Advertisement

Journal of Atmospheric Chemistry

, Volume 67, Issue 2–3, pp 87–140 | Cite as

Seasonal characteristics of tropical marine boundary layer air measured at the Cape Verde Atmospheric Observatory

  • L. J. CarpenterEmail author
  • Z. L. Fleming
  • K. A. Read
  • J. D. Lee
  • S. J. Moller
  • J. R. Hopkins
  • R. M. Purvis
  • A. C. Lewis
  • K. Müller
  • B. Heinold
  • H. Herrmann
  • K. Wadinga Fomba
  • D. van Pinxteren
  • C. Müller
  • I. Tegen
  • A. Wiedensohler
  • T. Müller
  • N. Niedermeier
  • E. P. Achterberg
  • M. D. Patey
  • E. A. Kozlova
  • M. Heimann
  • D. E. Heard
  • J. M. C. Plane
  • A. Mahajan
  • H. Oetjen
  • T. Ingham
  • D. Stone
  • L. K. Whalley
  • M. J. Evans
  • M. J. Pilling
  • R. J. Leigh
  • P. S. Monks
  • A. Karunaharan
  • S. Vaughan
  • S. R. Arnold
  • J. Tschritter
  • D. Pöhler
  • U. Frieß
  • R. Holla
  • L. M. Mendes
  • H. Lopez
  • B. Faria
  • A. J. Manning
  • D. W. R. Wallace
Article

Abstract

Observations of the tropical atmosphere are fundamental to the understanding of global changes in air quality, atmospheric oxidation capacity and climate, yet the tropics are under-populated with long-term measurements. The first three years (October 2006–September 2009) of meteorological, trace gas and particulate data from the global WMO/Global Atmospheric Watch (GAW) Cape Verde Atmospheric Observatory Humberto Duarte Fonseca (CVAO; 16° 51′ N, 24° 52′ W) are presented, along with a characterisation of the origin and pathways of air masses arriving at the station using the NAME dispersion model and simulations of dust deposition using the COSMO-MUSCAT dust model. The observations show a strong influence from Saharan dust in winter with a maximum in super-micron aerosol and particulate iron and aluminium. The dust model results match the magnitude and daily variations of dust events, but in the region of the CVAO underestimate the measured aerosol optical thickness (AOT) because of contributions from other aerosol. The NAME model also captured the dust events, giving confidence in its ability to correctly identify air mass origins and pathways in this region. Dissolution experiments on collected dust samples showed a strong correlation between soluble Fe and Al and measured solubilities were lower at high atmospheric dust concentrations. Fine mode aerosol at the CVAO contains a significant fraction of non-sea salt components including dicarboxylic acids, methanesulfonic acid and aliphatic amines, all believed to be of oceanic origin. A marine influence is also apparent in the year-round presence of iodine and bromine monoxide (IO and BrO), with IO suggested to be confined mainly to the surface few hundred metres but BrO well mixed in the boundary layer. Enhanced CO2 and CH4 and depleted oxygen concentrations are markers for air-sea exchange over the nearby northwest African coastal upwelling area. Long-range transport results in generally higher levels of O3 and anthropogenic non-methane hydrocarbons (NMHC) in air originating from North America. Ozone/CO ratios were highest (up to 0.42) in relatively fresh European air masses. In air heavily influenced by Saharan dust the O3/CO ratio was as low as 0.13, possibly indicating O3 uptake to dust. Nitrogen oxides (NOx and NOy) show generally higher concentrations in winter when air mass origins are predominantly from Africa. High photochemical activity at the site is shown by maximum spring/summer concentrations of OH and HO2 of 9 × 106 molecule cm−3 and 6 × 108 molecule cm−3, respectively. After the primary photolysis source, the most important controls on the HOx budget in this region are IO and BrO chemistry, the abundance of HCHO, and uptake of HOx to aerosol.

Keywords

Cape Verde Trace gas Saharan dust Halogen chemistry Dispersion model Atlantic Ocean Air-sea exchange 

Notes

Acknowledgements

We would like to thank all the scientists involved in measurements at the Cape Verde Atmospheric Observatory (CVAO) and during the RHaMBLe campaign in 2007 and the SOS campaigns in 2009. We would like to thank NOAA for the ESRL radiosonde data from the island of Sal. We would like to thank R. Leppert, R. Schwalbe and T. Seifert (MPI-BGC) for technical support for the greenhouse gas measurement equipment. We would like to acknowledge Pete Edwards and Andy Goddard from the University of Leeds for their technical support throughout the campaign and the UK Meteorological Office for the use of the Unified Meteorological data and the NAME model. We acknowledge funding from the NERC SOLAS program, the National Centre for Atmospheric Science (NCAS) through FGAM (Facility for Ground based Atmospheric Measurements), the EU specific Support Action TENATSO, and the SOPRAN project of the German Federal Ministry of Education and Research.

