Advertisement

Journal of Atmospheric Chemistry

, Volume 69, Issue 2, pp 127–157 | Cite as

Size-segregated characterization of PM10 at the EMEP site Melpitz (Germany) using a five-stage impactor: a six year study

  • G. Spindler
  • T. Gnauk
  • A. Grüner
  • Y. Iinuma
  • K. Müller
  • S. Scheinhardt
  • H. Herrmann
Article

Abstract

Size-segregated particle samples were collected using a Berner 5-stage impactor (stages 1–5: 0.05–0.14–0.42–1.2–3.5–10 μm aerodynamic diameter). The means for all 169 days and for different categories of days were used for a characterization. The sorting criteria were (a) the distinction between winter (Wi, November to April) and summer (Su, May to October), (b) the distinction between air mass inflow from a sector West (W, 210 °–320 °) and from a sector East (E, 35 °–140 °). For the assignment of the air mass origin 96-h backward trajectories were used and four categories (WiW, WiE, SuW and SuE) with 48, 18, 42 and 29 days were established. The lowest mean particle mass concentrations were found for SuW and the highest for WiE with relative mass concentration distributions of 5.9, 28.2, 36.5, 18.0, and 11.4 % and 3.5, 22.7, 52.6, 16.7, and 4.5 % for stages 1–5, respectively. The mass closure for water soluble ions, water, organic material (OM) and elemental carbon (EC) accounts for 81–99 % of the gravimetric mass in Wi and for 60–81 % for Su, depending on the stage. The fractions of nitrate were relatively high for WiW while sulphate fractions are high for WiE. The estimated concentrations of secondary organic carbon (SOA) on stage 3 for WiW, WiE, SuW and SuE were 0.32, 1.25, 0.27 and 0.58 μgm³, respectively. The highest amount of SOA is found for WiE, representing 59 % of organic carbon (OC). The highest difference in the percentages of SOA in OC was found between winter (WiW 55 %, WiE 59 %) and summer (SuW and SuE 74 %) indicating photochemical processes during long-range transport. The mean Carbon Preference Indices (CPI) are highest for SuE (stage 4: 7.57 and stage 5: 9.82) resulting mainly from plant wax abrasion in the surrounding forests. For WiE the mean PAH concentration on stage 3 (9.7 ngm−3) is about five times higher than for WiW, indicating long range transport following domestic heating and other combustion processes.

Keywords

Size-segregated particle sampling Air mass origin Mass closure Water soluble ions Carbonaceous material 

Notes

Acknowledgements

The authors acknowledge financial support of this study by the German Federal Environment Agency (UBA) research foundation with contracts No.: 351 01 031 and 351 01 038, the German Federal Ministry of Education and Research, project REGKLAM (No.: 01LR0802) in grant project KLIMZUG and the European Union in the project EUSAAR (European Supersites for Atmospheric Aerosol Research). For the laboratory analyses and the preparation of impactors we thank A. Dietze, E. Neumann, S. Haferkorn, A. Rödger and A. Thomas. For the support in the field we thank J. Hanß and R. Rabe.

Supplementary material

10874_2012_9233_MOESM1_ESM.pdf (71 kb)
Esm 1 (PDF 70 kb)

