317–1322 (1996a)Google Scholar
  41. Loreto, F., Ciccioli, P., Cecinato, A., Brancaleoni, E., Frattoni, M., Tricoli, D.: Influence of environmental factors and air composition on the emission of alpha-pinene from Quercus ilex leaves. Plant Physiol. 110(1), 267–275 (1996b)Google Scholar
  42. Paris, C.I., Llusia, J., Peñuelas, J.: Changes in monoterpene emission rates of Quercus ilex infested by aphids tended by native or invasive lasius ant species. J. Chem. Ecol. 36(7), 689–698 (2010)CrossRefGoogle Scholar
  43. Peñuelas, J., Boada, M.: A global change-induced biome shift in the Montseny mountains (NE Spain). Glob. Chang. Biol. 9(2), 131–140 (2003)CrossRefGoogle Scholar
  44. Peñuelas, J., Llusia, J.: Seasonal emission of monoterpenes by the Mediterranean tree Quercus ilex in field conditions: relations with photosynthetic rates, temperature and volatility. Physiol. Plant. 105(4), 641–647 (1999a)CrossRefGoogle Scholar
  45. Peñuelas, J., Llusia, J.: Short-term responses of terpene emission rates to experimental changes of PFD in Pinus halepensis and Quercus ilex in summer field conditions. Environ. Exp. Bot. 42(1), 61–68 (1999b)CrossRefGoogle Scholar
  46. Peñuelas, J., Llusia, J.: The complexity of factors driving volatile organic compound emissions by plants. Biol. Plant. 44(4), 481–487 (2001)CrossRefGoogle Scholar
  47. Peñuelas, J., Llusia, J.: Linking photorespiration, monoterpenes and thermotolerance in Quercus. New Phytol. 155(2), 227–237 (2002)CrossRefGoogle Scholar
  48. Peñuelas, J., Llusia, J.: BVOCs: plant defense against climate warming? Trends Plant Sci. 8(3), 105–109 (2003)CrossRefGoogle Scholar
  49. Peñuelas, J., Staudt, M.: BVOCs and global change. Trends Plant Sci. 15(3), 133–144 (2010)CrossRefGoogle Scholar
  50. Peñuelas, J., Llusia, J., Estiarte, M.: Terpenoids—a plant language. Trends Ecol. Evol. 10(7), 289–289 (1995)CrossRefGoogle Scholar
  51. Peñuelas, J., Llusia, J., Gimeno, B.S.: Effects of ozone concentrations on biogenic volatile organic compounds emission in the Mediterranean region. Environ. Pollut. 105(1), 17–23 (1999)CrossRefGoogle Scholar
  52. Peñuelas, J., Llusia, J., Asensio, D., Munne-Bosch, S.: Linking isoprene with plant thermotolerance, antioxidants and monoterpene emissions. Plant Cell Environ. 28(3), 278–286 (2005)CrossRefGoogle Scholar
  53. Peñuelas, J., Filella, I., Seco, R., Llusia, J.: Increase in isoprene and monoterpene emissions after re-watering of droughted Quercus ilex seedlings. Biol. Plant. 53(2), 351–354 (2009)CrossRefGoogle Scholar
  54. Pichersky, E., Gershenzon, J.: The formation and function of plant volatiles: perfumes for pollinator attraction and defense. Curr. Opin. Plant Biol. 5(3), 237–243 (2002)CrossRefGoogle Scholar
  55. Porcar-Castell, A., Peñuelas, J., Owen, S.M., Llusia, J., Munne-Bosch, S., Back, J.: Leaf carotenoid concentrations and monoterpene emission capacity under acclimation of the light reactions of photosynthesis. Boreal Environ. Res. 14(4), 794–806 (2009)Google Scholar
  56. Ribas, A., Peñuelas, J.: Surface ozone mixing ratio increase with altitude in a transect in the Catalan Pyrenees. Atmos. Environ. 40(38), 7308–7315 (2006)CrossRefGoogle Scholar