References

  1. Albrecht, B.A., Penc, R.S., Schubert, W.H.: An observational study of cloud-topped mixed layers. J Atmos Sci 42(8), 800–822 (1985)CrossRefGoogle Scholar
  2. Arnold, S.R., Spracklen, D.V., Gebhardt, S., Custer, T., Williams, J., Peeken, I., Alvain, S.: Relationships between atmospheric organic compounds and air-mass exposure to marine biology. Environ. Chem. 7(3), 232–241 (2010)CrossRefGoogle Scholar
  3. Ashley, K., Cordell, D., Mavinic, D.: A brief history of phosphorus: From the philosopher’s stone to nutrient recovery and reuse. Chemosphere 84(6), 737–746 (2011)CrossRefGoogle Scholar
  4. Baker, A.R., Jickells, T.D.: Mineral particle size as a control on aerosol iron solubility. Geophys. Res. Lett. 33(17) (2006)Google Scholar
  5. Baker, A.R., Croot, P.L.: Atmospheric and marine controls on aerosol iron solubility in seawater. Mar. Chem. 120(1–4), 4–13 (2010)CrossRefGoogle Scholar
  6. Baron, P.A., Willeke, K.: Aerosol Measurement. In., vol. 2nd Edition. J. Wiley and Sons, (2001)Google Scholar
  7. Barsanti, K.C., McMurry, P.H., Smith, J.N.: The potential contribution of organic salts to new particle growth. Atmos Chem Phys 9(9), 2949–2957 (2009)CrossRefGoogle Scholar
  8. Bauer, S.E., Balkanski, Y., Schulz, M., Hauglustaine, D.A., Dentener, F.: Global modeling of heterogeneous chemistry on mineral aerosol surfaces: Influence on tropospheric ozone chemistry and comparison to observations. J. Geophys. Res. 109, D2 (2004).Google Scholar
  9. Bechara, J., Borbon, A., Jambert, C., Colomb, A., Perros, P.E.: Evidence of the impact of deep convection on reactive Volatile Organic Compounds in the upper tropical troposphere during the AMMA experiment in West Africa. Atmos Chem Phys 10(21), 10321–10334 (2010)CrossRefGoogle Scholar
  10. Behrenfeld, M.J., O’Malley, R.T., Siegel, D.A., McClain, C.R., Sarmiento, J.L., Feldman, G.C., Milligan, A.J., Falkowski, P.G., Letelier, R.M., Boss, E.S.: Climate-driven trends in contemporary ocean productivity. Nature 444(7120), 752–755 (2006)CrossRefGoogle Scholar
  11. Betts, A.K., Bretherton, C.S., Klinker, E.: Relation between mean boundary-layer structure and cloudiness at the R/V Valdivia during ASTEX. J Atmos Sci 52(16), 2752–2762 (1995)CrossRefGoogle Scholar
  12. Bian, H.S., Zender, C.S.: Mineral dust and global tropospheric chemistry: Relative roles of photolysis and heterogeneous uptake. J. Geophys. Res. 108 D21 (2003).Google Scholar
  13. Blaine, T.W., Keeling, R.F., Paplawsky, W.J.: An improved inlet for precisely measuring the atmospheric Ar/N2 ratio. Atmos Chem Phys 6, 1181–1184 (2006)CrossRefGoogle Scholar
  14. Bloss, W.J., Evans, M.J., Lee, J.D., Sommariva, R., Heard, D.E., Pilling, M.J.: The oxidative capacity of the troposphere: Coupling of field measurements of OH and a global chemistry transport model. Faraday Discuss. 130, 425–436 (2005)CrossRefGoogle Scholar
  15. Bridgeman, C.H., Pyle, J.A., Shallcross, D.E.: A three-dimensional model calculation of the ozone depletion potential of 1-bromopropane (1-C3H7Br). J. Geophys. Res.-Atmos. 105(D21), 26493–26502 (2000)CrossRefGoogle Scholar
  16. Buck, C.S., Landing, W.M., Resing, J.A., Lebon, G.T.: Aerosol iron and aluminum solubility in the northwest Pacific Ocean: Results from the 2002 IOC cruise. Geochem. Geophy. Geos. 7, Q04M07 (2006).Google Scholar
  17. Carpenter, L.J., Lewis, A.C., Hopkins, J.R., Read, K.A., Gallagher, M., Longley, I.: Uptake of methanol to the North Atlantic ocean surface. Global Biogeochem. Cycles. 18, (2004).Google Scholar