References

  1. Alves, C., Vicente, A., Evtyugina, M., Pio, C.A., Kiss, G., Decesari, S., Hillamo, R., Swietlicki, E.: Characzerisation of hydrocarbons in atmospheric aerosols from different European sites. World Acad. Sci. Eng. Technol. 57, 236–242 (2009)Google Scholar
  2. Arhami, M., Sillanpää, M., Hu, S., Olson, M., Schauer, J.J., Sioutas, C.: Size-segregated inorganic and organic compounds of PM in the communities of the Las Angeles Harbor. Aerosol Sci. Technol. 43, 145–160 (2009)CrossRefGoogle Scholar
  3. Avino, P., Casciardi, S., Fanizza, C., Manigrasso, M.: Deep investigation of ultrafine particles in urban air. Aerosol Air Qual. Res. 11, 654–663 (2011)Google Scholar
  4. Azevedo, D.A., Moreira, L.S., Siqueira, D.S.: Composition of extractable organic matter in aersols from urban areas of Rio de Janeiro City. Braz. Atmos. Environ. 33, 4987–5001 (1999)CrossRefGoogle Scholar
  5. Berner, A., Lürzer, C.: Mass size distributions of traffic aerosols at Vianna. J. Phys. Chem. 84, 2079–2083 (1980)CrossRefGoogle Scholar
  6. Bi, X.H., Sheng, G.Y., Peng, P.A., Chen, Y.J., Zhang, Z.Q., Fu, J.M.: Distribution of particulate- and vapor-phase n-alkanes and polycyclic aromatic hydrocarbons in urban atmosphere of Guangzhou. China Atmos. Environ. 37, 289–298 (2003)CrossRefGoogle Scholar
  7. Böhlmann, N., Meissner, R., Bernsdorf, S., Böhme, F., Russow, R., Wegener, U.: Studies of atmospheric nitrogen deposition in a mire of the German National Park Hochharz mountains using two different methods. Water Air Soil Pollut. 168, 17–32 (2005)CrossRefGoogle Scholar
  8. Bruckmann, P., Wurzler, S., Mildenberger, K.: Die Episode hoher Staubkonzentrationen im Januar und Februar 2006. Immissionsschutz, 67–72 (2006)Google Scholar
  9. Brüggemann, E., Spindler, G.: Wet and dry deposition of sulphur at the site Melpitz in East Germany. Water Air Soil Pollut. 109, 81–99 (1999)CrossRefGoogle Scholar
  10. Brüggemann, E., Gnauk, T., Mertes, S., Acker, K., Auel, R., Wieprecht, W., Möller, D., Collet Jr., J.L., Chang, H., Galgon, D., Chemnitzer, R., Rüd, C., Junek, R., Wiedensohler, W., Herrmann, H.: Schmücke hill cap cloud and valley stations aerosol characterisation during FEBUKO (I): Particle size distribution, mass, and main components. Atmos. Environ. 39, 4291–4303 (2005)CrossRefGoogle Scholar
  11. Brüggemann, E., Gerwig, H., Gnauk, T., Müller, K., Herrmann, H.: Influence of seasons, air mass origin and day of the week on size-segregated chemical composition of aerosol particles at a kerbsite. Atmos. Environ. 43, 2456–2463 (2009)CrossRefGoogle Scholar
  12. Castro, L.M., Pio, C.A., Harrison, R.M., Schmith, D.J.T.: Carbonaceous aerosol in urban and rural European atmospheres: estimation of secondary organic carbon concentrations. Atmos. Environ. 33, 2771–2781 (1999)CrossRefGoogle Scholar
  13. Chang, M.C., Siautas, C., Kom, S., Gong Jr., H., Linn, W.S.: Reduction of nitrate losses from filter and impactor samplers by means of concentration enrichment. Atmos. Environ. 34, 85–98 (2000)CrossRefGoogle Scholar
  14. Chen, S.-C., Tsai, C.-J., Huang, C.-Y., Chen, H.-D., Chen, S.-J., Lin, C.-C., Tsai, J.-H., Chou, C.C.-K., Candice Lung, S.-C., Lung, C., Huang, W.-R., Roam, G.-D., Wu, W.-Y., Smolik, J., Dzumbova, L.: Chemical mass closure and chemical characteristics of ambient ultrafine particles and other PM fractions. Aerosol Sci. Technol. 44, 713–723 (2010)CrossRefGoogle Scholar
  15. Cincinelli, A., Stefani, A., Costantini, S.S., Lepri, L.: Characterization of n-alkanes and PAH(S) in PM10 samples in Prato (Italy). Ann. Chim. 94, 281–293 (2004)CrossRefGoogle Scholar
  16. Cincinelli, A., Del Bubba, M., Martellini, T., Gambaro, A., Lepri, L.: Gas-particle concentration and distribution of n-alkanes and polycyclic aromatic hydrocarbons in the atmosphere of Prato (Italy). Chemosphere 68, 472–478 (2007)CrossRefGoogle Scholar
  17. Clegg, S.L., Brimblecombe, P., Wexler, A.S.: A thermodynamic model of the system H+ - NH4+ - SO42− - NO3 - H2O at tropospheric temperatures. J. Phys. Chem. A 102, 2155–2171 (1998)CrossRefGoogle Scholar
  18. Dasgupta, P.K., Campbell, S.W., Al-Horr, R.S., Rahmat Ullah, S.M., Li, J., Amalfitano, C., Poor, N.D.: Convention of sea salt aerosol to NaNO3 and the production of HCl: analysis of temporal behaviour of aerosol chloride/nitrate and gaseous HCl/HNO3 concentrations with AIM. Atmos. Environ. 41, 4242–4257 (2007)CrossRefGoogle Scholar
  19. Dejean, S., Raynaud, C., Meybeck, M., Della Massa, J.-P., Simon, V.: Polycyclic aromatic hydrocarbons (PAHs) in atmospheric urban area: monitoring on various types of sites. Environ. Monit. Assess. 148, 27–37 (2009)CrossRefGoogle Scholar