  57. Ribas, A., Filella, I., Gimeno, B.S., Peñuelas, J.: Evaluation of tobacco cultivars as bioindicators and biomonitors of ozone phytotoxical levels in Catalonia. Water Air Soil Pollut. 107(1–4), 347–365 (1998)CrossRefGoogle Scholar
  58. Ross, J.D., Sombrero, C.: Environmental control of essential oil production in Mediterranean plants. In: Harborne, J.B., Tomas-Barberan, F.A. (eds.) Ecological chemistry and biochemistry of plant terpenoids, pp. 83–94. Clarendon, Oxford (1991)Google Scholar
  59. Seco, R., Filella, I., Llusia, J., Penuelas, J.: Methanol as a signal triggering isoprenoid emissions and photosynthetic performance in Quercus ilex. Acta Physiol. Plant. 33(6), 2413–2422 (2011a)CrossRefGoogle Scholar
  60. Seco, R., Peñuelas, J., Filella, I., Llusia, J., Molowny-Horas, R., Schallhart, S., Metzger, A., Müller, M., Hansel, A.: Contrasting winter and summer VOC mixing ratios at a forest site in the Western Mediterranean Basin: the effect of local biogenic emissions. Atmos. Chem. Phys. 11, 13161–13179 (2011b). doi: 10.5194/acp-11-13161-13179 CrossRefGoogle Scholar
  61. Sharkey, T.D., Loreto, F.: Water-stress, temperature, and light effects on isoprene emission and photosynthesis of kudzu leaves. Plant Physiol. 102(1), 159–159 (1993)Google Scholar
  62. Simpson, D., Guenther, A., Hewitt, C.N., Steinbrecher, R.: Biogenic emissions in Europe .1. Estimates and uncertainties. J. Geophys. Res.-Atmos. 100(D11), 22875–22890 (1995)CrossRefGoogle Scholar
  63. Singh, H.B., Zimmerman, P.R.: Atmospheric distribution and sources of nonmethane hydrocarbons. In: Nriagu, J.O., Wiley, J. (eds.) Gaseous pollutants: characterization and cycling, pp. 177–235. Wiley, New York (1992)Google Scholar
  64. Singsaas, E.L.: Terpenes and the thermotolerance of photosynthesis. New Phytol. 146(1), 1–2 (2000)CrossRefGoogle Scholar
  65. Staudt, M., Bertin, N.: Light and temperature dependence of the emission of cyclic and acyclic monoterpenes from holm oak (Quercus ilex L.) leaves. Plant Cell Environ. 21(4), 385–395 (1998)CrossRefGoogle Scholar
  66. Staudt, M., Seufert, G.: Light-dependent emission of monoterpenes by Holm Oak (Quercus ilex L). Naturwissenschaften 82(2), 89–92 (1995)CrossRefGoogle Scholar
  67. Takabayashi, J., Dicke, M., Posthumus, M.A.: Volatile herbivore-induced terpenoids in plant mite interactions–variation caused by biotic and abiotic factors. J. Chem. Ecol. 20(6), 1329–1354 (1994)CrossRefGoogle Scholar
  68. Terradas, J.: Holm oak and holm oak forest. In: Rodà, F., et al. (eds.) Ecology of Mediterranean evergreen oak forests, pp. 3–14. Springer, Berlin (1999)CrossRefGoogle Scholar
  69. Tingey, D.T., Turner, D.P., Weber, J.A.: Factors controlling the emission of monoterpenes and other volatile compounds. In: Sharkey, T.D., et al. (eds.) Trace gas emission by plants, pp. 93–120. Academic, San Diego (1991)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Joan Llusia
    • 1
  • Josep Peñuelas
    • 1
  • Roger Seco
    • 1
    • 2
  • Iolanda Filella
    • 1
  1. 1.Global Ecology Unit CREAF-CEAB-CSIC Center for Ecological Research and Forestry ApplicationsEdifici C, Universitat Autònoma de BarcelonaBellaterraSpain
  2. 2.Atmospheric Chemistry Division, National Center for Atmospheric ResearchBoulderUSA

Personalised recommendations