  18. Chiapello, I., Bergametti, G., Chatenet, B., Bousquet, P., Dulac, F., Santos Soares, E.: Origins of African dust transported over the northeastern tropical Atlantic. J. Geophys. Res. 102(d12), 13701–13709 (1997)CrossRefGoogle Scholar
  19. Chiapello, I., Moulin, C.: TOMS and METEOSAT satellite records of the variability of Saharan dust transport over the Atlantic during the last two decades (1979–1997). Geophys. Res. Lett. 29(8), 4 (2002)CrossRefGoogle Scholar
  20. Commane, R., Floquet, C.F.A., Ingham, T., Stone, D., Evans, M.J., Heard, D.E.: Observations of OH and HO2 radicals over West Africa. Atmos Chem Phys 10(18), 8783–8801 (2010)CrossRefGoogle Scholar
  21. Dall’Osto, M., Harrison, R.M., Highwood, E.J., O’Dowd, C., Ceburnis, D., Querold, X., Achterberge, E.P.: Variation of the mixing state of Saharan dust particles with atmospheric transport. Atmos. Environ. 44(26), 3135–3146 (2010)CrossRefGoogle Scholar
  22. DeCarlo, P., Slowik, J., Worsnop, D.R., Davidovits, P.J.J.: Particle morphology and density characterization by combined mobility and aerodynamic diameter measurements. part 1: Theory. Aerosol Sci. Technol 38, 1185–1205 (2004)CrossRefGoogle Scholar
  23. Dentener, F.J., Carmichael, G.R., Zhang, Y., Lelieveld, J., Crutzen, P.J.: Role of mineral aerosol as a reactive surface in the global atmosphere. J. Geophys. Res. 101, 22869–22890 (1996)CrossRefGoogle Scholar
  24. Deutschmann, T., Beierle, S., Frieß, U., Grzegorski, M., Kern, C., Kritten, L., Pfeilsticker, K., Platt, U., Prados-Roman, C., Pukite, J., Wagner, T., Werner, B.: The Monte Carlo atmospheric radiative tranfer model McArtim: Intruduction and validation of Jacobians and 3D features. J. Quant. Spectrosc. Radiat. Transf. 112, 1119–1137 (2011)CrossRefGoogle Scholar
  25. Duncan, B.N., Martin, R.V., Staudt, A.C., Yevich, R., Logan, J.A.: Interannual and seasonal variability of biomass burning emissions constrained by satellite observations. J. Geophys. Res. 108(D2) (2003)Google Scholar
  26. Evan, A.T., Vimont, D.J., Heidinger, A.K., Kossin, J.P., Bennartz, R.: The Role of Aerosols in the Evolution of Tropical North Atlantic Ocean Temperature Anomalies. Science 324(5928), 778–781 (2009)CrossRefGoogle Scholar
  27. Facchini, M.C., Rinaldi, M., Decesari, S., Carbone, C., Finessi, E., Mircea, M., Fuzzi, S., Ceburnis, D., Flanagan, R., Nilsson, E.D., de Leeuw, G., Martino, M., Woeltjen, J., O’Dowd, C.D.: Primary submicron marine aerosol dominated by insoluble organic colloids and aggregates. Geophys. Res. Lett. 35(17), 5 (2008)CrossRefGoogle Scholar
  28. Farmer, D.K., Wooldridge, P.J., Cohen, R.C.: Application of thermal-dissociation laser induced fluorescence (TD-LIF) to measurement of HNO3, Σalkyl nitrates, Σperoxy nitrates, and NO2 fluxes using eddy covariance. Atmos Chem Phys 6(11), 3471–3486 (2006)CrossRefGoogle Scholar
  29. Fenter, F.F., Caloz, F., Rossi, M.J.: Experimental-evidence for the efficient dry deposition of nitric-acid on calcite. Atmos. Environ. 29(22), 3365–3372 (1995)CrossRefGoogle Scholar
  30. Fleming, Z.L., Monks, P.S., Rickard, A.R., Heard, D.E., Bloss, W.J., Seakins, P.W., Still, T.J., Sommariva, R., Pilling, M.J., Morgan, R., Green, T.J., Brough, N., Mills, G.P., Penkett, S.A., Lewis, A.C., Lee, J.D., Saiz-Lopez, A., Plane, J.M.C.: Peroxy radical chemistry and the control of ozone photochemistry at Mace Head, Ireland during the summer of 2002. Atmos Chem Phys 6, 2193–2214 (2006)CrossRefGoogle Scholar