  20. Deshmukh, D.K., Deb, M.K., Mkoma, S.L.: Water soluble ions in PM2.5 and PM1 Aereosols in Durg City, Chhattisgarh, India. Aerosol Air Qual. Res. 11, 696–708 (2011)Google Scholar
  21. Di Filippo, P., Riccardi, C., Pometa, D., Gariazzo, C., Buiarelli, F.: Deasonal abundance of particle-phase organic pollutants in an urban/industrial atmosphere. Water Air Soil Pollut. 211, 231–250 (2010)CrossRefGoogle Scholar
  22. Draxler, R.R., Rolph, G.D.: HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) Model access via NOAA ARL READY Website (http://www.arl.noaa.gov/ready/hysplit4.html). NOAA Air Resources Laboratory, Silver Spring, MD (2003)
  23. El Hadded, I., Marchand, N., Temine-Roussel, B., Wortham, H., Piot, C., Besombes, J.-L., Baduel, C., Voisin, D., Armengaud, A., Jaffrezo, J.-L.: Insights into the secoundary fraction of the organic aerosol in a Mediterranean urban area: Marseille. Atmos. Chem. Phys. 11, 2059–2079 (2011)CrossRefGoogle Scholar
  24. EMEP Transboundary particulate matter in Europe Status report 2010 NILU Reference: O-98134. ISSN 1504–6192 Contributors: Yttri, K.-E., Aas, W., TØrseth, K., Stebel, K., Fahre Vik, A., Fjæraa, A.M., Hirdman, D., Tsyro, S., Simpson, D., Marečková, K., Wankmüller, R., Klimont, Z., Kupiainen, K., Amann, M., Bergström, R., Nemitz, E., Querol, X, Alastuey, A., Pey, J., Gehrig, R.: http://www.nilu.no/projects/ccc/reports/emep4-2010.pdf
  25. EMEP: Particulate Matter Assessment Report. Convention on Long-range Transboundary Air Pollution. EMEP/CCC-Report 8/2007. In: Aas, W., Bruckmann, P., Derwent, R., Poisson, N., Putaud, J.-P., Rouil, L., Vidic, S., Yttri, K. E. (eds.) (http://www.nilu.no/projects/ccc/reports/cccr8-2007.pdf) (2007)
  26. EMEP: Transboundary particulate matter in Europe Status report 2009 NILU Reference: O-98134. ISSN 1504–6192 Contributors: Yttri, K.-E., Aas, W., TØrseth, K., Stebel, K., Tsyro, S., Simpson, D., Merckova, K.,Wankmüller, R., Zbigniew, K., Bergström, R., Denier van der Gon, H. Holzer-Popp, T., Schroedter-Homscheidt, M. http://www.nilu.no/projects/ccc/reports/emep4-2009.pdf
  27. Engelhardt, G.J., Hildebrandt, L., Kostenidou, E., Mihalopoulos, N., Donahue, N.M., Pandis, S.N.: Water content of aged aerosol. Atmos. Chem. Phys. 11, 911–920 (2011)CrossRefGoogle Scholar
  28. Ervens, B., George, C., Williams, J.E., Buxton, G.V., Salmon, G.A., Bydder, M., Wilkinson, F., Dentener, F., Mirabel, P., Wolke, R., Herrmann, H.: CAPRAM 2.4 (MODAC mechanism): An extended and condensed tropospheric aqueous phase mechanism and its application. J. Geophys. Res. 108D (2003). doi: 10.1029/2002JD002202
  29. Fabbri, D., Torri, C., Simoneit, B.R.T., Marynowski, L., Rushdi, A.I., Fabiańska, M.L.: Levoglucosan and other cellulose and lignin markers in emissions from burning of Miocene lignites. Atmos. Environ. 43, 2286–2295 (2009)CrossRefGoogle Scholar
  30. Feichter, J., Schurath, U., Zellner, R.: Luftchemie und Klima. Chem. Unserer Zeit 41, 138–150 (2007)CrossRefGoogle Scholar
  31. Franck, U., Odeh, S., Wiedensohler, A., Wehner, B., Herbarth, O.: The effect of particle size on cardiovascular disorders—The smaller the worse. Sci. Total. Environ. 409, 4217–4221 (2011)CrossRefGoogle Scholar
  32. Gans, O., Scharf, S., Seif, P.: PAH in der Umwelt, Report R-153, Federal Environment Agency— Austria, Wien, ISBN 3-85457-461-4 (1999) (http://www.umweltbundesamt.at/fileadmin/site/publikationen/R153z.pdf)
  33. Gelencsér, A., Barcza, T., GY, K., Molnár, Á., Hlavay, J., Mészáros, E.: Distribution of n-alkanes and PAHs in atmospheric aerosols. Atmos. Res. 46, 223–231 (1998)CrossRefGoogle Scholar
  34. Gietl, J.K., Klemm, O.: Source identification of size-segregated aerosol in Muenster, Germany, by factor analysis. Aerosol Sci. Technol. 43, 828–837 (2009)CrossRefGoogle Scholar
  35. Gietl, J.K., Tritscher, T., Klemm, O.: Size-segregated analysis of PM10 at two sites, urban and rural, in Münster (Germany) using five-stage Berner type impactors. Atmos. Environ. 42, 5721–5727 (2008)CrossRefGoogle Scholar
  36. Gnauk, T., Brüggemann, E., Müller, K., Chemnitzer, R., Rüd, C., Galgon, D., Wiedensohler, A., Acher, K., Auel, R., Wieprecht, W., Möller, D., Jaeschke, W., Herrmann, H.: Aerosol characterisation at the FEBUKO upwind station Goldlauter (i): particle mass, main ionic components. OCEC and mass closure. Atmos. Environ. 39, 4209–4218 (2005)CrossRefGoogle Scholar
  37. Gogou, A., Stratigakis, N., Kanakidou, M., Stephanou, E.G.: Organic aerosols in Eastern Mediterranean components source reconciliation by using molecular markers and atmospheric back trajectories. Org. Geochem. 25, 79–96 (1996)CrossRefGoogle Scholar
  38. Gonçalves, C., Alves, C., Evtyugina, M., Mirante, F., Pio, C., Caseiro, A., Schmidl, C., Bauer, H., Carvalho, F.: Characterisation of PM10 emissions from wood stove combustion of common woods grown in Portugal. Atmos. Environ. 44, 4474–4480 (2010)CrossRefGoogle Scholar
  39. Grima, R., Micaleff, R., Colls, J.J.: External contribution to urban air pollution. Environ. Monit. Assess. 73, 291–314 (2002)CrossRefGoogle Scholar
  40. Guo, Z.G., Sheng, L.F., Feng, J.L., Fang, M.: Seasonal variation of solvent extractable organic compounds in the aerosol in Qingdao, China. Atmos. Environ. 37, 1825–1834 (2003)CrossRefGoogle Scholar
  41. Hamed, A., Birmili, W., Joutsensaari, J., Mikkonen, S., Asmi, A., Wehner, B., Spindler, G., Jaatinen, A., Wiedensohler, A., Korhonen, H., Lehtinen, K.E.J., Laaksonen, A.: Changes in the production rate of secondary aerosol particles in Central Europe in view of decreasing SO2 emissions between 1996 and 2006. Atmos. Chem. Phys. 10, 1071–1091 (2010)CrossRefGoogle Scholar
  42. Harrison, R.M., Yin, J.: Chemical speciation of PM2.5 particles at urban background and rural sites in the UK atmosphere. J. Environ. Monit. 12, 1404–1414 (2010)CrossRefGoogle Scholar
  43. He, J., Zielinska, B., Balusubramanian, R.: Composition of semi-volatile organic compounds in the urban atmosphere of Singapore: influence of biomass burning. Atmos. Chem. Phys. 10, 11401–11413 (2010)CrossRefGoogle Scholar
  44. Herrera, J., Rojas, J.F., Rodríguez, S., García, R.: Sulfate, nitrate and chloride in PM10 in the city of San José, Costa Rica: 2004–2006. Atmosfera 23, 83–94 (2010)Google Scholar
  45. Herrmann, H.: Kinetics of aqueous phase reactions relevant for atmospheric chemistry. Chem. Rev. 103, 4691–4716 (2003)CrossRefGoogle Scholar
  46. Herrmann, H., Brüggemann, E., Franck, U., Gnauk, T., Löschau, G., Müller, K., Plewka, A., Spindler, G.: A source study of PM in Saxony by size-segregated characterisation. J. Atmos. Chem. 55, 103–130 (2006)CrossRefGoogle Scholar
  47. Hildemann, L.M., Markowski, G.R., Cass, G.R.: Chemical composition of emission from urban sources of fine organic aerosol. Environ. Sci. Technol. 25, 744–759 (1991)CrossRefGoogle Scholar
  48. Hoek, G., Brunekreef, B., Goldbohm, S., Fischer, P., van den Brandt, P.A.: Association between mortality and indicators of traffic-related air pollution in the Netherlands: a cohort study. Lancet 360, 1203–1209 (2002)CrossRefGoogle Scholar
  49. Iinuma, Y., Brüggemann, E., Gnauk, T., Müller, K., Andreae, M.O., Helas, G., Parmar, R., Herrmann, H.: Source characterization of biomass burning particles: the combustion of selected European conifers, African hardwood, savanna grass, and German and Indonesian peat. J. Geophys. Res. 112D (2007). doi: 10.1029/2006JD007120
  50. Iinuma, Y., Böge, O., Gräfe, R., Herrmann, H.: Methyl-nitrocatechols: atmospheric tracer compounds for biomass burning secondary organic aerosols. Environ. Sci. Technol. 44, 8453–8459 (2010)CrossRefGoogle Scholar
  51. Jaatinen, A., Hamed, A., Joutsensaari, J., Mikkonen, S., Birmili, W., Wehner, B., Spindler, G., Wiedensohler, A., Decesari, S., Mircea, M., Faccini, M.C., Junninen, H., Kulmala, M., Lehtinen, K.E.J., Laaksonen, A.: A comparison of new particle formation events in the boundary layer at three different sites in Europe. Boreal Environ. Res. 14, 481–498 (2009)Google Scholar
  52. Jacob, D.J., Winner, D.A.: Effect of chlimate change on air quality. Atmos. Environ. 43, 51–63 (2009)CrossRefGoogle Scholar
  53. Jaenicke, R.: Über die Dynamik atmosphärischer Aitkenteilchen. Ber. Bunsenges. Phys. Chem. 82, 1198–1202 (1978)Google Scholar
  54. Jaenicke, R.: Abundance of cellular material and proteins in the atmosphere. Science 308, 73 (2005)CrossRefGoogle Scholar
  55. Jickells, T.D., An, Z.S., Anderson, K.K., Baker, A.R., Bergametti, G., Brooks, N., Cao, J.J., Boyd, P.W., Duce, R.A., Hunter, K.A., Kawahata, H., Kubilay, N., IaRoche, J., Liss, P.S., Mahowald, N., Prospero, J.M., Ridgwell, A.J., Tehen, I., Torres, R.: Global iron connection between desert dust, ocean biogeochemistry, and climate. Science 308, 67–71 (2005)CrossRefGoogle Scholar
  56. Jung, K.H., Yan, B., Chillrud, S.N., Perera, F.P., Whyatt, R., Camann, D., Kinney, P.L., Miller, R.L.: Assessment of benzo(a)pyrene-equivalent carcinogenicity and mutagenicity of residential indoor versus outdoor polycyclic aromatic hydrocarbons exposing young children in New York City. Int. J. Environ. Res. Public Health 7, 1889–1900 (2010)CrossRefGoogle Scholar
  57. Kappos, A.D., Bruckmann, P., Eikmamm, T., Engler, N., Heinrich, U., Höppe, P., Koch, E., Krause, G.H.M., Kreyling, W.G., Rauchfuss, K., Rombout, P., Schulz-Klemp, V., Thiel, W.R., Wichmann, H.-E.: Health effects of particles in ambient air. Int. J. Hyg. Environ. Health 207, 399–407 (2004)CrossRefGoogle Scholar