  31. Foltz, G.R., McPhaden, M.J.: Impact of Saharan dust on tropical North Atlantic SST. J. Climate 21(19), 5048–5060 (2008)CrossRefGoogle Scholar
  32. Formenti, P., Elbert, W., Maenhaut, W., Haywood, J., Andreae, M.O.: Chemical composition of mineral dust aerosol during the Saharan Dust Experiment (SHADE) airborne campaign in the Cape Verde region, September 2000. J. Geophys. Res. Atmos. 108, D18 (2003).Google Scholar
  33. Forster, P., Ramaswamy, V., Artaxo, P., Berntsen, T., Betts, R., Fahey, D.W., Haywood, J., Lean, J., Lowe, D.C., Myhre, G., Nganga, J., Prinn, R., Raga, G., Schulz, M., Van Dorland, R.: Changes in atmospheric constituents and in radiative forcing. In: Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L. (eds.) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge (2007)Google Scholar
  34. Gros, V., Williams, J., Lawrence, M.G., von Kuhlmann, R., van Aardenne, J., Atlas, E., Chuck, A., Edwards, D.P., Stroud, V., Krol, M.: Tracing the origin and ages of interlaced atmospheric pollution events over the tropical Atlantic Ocean with in situ measurements, satellites, trajectories, emission inventories, and global models. J. Geophys. Res. 109, D22 (2004).Google Scholar
  35. Guenther, A., Hewitt, C.N., Erickson, D., Fall, R., Geron, C., Gradel, T., Harley, P., Klenger, L., Lerdau, M., Mckay, W.A., Pierce, T., Scholes, B., Steinbrecher, R., Tallamraju, R., Taylor, R.J., Zimmerman, P.: A global model of natural volatile organic compound emissions. J. Geophys. Res. 100(d5), 8873–8892 (1995)CrossRefGoogle Scholar
  36. Guieu, C., Loÿe-Pilot, M.D., Ridame, C., Thomas, C.: Chemical characterization of the Saharan dust end-member: Some biogeochemical implications for the western Mediterranean Sea. J. Geophys. Res. 107, (2002).Google Scholar
  37. Hagen, E.: Northwest African upwelling scenario. Oceanol. Acta 24, S113–S128 (2001)CrossRefGoogle Scholar
  38. Hanisch, F., Crowley, J.N.: Heterogeneous reactivity of gaseous nitric acid on Al2O3, CaCO3, and atmospheric dust samples: A Knudsen cell study. J. Phys. Chem. A 105(13), 3096–3106 (2001)CrossRefGoogle Scholar
  39. Hanisch, F., Crowley, J.N.: Heterogeneous reactivity of NO and HNO3 on mineral dust in the presence of ozone. Phys. Chem. Chem. Phys. 5(5), 883–887 (2003)CrossRefGoogle Scholar
  40. Hanson, H.P.: Marine stratocumulus climatologies. Int. J. Climatol. 11(2), 147–164 (1991)CrossRefGoogle Scholar
  41. Hao, W.M., Ward, D.E., Olbu, G., Baker, S.P.: Emissions of CO2, CO, and hydrocarbons from fires in diverse African savanna ecosystems. J. Geophys. Res. 101(D19), 23577–23584 (1996)CrossRefGoogle Scholar
  42. Heard, D.E., Pilling, M.J.: Measurement of OH and HO2 in the Troposphere. Chem. Rev. 103, 5163–5198 (2003)CrossRefGoogle Scholar
  43. Heinold, B., Helmert, J., Hellmuth, O., Wolke, R., Ansmann, A., Marticorena, B., Laurent, B., Tegen, I.: Regional modeling of Saharan dust events using LM-MUSCAT: Model description and case studies. J Geophys Res. 112, D11 (2007).Google Scholar
  44. Heinold, B., Tegen, I., Bauer, S., Wendisch, M.: Regional modelling of radiative effects and feedbacks of Saharan dust and biomass burning aerosol. Tellus B. 63, 800–813 (2011)CrossRefGoogle Scholar
  45. Helmig, D., Bottenheim, J., Galbally, I.E., Lewis, A., Milton, M.J.T., Penkett, S., Plass-Duelmer, C., Reimann, S., Tans, P. and Theil, S., 2009: Volatile Organic Compounds in the Global Atmosphere. Eos Trans. AGU. 90, 52 (2009).Google Scholar
  46. Herut, B., Collier, R., Krom, M.D.: The role of dust in supplying nitrogen and phosphorus to the Southeast Mediterranean. Limnol. Oceanogr. 47(3), 870–878 (2002)CrossRefGoogle Scholar
  47. Hewitt, C.N., Lee, J.D., MacKenzie, A.R., Barkley, M.P., Carslaw, N., Carver, G.D., Chappell, N.A., Coe, H., Collier, C., Commane, R., Davies, F., Davison, B., Di Carlo, P., Di Marco, C.F., Dorsey, J.R., Edwards, P.M., Evans, M.J., Fowler, D., Furneaux, K.L., Gallagher, M., Guenther, A., Heard, D.E., Helfter, C., Hopkins, J., Ingham, T., Irwin, M., Jones, C., Karunaharan, A., Langford, B., Lewis, A.C., Lim, S.F., MacDonald, S.M., Mahajan, A.S., Malpass, S., McFiggans, G., Mills, G., Misztal, P., Moller, S., Monks, P.S., Nemitz, E., Nicolas-Perea, V., Oetjen, H., Oram, D.E., Palmer, P.I., Phillips, G.J., Pike, R., Plane, J.M.C., Pugh, T., Pyle, J.A., Reeves, C.E., Robinson, N.H., Stewart, D., Stone, D., Whalley, L.K., Yin, X.: Overview: oxidant and particle photochemical processes above a south-east Asian tropical rainforest (the OP3 project): introduction, rationale, location characteristics and tools. Atmos Chem Phys 10(1), 169–199 (2010)CrossRefGoogle Scholar
  48. Holloway, J.S., Jakoubek, R.O., Parrish, D.D., Gerbig, C., Volz-Thomas, A., Schmitgen, S., Fried, A., Wert, B., Henry, B., Drummond, J.R.: Airborne intercomparison of vacuum ultraviolet fluorescence and tunable diode laser absorption measurements of tropospheric carbon monoxide. J. Geophys. Res.-Atmos. 105(D19), 24251–24261 (2000)CrossRefGoogle Scholar
  49. Hopkins, J.R., Lewis, A.C., Read, K.A.: A two-column method for long-term monitoring of non-methane hydrocarbons (NMHCs) and oxygenated volatile organic compounds (o-VOCs). J. Environ. Monit. 5(1), 8–13 (2003)CrossRefGoogle Scholar
  50. Horowitz, L.W., Walters, S., Mauzerall, D.L., Emmons, L.K., Rasch, P.J., Granier, C., Tie, X.X., Lamarque, J.F., Schultz, M.G., Tyndall, G.S., Orlando, J.J. and Brasseur, G.P., 2003: A global simulation of tropospheric ozone and related tracers: Description and evaluation of MOZART, version 2. J. Geophys. Res. 108, D24 (2003).Google Scholar
  51. Hosaynali Beygi, Z., Fischer, H., Harder, H.D., Martinez, M., Sander, R., Williams, J., Brookes, D.M., Monks, P.S., Lelieveld, J.: Oxidation photochemistry in the Southern Atlantic boundary layer: unexpected deviations of photochemical steady state. Atmos. Chem. Phys. Discuss. 11(3), 7045–7093 (2011)CrossRefGoogle Scholar
  52. Huneeus, N., Schulz, M., Balkanski, Y., Griesfeller, J., Kinne, S., Prospero, J., Bauer, S., Boucher, O., Chin, M., Dentener, F., Diehl, T., Easter, R., Fillmore, D., Ghan, S., Ginoux, P., Grini, A., Horowitz, L., Koch, D., Krol, M.C., Landing, W., Liu, X., Mahowald, N., Miller, R.L., Morcrette, J.-J., Myhre, G., Penner, J.E., Perlwitz, J.P., Stier, P., Takemura, T., Zender, C.: Global dust model intercomparison in AeroCom phase I. Atmos Chem Phys 11(15), 7781–7816 (2011)CrossRefGoogle Scholar
  53. Jacob, D.J., Field, B.D., Jin, E.M., Bey, I., Li, Q.B., Logan, J.A., Yantosca, R.M., Singh, H.B.: Atmospheric budget of acetone. J. Geophys. Res. 107(D10), 4100 (2002)CrossRefGoogle Scholar
  54. Jacobi, H.W., Weller, R., Bluszcz, T., Schrems, O.: Latitudinal distribution of peroxyacetyl nitrate (PAN) over the Atlantic Ocean. J. Geophys. Res.-Atmos. 104(D21), 26901–26912 (1999)CrossRefGoogle Scholar