  58. Katzman, T.L., Rutter, A.P., Schauer, J.J., Lough, G.C., Kolb, C.J., Klooster, S.V.: PM2.5 and PM10–2.5 compositions during wintertime episodes of elevated PM concentrations across the Midwestern USA. Aerosol Air Qual. Res. 10, 140–153 (2010)Google Scholar
  59. Klejnowski, K., Kozielska, B., Krasa, A., Rogula-Kozłowska, W.: Polyciclic aromatic hydrocarbons in PM1, PM2.5, PM10 and TSP in the upper Silesian Agglomeration, Poland. Arch. Environ. Protect. 36, 65–72 (2010)Google Scholar
  60. Kubatova, A., Vermeylen, R., Claeys, M., Cafmeyer, J., Meanhaut, W.: Organic compounds in urban aerosols from Gent, Belgium: characterization, sources, and seasonal differences. J. Geophys. Res. 107D (2002). doi: 10.1029/200IJD000556
  61. Lee, W.M.G., Huang, M.L.: Diurnal variation of OC in a severely polluted atmosphere. J. Environ. Sci. Technol. 28, 1565–1579 (1993)Google Scholar
  62. Li, W.F., Peng, Y., Bai, Z.P.: Distribution and sources of n-alkanes in PM2.5 at urban, industrial and coastal sites in Tianjin, China. J. Environ. Sci. 22, 1551–1557 (2010)CrossRefGoogle Scholar
  63. Lianou, M., Chalbot, M.-C., Kavouras, I.G., Kotronarou, A., Karakatsani, A., Analytis, A., Katsouyanni, K., Pruustinen, A., Hameri, K., Vallius, M., Pekkanen, J., Meddings, C., Harrison, R.M., Ayres, J.G., ten Brink, H., Kos, G., Meliefste, K., de Hartog, J., Hoek, G.: Temoral variations of atmospheric aerosol in four European urban areas. Environ. Sci. Pollut. Res. (2011). doi: 10.1007/s11356-011-0471-y
  64. Lin, J.J., Lee, L.-C.: Characterization of n-alkanes in urban submicron aerosol particles (PM1). Atmos. Environ. 38, 2983–2991 (2004)CrossRefGoogle Scholar
  65. Lin, C.-C., Chen, S.-J., Huang, K.-L., Lee, W.-J., Lin, W.-Y., Liao, C.-J., Chaung, H.-C., Chiu, C.-H.: Water-soluble ions in nano/ultrafine/fine/coarse particles collected near a busy road and at a rural site. Environ. Pollut. 145, 562–570 (2007)CrossRefGoogle Scholar
  66. Maenhaut, W., Raes, N., Chi, X., Cafmeyer, J., Wang, W., Salma, I.: Chemical composition and mass closure for fine and coarse aerosols at a kerbside in Budapest, Hungary, in spring 2002. X-Ray Spectrom. 34, 290–296 (2006)CrossRefGoogle Scholar
  67. Marple, V.A.: History of Impactors—The first 110 years. Aerosol Sci. Technol. 38, 247–297 (2004)CrossRefGoogle Scholar
  68. May, K.R.: The cascade impactor: an instrument for sampling coarse aerosols. J. Sci. Instrum. 22, 187–195 (1945)CrossRefGoogle Scholar
  69. McInnes, L.M., Quinn, P.K., Covert, D.S., Anderon, T.L.: Gravimetric analysis, ionic components, and associated water mass of the marine aerosol. Atmos. Environ. 30, 869–884 (1996)CrossRefGoogle Scholar
  70. Metzger, S., Mihalopoulos, N., Lelieveld, J.: Importance of mineral cations and organics in gas-aerosol partitioning of reactive nitrogen compounds: case study based on MINOS results. Atmos. Chem. Phys. 6, 2549–2567 (2006)CrossRefGoogle Scholar
  71. Mikkonen, S., Korhonen, H., Romakkaniemi, S., Smith, J.N., Joutsensaari, J., Lehtinen, K.E.J., Hamed, A., Breider, T.J., Birmili, W., Spindler, G., Plass-Duelmer, C., Facchini, M.A., Laaksonen, A.: Meteorological and trace gas factors affecting the number concentration of atmospheric Aitken (Dp = 50 nm) particles in the continental boundary layer: parameterization using a multivariate mixed effects model. Geosci. Model Dev. 4, 1–13 (2011)CrossRefGoogle Scholar
  72. Mohanraj, R., Solaraj, G., Dhanakumar, S.: Fine particulate phase PAHs in ambient atmosphere of Chennai metropolitan city, India. Environ. Sci. Pollut. Res. 18, 764–771 (2011)CrossRefGoogle Scholar
  73. Mohr, C., DeCarlo, P.F., Heringa, M.F., Chirico, R., Slowik, J.G., Richter, R., Reche, C., Alastuey, A., Querol, X., Seco, R., Peñuelas, J., Jiménez, J.L., Crippa, M., Zimmermann, R., Baltensperger, U., Prévôt, A.S.H.: Identification and quantification of organic aerosol from cooking and other sources in Barcelona using aerosol mass spectrometer data. Atmos. Chem. Phys. Discuss. 11, 27383–27420 (2011)CrossRefGoogle Scholar
  74. Müller, K., Lehmann, S., van Pinxteren, D., Gnauk, T., Niedermeier, N., Wiedensohler, A., Herrmann, H.: Particle characterization at the Cape Verde atmospheric observatory during the 2007 RHaMBLe intensive. Atmos. Chem. Phys. 10, 2709–2721 (2010a)CrossRefGoogle Scholar
  75. Müller, K., Birmili, W., Brüggemann, E., Gnauk, T., Iinuma, Y., Poulain, L., Weinhold, K., Löschau, G., Herrmann, H.: Partikuläre Holzheizungsemissionen in einem sächsischen Kurort. Gefahrstoffe—Reinhaltung der Luft 70, 493–499 (2010b)Google Scholar
  76. Neusüß, C., Pelzing, M., Plewka, A., Herrmann, H.: A new analytical approach for size-resolved speciation of organic compounds in atmospheric aerosol particles: methods and first results. J. Geophys. Res. 105(D4), 4513–4527 (2000a)CrossRefGoogle Scholar