  55. Jiménez-Vélez, B., Detres, Y., Armstrong, R.A., Gioda, A.: Characterization of African Dust (PM2.5) across the Atlantic Ocean during AEROSE 2004. Atmos. Environ. 43(16), 2659–2664 (2009)CrossRefGoogle Scholar
  56. Jones, C.E., Hornsby, K.E., Sommariva, R., Dunk, R.M., Von Glasow, R., McFiggans, G., Carpenter, L.J.: Quantifying the contribution of marine organic gases to atmospheric iodine. Geophys. Res. Lett. 37 (2010). doi: 10.1029/2010gl043990
  57. Journet, E., Desboeufs, K.V., Caquineau, S., Colin, J.L.: Mineralogy as a critical factor of dust iron solubility. Geophys. Res. Lett. 35(7), 5 (2008)CrossRefGoogle Scholar
  58. Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y., Leetmaa, A., Reynolds, R., Chelliah, M., Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K.C., Ropelewski, C., Wang, J., Jenne, R., Joseph, D.: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Am. Meteorol. Soc. 77(3), 437–471 (1996)CrossRefGoogle Scholar
  59. Kandler, K., Benker, N., Bundke, U., Cuevas, E., Ebert, M., Knippertz, P., Rodríguez, S., Schütz, L., Weinbruch, S.: Chemical composition and complex refractive index of Saharan Mineral Dust at Izaña, Tenerife (Spain) derived by electron microscopy. Atmos. Environ. 41(37), 8058–8074 (2007)CrossRefGoogle Scholar
  60. Kaufman, Y.J., Koren, I., Remer, L.A., Tanre, D., Ginoux, P., Fan, S.: Dust transport and deposition observed from the Terra-Moderate Resolution Imaging Spectroradiometer (MODIS) spacecraft over the Atlantic ocean. J. Geophys. Res. 110, D10 (2005).Google Scholar
  61. Kock, A., Gebhardt, S., Bange, H.W.: Methane emissions from the upwelling area off Mauritania (NW Africa). Biogeosciences 5(4), 1119–1125 (2008)CrossRefGoogle Scholar
  62. Kozlova, E.A., Manning, A.C.: Methodology and calibration for continuous measurements of biogeochemical trace gas and O2 concentrations from a 300-m tall tower in central Siberia. Atmos Meas Tech 2(1), 205–220 (2009)CrossRefGoogle Scholar
  63. Kurten, T., Loukonen, V., Vehkamaki, H., Kulmala, M.: Amines are likely to enhance neutral and ion-induced sulfuric acid-water nucleation in the atmosphere more effectively than ammonia. Atmos Chem Phys 8(14), 4095–4103 (2008)CrossRefGoogle Scholar
  64. Lawler, M.J., Finley, B.D., Keene, W.C., Pszenny, A.A.P., Read, K.A., von Glasow, R., Saltzman, E.S.: Pollution-enhanced reactive chlorine chemistry in the eastern tropical Atlantic boundary layer. Geophys. Res. Lett. 36 (2009). doi: 10.1029/2008GL036666
  65. Lawrence, M.G., Jöckel, P., von Kuhlmann, R.: What does the global mean OH concentration tell us? Atmos Chem Phys 1(1), 37–49 (2001)CrossRefGoogle Scholar
  66. Lee, J.D., McFiggans, G., Allan, J.D., Baker, A.R., Ball, S.M., Benton, A.K., Carpenter, L.J., Commane, R., Finley, B.D., Evans, M., Fuentes, E., Furneaux, K., Goddard, A., Good, N., Hamilton, J.F., Heard, D.E., Herrmann, H., Hollingsworth, A., Hopkins, J.R., Ingham, T., Irwin, M., Jones, C.E., Jones, R.L., Keene, W.C., Lawler, M.J., Lehmann, S., Lewis, A.C., Long, M.S., Mahajan, A., Methven, J., Moller, S.J., Muller, K., Muller, T., Niedermeier, N., O’Doherty, S., Oetjen, H., Plane, J.M.C., Pszenny, A.A.P., Read, K.A., Saiz-Lopez, A., Saltzman, E.S., Sander, R., von Glasow, R., Whalley, L., Wiedensohler, A., Young, D.: Reactive Halogens in the Marine Boundary Layer (RHaMBLe): the tropical North Atlantic experiments. Atmos Chem Phys 10(3), 1031–1055 (2010)CrossRefGoogle Scholar
  67. Lee, J.D., Moller, S.J., Read, K.A., Lewis, A.C., Mendes, L., Carpenter, L.J.: Year-round measurements of nitrogen oxides and ozone in the tropical North Atlantic marine boundary layer. J. Geophys. Res. 114 (2009). doi: 10.1029/2009jd011878
  68. Lewis, A.C., Evans, M.J., Methven, J., Watson, N., Lee, J.D., Hopkins, J.R., Purvis, R.M., Arnold, S.R., McQuaid, J.B., Whalley, L.K., Pilling, M.J., Heard, D.E., Monks, P.S., Parker, A.E., Reeves, C.E., Oram, D.E., Mills, G., Bandy, B.J., Stewart, D., Coe, H., Williams, P., Crosier, J.: Chemical composition observed over the mid-Atlantic and the detection of pollution signatures far from source regions. J. Geophys. Res. 112, D10 (2007).Google Scholar
  69. Lewis, A.C., Hopkins, J.R., Carpenter, L.J., Stanton, J., Read, K.A., Pilling, M.J.: Sources and sinks of acetone, methanol, and acetaldehyde in North Atlantic marine air. Atmos Chem Phys 5, 1963–1974 (2005)CrossRefGoogle Scholar
  70. Liao, H., Seinfeld, J.H.: Global impacts of gas-phase chemistry-aerosol interactions on direct radiative forcing by anthropogenic aerosols and ozone. J. Geophys. Res. 110, 18208 (2005)CrossRefGoogle Scholar
  71. Lilly, D.K.: Models of cloud-topped mixed layers under a strong inversion. Q. J. Roy. Meteor. Soc. 94, 292–309 (1968)CrossRefGoogle Scholar
  72. Loukonen, V., Kurten, T., Ortega, I.K., Vehkamaki, H., Padua, A.A.H., Sellegri, K., Kulmala, M.: Enhancing effect of dimethylamine in sulfuric acid nucleation in the presence of water - a computational study. Atmos Chem Phys 10(10), 4961–4974 (2010)CrossRefGoogle Scholar
  73. Mahajan, A.S., Plane, J.M.C., Oetjen, H., Mendes, L., Saunders, R.W., Saiz-Lopez, A., Jones, C.E., Carpenter, L.J., McFiggans, G.B.: Measurement and modelling of tropospheric reactive halogen species over the tropical Atlantic Ocean. Atmos Chem Phys 10(10), 4611–4624 (2010a)CrossRefGoogle Scholar
  74. Mahajan, A.S., Whalley, L.K., Kozlova, E.A., Oetjen, H., Mendez, L., Furneaux, K.L., Goddard, A., Heard, D.E., Plane, J.M.C., Saiz-Lopez, A.: DOAS observations of formaldehyde and its impact on the HOx balance in the tropical Atlantic marine boundary layer. J Atmos Chem 66(3), 167–178 (2010b)CrossRefGoogle Scholar
  75. Mahowald, N.M., Baker, A.R., Bergametti, G., Brooks, N., Duce, R.A., Jickells, T.D., Kubilay, N., Prospero, J.M., Tegen, I.: Atmospheric global dust cycle and iron inputs to the ocean. Global Biogeochem. Cycles 19(4) (2005)Google Scholar
  76. Makela, J.M., Yli-Koivisto, S., Hiltunen, V., Seidl, W., Swietlicki, E., Teinila, K., Sillanpaa, M., Koponen, I.K., Paatero, J., Rosman, K., Hameri, K.: Chemical composition of aerosol during particle formation events in boreal forest. Tellus B Chem. Phys. Meteorol. 53(4), 380–393 (2001)CrossRefGoogle Scholar
  77. Manning, A.C., Keeling, R.F.: Global oceanic and land biotic carbon sinks from the Scripps atmospheric oxygen flask sampling network. Tellus B Chem. Phys. Meteorol. 58(2), 95–116 (2006)CrossRefGoogle Scholar
  78. Martínez Avellaneda, N., Serra, N., Minnett, P.J., Stammer, D.: Response of the eastern subtropical Atlantic SST to Saharan dust: A modeling and observational study. J. Geophys. Res. 115(C8), C08015 (2010)CrossRefGoogle Scholar
  79. Measures, C.I., Vink, S.: On the use of dissolved aluminum in surface waters to estimate dust deposition to the ocean. Global Biogeochem. Cycles 14(1), 317–327 (2000)CrossRefGoogle Scholar