  77. Neusüß, C., Weise, D., Birmili, W., Wex, H., Wiedensohler, A., Covert, D.S.: Size-segregated chemical, gravimetric, and number distribution-derived mass closure of the aerosol in Sagres, Portugal during ACE-2. Tellus 52b, 169–184 (2000b)Google Scholar
  78. Neusüß, C., Wex, H., Birmilli, W., Wiedensohler, A., Koziar, C., Busch, B., Brüggemann, E., Gnauk, T., Ebert, M., Covert, D.S.: Characterization and parameterization of atmospheric particle number, mass-, and chemical-size distribution in central Europe during LACE 98 and MINT. J. Geophys. Res. 107(D21), 8127–8139 (2002)CrossRefGoogle Scholar
  79. Pastuszka, J.S., Wawroś, A., Talik, E., Paw, U.: Optical and chemical characteristics of the atmospheric aerosol in four towns in southern Poland. Sci. Total. Environ. 309, 237–251 (2003)CrossRefGoogle Scholar
  80. Peter, J.R., Siems, S.T., Jensen, J.B., Gras, J.L., Ishizaka, Y., Hacker, J.M.: Airborne observation of the effect of a cold front on the aerosol particle size distribution and new particle formation. Q. J. R. Meteorol. Soc. 136B, 944–961 (2010)CrossRefGoogle Scholar
  81. Peters, A.: Air quality and cardiovascular health. Smoke and pollution matter. Circulation 120, 924–927 (2009)CrossRefGoogle Scholar
  82. Pietrogrande, M.C., Mercuriali, M., Perrone, M.G., Ferrero, L., Sangiorgi, G., Bolzacchini, E.: Distribution of n-alkanes in the Northern Italy aerosols: data handling of GC-MS signals for homologous series characterization. Environ. Sci. Technol. 44, 4232–4240 (2010)CrossRefGoogle Scholar
  83. Pietrogrande, M.C., Abbaszada, G., Schnelle-Kreis, J., Bacco, D., Mercuriali, M., Zimmermann, R.: Seasonal variation and source estimation of organic compounds in urban aerosol of Augsburg, Germany. Environ. Pollut. 159, 1861–1868 (2011)CrossRefGoogle Scholar
  84. Pio, C.A., Lopes, D.A.: Chlorine loss from marine aerosol in a coastal atmosphere. J. Geophys. Res. 103(D19), 25263–25272 (1998)CrossRefGoogle Scholar
  85. Pio, C.A., Alves, C., Duarte, A.: Identification, abundance and origin of atmospheric particulate matter in a Portuguese rural area. Atmos. Environ. 35, 1365–1375 (2001)CrossRefGoogle Scholar
  86. Plessow, K., Spindler, G., Zimmermann, F., Matschullat, J.: Seasonal variations and interactions of N-containing gases and particles over a coniferous forest, Saxony, Germany. Atmos. Environ. 39, 6995–7007 (2005)CrossRefGoogle Scholar
  87. Plewka, A., Gnauk, T., Brüggemann, E., Neusüß, C., Herrmann, H.: Size-resolved aerosol characterisation for a polluted episode at the IfT research station Melpitz in Autumn 1997. J. Atmos. Chem. 48, 131–156 (2004)CrossRefGoogle Scholar
  88. Pope III, C.A., Burnett, R.T., Thurston, G.D., Thun, M.J., Calle, E.E., Krewski, D., Godleski, J.J.: Cardiovascular mortality and long-term exposure to particulate air pollution: epidemiological evidence of general pathopysiological pathways of disease. Circulation 109, 71–77 (2004)CrossRefGoogle Scholar
  89. Pope III, C.A., Burnett, R.T., Krewski, D., Jerrett, M., Shi, Y., Calle, E.E., Thun, M.J.: Cardiovascular mortality and exposure to airborne fine particulate matter and cigarette smoke: shape of the exposure-response relationship. Circulation 120, 941–948 (2009)CrossRefGoogle Scholar
  90. Prahl, F.G., Crecellus, E., Carpenter, R.: Polycyclic aromatic hydrocarbons in Washington coastal sediments: an evaluation of atmospheric and riverine routes of introduction. Environ. Sci. Technol. 18, 687–693 (1984)CrossRefGoogle Scholar
  91. Putaud, J.-P., Raes, F., Van Dingenen, R., Brüggemann, E., Facchini, M.-C., Decesari, S., Fuzzi, S., Gehrig, R., Hüglin, C., Laj, P., Lorbeer, G., Maenhaut, W., Mihalopoulos, N., Müller, K., Querol, X., Rodriguez, S., Schneider, J., Spindler, G., ten Brink, H., TØrseth, K., Wiedensohler, A.: A European aerosol phenomenology—2: chemical characteristics of particulate matter at kerbside, urban, rural and background sites in Europe. Atmos. Environ. 38, 2579–2595 (2004)CrossRefGoogle Scholar
  92. Qiu, G., Pattey, E.: Estimating PM10 emissions from spring wheat harvest using an atmospheric tracer technique. Atmos. Environ. 42, 8315–8321 (2008)CrossRefGoogle Scholar
  93. Ramanathan, V., Carmichael, G.: Global and regional climate changes due to black carbon. Nat. Geosci. 1, 221–227 (2008)CrossRefGoogle Scholar
  94. Ravishankara, A.R.: Heterogeneous and multiphase chemistry in the troposphere. Science 276, 1058–1065 (1997)CrossRefGoogle Scholar
  95. Rogge, W.F., Hildemann, L.M., Mazurek, M.A., Cass, G.R., Simoneit, B.R.T.: Sources of fine organic aerosol. 4. Particulate abrasion products from leaf surfaces of urban plants. Environ. Sci. Technol. 27, 2700–2711 (1993a)CrossRefGoogle Scholar
  96. Rogge, W.F., Hildemann, L.M., Mazurek, M.A., Cass, G.R., Simoneit, B.R.T.: Sources of fine organic aerosol. 3. Road dust, tire debris, and organometallic brake lining dust—Roads as sources and sinks. Environ. Sci. Technol. 27, 1892–1904 (1993b)CrossRefGoogle Scholar
  97. Rückerl, R., Schneider, A., Breitner, S., Cyrys, J., Peters, A.: Health effects of particulate air pollution: a review of epidemiological evidence. Inhal. Toxicol. 23, 555–592 (2011)CrossRefGoogle Scholar
  98. Satsumabayashi, H., Kurita, H., Yokouchi, Y., Ueda, H.: Photochemical formation of particulate dicarboxylic acids under long-range transport in central Japan. Atmos. Environ. 24, 1443–1450 (1990)CrossRefGoogle Scholar
  99. Schaaf, W., Weisdorfer, M., Hüttl, R.F.: Soil solution chemistry and element budgets of tree scots pine ecosystems along a deposition gradient in north-eastern Germany. Water Air Soil Pollut. 85, 1197–1202 (1995)CrossRefGoogle Scholar
  100. Schauer, J.J., Cass, G.R.: Source apportionment of wintertime gas-phase and particle-phase air pollution using organic compounds as tracers. Environ. Sci. Technol. 34, 1821–1832 (2000)CrossRefGoogle Scholar
  101. Schmid, H., Laskus, L., Abraham, H.J., Baltensperger, U., Lavanchy, V., Bizjak, M., Burba, P., Cachier, H., Crow, D., Chow, J., Gnauk, Th, Even, A., ten Brink, H.M., Giesen, K.-P., Hitzenberger, R., Hueglin, C., Maenhaut, W., Pio, C., Carvalho, A., Putaud, J.-P., Toom-Sauntry, D., Puxbaum, H.: Results of the “carbon conference” international aerosol carbon round robin test stage I. Atmos. Environ. 35, 2111–2121 (2001)CrossRefGoogle Scholar
  102. Seinfeld, J.H., Pandis, S.N.: Atmospheric chemistry and physics. In: John Wiley & Sons, I. (ed.) 1326, pp. (1998)Google Scholar
  103. Sharma, M., Kishore, S., Tripathi, S.N., Behera, S.N.: Role of atmospheric ammonia in the formation of inorganic secondary particulate matter: a study at Kanpur, India. J. Atmos. Chem. 58, 1–17 (2007)CrossRefGoogle Scholar
  104. Simoneit, B.R.T.: Organic matter of the troposphere-III. Characterization and source of petroleum and pyrogenic residues in aerosols over the Western United States. Atmos. Environ. 18, 51–67 (1984)CrossRefGoogle Scholar
  105. Simoneit, B.R.T.: A review of biomarker compounds as source indicators and tracers for air pollution. ESPR-Environ. Sci. Pollut. Res. 6, 159–169 (1999)CrossRefGoogle Scholar
  106. Simoneit, B.R.T., Sheng, G., Chen, X., Fu, J., Zhang, J., Xu, Y.: Molecular marker study of extractable organic matter in aerosols from urban areas of China. Atmos. Environ. 25A, 2111–2129 (1991)Google Scholar
  107. Solomon, P.A., Sioutas, C.: Continuous and semicontinous monitoring techniques for particulate matter mass and chemical components: a synthesis of findings from EPA’s particulate matter supersite program and related studies. J. Air Waste Manag. 58, 164–195 (2008)CrossRefGoogle Scholar
  108. Spindler, G., Teichmann, U., Sutton, M.A.: Ammonia dry deposition over grassland—micrometeorological flux-gradient measurements and bi-directional flux calculations using an Inferential Modell. Q. J. R. Meteorol. Soc. 127, 795–814 (2001)CrossRefGoogle Scholar
  109. Spindler, G., Müller, K., Brüggemann, E., Gnauk, T., Herrmann, H.: Long-term-size-segregated characterization of PM10, PM2.5 and PM1 at the IfT reseach station Melpitz downwind of Leipzig (Germany). Atmos. Environ. 38, 5333–5347 (2004)CrossRefGoogle Scholar
  110. Spindler, G., Brüggemann, E., Gnauk, T., Grüner, A., Müller, K., Herrmann, H.: A four-year size-segregated characterization study of particles PM10, PM2.5 and PM1 depending on air mass origin at Melpitz. Atmos. Environ. 44, 164–173 (2010)CrossRefGoogle Scholar
  111. Standley, L.J., Simoneit, B.R.T.: Characterization of extractable plant wax, resin, and thermally matured components in smoke particles from prescribed burns. Environ. Sci. Technol. 21, 163–169 (1987)CrossRefGoogle Scholar
  112. Stone, E., Schauer, J., Quraishi, T., Mahmood, A.: Chemical characterization and source apportionment of fine and coarse particulate matter in Lahore, Pakistan. Atmos. Environ. 44, 1062–1070 (2010)CrossRefGoogle Scholar
  113. ten Brink, H.W., Meanhaut, W., Hitzenberger, R., Gnauk, T., Spindler, G., Even, A., Chi, X.G., Bauer, H., Puxbaum, H., Putaud, J.P., Tursic, J., Berner, A.: INTERCOMP2000: the comparability of methods in use in Europe for measuring the carbon content of aerosol. Atmos. Environ. 38, 6507–6519 (2004)CrossRefGoogle Scholar
  114. Tsapakis, M., Lagoudaki, E., Stephanou, E.G., Kavouras, I.G., Koutrakis, P., Oyola, P., Baer, D.V.: The composition and sources of PM2.5 organic aerosol in two urban areas of Chile. Atmos. Environ. 36, 3851–3863 (2002)CrossRefGoogle Scholar
  115. Turpin, B.J., Huntzicker, J.J.: Identification of secoundary organic aerosol episodes and quantification of primary and secondary organic aerosol concentration during SCAQS. Atmos. Environ. 23, 3527–3544 (1995)CrossRefGoogle Scholar
  116. Turpin, B.J., Lim, H.J.: Species contributions to PM2.5 mass concentrations: revisiting common assumptions for estimating organic mass. Aerosol Sci. Technol. 35, 602–610 (2001)Google Scholar
  117. Turpin, B.J., Saxena, P., Andrews, E.: Measuring and simulating particulate organics in the atmosphere: problems and prospects. Atmos. Environ. 34, 2983–3013 (2000)CrossRefGoogle Scholar
  118. Turpin, B.J., Huntzicker, J.J., Larson, S.M., Cass, G.R.: Los Angeles summer midday particulate carbon: primary and secondary aerosol. Environ. Sci. Technol. 25, 1788–1793 (1991)CrossRefGoogle Scholar
  119. van Pinxteren, D., Plewka, A., Hofmann, D., Müller, K., Kramberger, H., Svrcina, B., Bächmann, K., Jaeschke, W., Mertes, S., Collet Jr., J.L., Herrmann, H.: Schmücke hill cap cloud and valley stations aerosol characterisation during FEBUKO (II): Organic compounds. Atmos. Environ. 39, 4305–4320 (2005)CrossRefGoogle Scholar
  120. van Pinxteren, D., Brüggemann, E., Gnauk, T., Iinuma, Y., Müller, K., Nowak, A., Achtert, P., Wiedensohler, A., Herrmann, H.: Size- and time-resolved chemical particle characterization during CAREBeijing-2006: different pollution regimes and diurnal profiles. J. Geophys. Res. 114D (2009). doi: 10.1029/2008JD010890
  121. Vecchi, R., Marcazzan, G., Valli, G.: A study on nighttime-daytime PM10 concentration and elemental composition in relation to atmospheric dispersion in the urban area of Milan (Italy). Atmos. Environ. 41, 2136–2144 (2007)CrossRefGoogle Scholar
  122. Viidanoja, J., Sillanpää, M., Laakia, J., Kerminen, V.M., Hillamo, R., Aarnio, P., Koskentalo, T.: Organic and black carbon in PM2.5 and PM10: 1 year of data from an urban site in Helsinki, Finland. Atmos. Environ. 26, 3183–3193 (2002)CrossRefGoogle Scholar
  123. Wang, W., Tao, S., Wang, W., Shen, G., Zhao, J., Lam, K.-C.: Airborne particulates and policyclic aromatic hydrocarbons (PAHs) in ambient air in Donghe, Northern China. J. Environ. Sci. Health Part A 44, 854–860 (2009)CrossRefGoogle Scholar
  124. Warneck, P.: Chemical-Reactions in Clouds. Fresen J Anal Chem 340, 585–590 (1991)CrossRefGoogle Scholar
  125. Wexler, A.S., Clegg, S.L.: Atmospheric aerosol models for systems including the ions H+, NH4+, Na+, SO42−, NO3, Cl, Br and H2O. J. Geophys. Res. 107D (2002). doi: 10.1029/2001JD000451
  126. WHO: Air quality guidlines for Europe (WHO Regional Publicatiions, European Series; Nr. 23). WHO Regional Office Bureau, Copenhagen (1987)Google Scholar
  127. Wieprecht, W., Acker, K., Müller, K., Spindler, G., Brüggemann, E., Meanhaut, W., Chi, X., Hitzenberger, R., Bauer, H., ten Brink, H.M.: INTERCOMP2000: ionic constitution and comparison of filter and impactor. Atmos. Environ. 38, 6477–6486 (2004)CrossRefGoogle Scholar
  128. Williams, J., de Reus, M., Krejci, R., Fischer, H., Ström, J.: Application of the variability-size relationship to tropospheric aerosol studies: estimating aerosol lifetimes and ages. Atmos Chem Phys 2, 133–145 (2002)CrossRefGoogle Scholar
  129. Wise, S.A., Benner, B.A., Byrd, G.D., Chesler, S.N., Rebbert, R.E., Schantz, M.M.: Determination of polycyclic aromatic hydrocarbons in a coal tar standard reference material. Anal. Chem. 60, 887–894 (1988)CrossRefGoogle Scholar
  130. Xie, M., Wang, G., Hu, S., Han, Q., Xu, Y., Gao, Z.: Alpihatic alkanes and polyciclic aromatic hydrocarbons in atmospheric PM10 aerosols from Baoji, China: implication for coal burning. Atmos. Res. 93, 840–848 (2009)CrossRefGoogle Scholar
  131. Young, L.H., Wang, C.S.: Characterization of n-alkanes in PM2.5 of the Taipei aerosol. Atmos Environ 36, 477–482 (2002)CrossRefGoogle Scholar
  132. Yue, Z.W., Fraser, M.P.: Characterization of nonpolar organic fine particulate matter in Houston. Texas. Aerosol Sci. Tech. 38, 60–67 (2004)CrossRefGoogle Scholar
  133. Zheng, M., Cass, G.R., Schauer, J.J., Edgerton, E.S.: Source apportionment of PM2.5 in the southern United States using solvent-extractable organic compounds as tracer. Environ. Sci. Technol. 36, 2361–2371 (2002)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • G. Spindler
    • 1
  • T. Gnauk
    • 1
  • A. Grüner
    • 1
  • Y. Iinuma
    • 1
  • K. Müller
    • 1
  • S. Scheinhardt
    • 1
  • H. Herrmann
    • 1
  1. 1.Leibniz-Institut für Troposphärenforschung e.V. (IfT)LeipzigGermany

Personalised recommendations