  80. Merten, A., Tschritter, J., Platt, U.: Design of differential optical absorption spectroscopy long-path telescopes based on fiber optics. Appl. Opt. 50(5), 738–754 (2011)CrossRefGoogle Scholar
  81. Millet, D.B., Jacob, D.J., Custer, T.G., de Gouw, J.A., Goldstein, A.H., Karl, T., Singh, H.B., Sive, B.C., Talbot, R.W., Warneke, C., Williams, J.: New constraints on terrestrial and oceanic sources of atmospheric methanol. Atmospheric Chemistry & Physics 8(23), 6887–6905 (2008)CrossRefGoogle Scholar
  82. Millet, D.B., Guenther, A., Siegel, D.A., Nelson, N.B., Singh, H.B., de Gouw, J.A., Warneke, C., Williams, J., Eerdekens, G., Sinha, V., Karl, T., Flocke, F., Apel, E., Riemer, D.D., Palmer, P.I., Barkley, M.: Global atmospheric budget of acetaldehyde: 3-D model analysis and constraints from in-situ and satellite observations. Atmos Chem Phys 10(7), 3405–3425 (2010)CrossRefGoogle Scholar
  83. Mills, M.M., Ridame, C., Davey, M., La Roche, J., Geider, R.J.: Iron and phosphorus co-limit nitrogen fixation in the eastern tropical North Atlantic. Nature 429(6989), 292–294 (2004)CrossRefGoogle Scholar
  84. Monks, P.S.: Gas-phase radical chemistry in the troposphere. Chem. Soc. Rev. 34(5), 376–395 (2005)CrossRefGoogle Scholar
  85. Monks, P.S., Carpenter, L.J., Penkett, S.A., Ayers, G.P.: Night-time peroxy radical chemistry in the remote marine boundary layer over the Southern ocean. Geophys. Res. Lett. 23(5), 535–538 (1996)CrossRefGoogle Scholar
  86. Monks, P.S., Salisbury, G., Holland, G., Penkett, S.A., Ayers, G.P.: A seasonal comparison of ozone photochemistry in the remote marine boundary layer. Atmos. Environ. 34(16), 2547–2561 (2000)CrossRefGoogle Scholar
  87. Moore, C.M., Mills, M.M., Achterberg, E.P., Geider, R.J., LaRoche, J., Lucas, M.I., McDonagh, E.L., Pan, X., Poulton, A.J., Rijkenberg, M.J.A., Suggett, D.J., Ussher, S.J., Woodward, E.M.S.: Large-scale distribution of Atlantic nitrogen fixation controlled by iron availability. Nat. Geosci. 2(12), 867–871 (2009)CrossRefGoogle Scholar
  88. Morel, F.M.M., Hering, J.G.: Principles and applications of aquatic chemistry, vol 2. Wiley, New York (1993)Google Scholar
  89. Moulin, C., Lambert, C.E., Dulac, F., Dayan, U.: Control of atmospheric export of dust from North Africa by the North Atlantic oscillation. Nature 387(6634), 691–694 (1997)CrossRefGoogle Scholar
  90. Müller, C., Iinuma, Y., Karstensen, J., van Pinxteren, D., Lehmann, S., Gnauk, T., Herrmann, H.: Seasonal variation of aliphatic amines in marine sub-micrometer particles at the Cape Verde islands. Atmos Chem Phys 9(24), 9587–9597 (2009)CrossRefGoogle Scholar
  91. Müller, K., Lehmann, S., van Pinxteren, D., Gnauk, T., Niedermeier, N., Wiedensohler, A., Herrmann, H.: Particle characterization at the Cape Verde atmospheric observatory during the 2007 RHaMBLe intensive. Atmos Chem Phys 10(6), 2709–2721 (2010)CrossRefGoogle Scholar
  92. Olivier, J., Bouwman, A., Maas, C. v. d., Berdowski, J., Veldt, C., Bloos, J., Visschedijk, A., Zandveld, P., Haverlag, J.: Description of EDGAR Version 2.0: A set of global emission inventories of greenhouse gases and ozone-depleting substances for all anthropogenic and most natural sources on a per country basis and on 1 degree x 1 degree grid. Natl. Inst. of Public Health and the Environ., Bilthoven, Netherlands. (1996).Google Scholar
  93. Parrish, D.D., Buhr, M.P., Trainer, M., Norton, R.B., Shimshock, J.P., Fehsenfeld, F.C., Anlauf, K.G., Bottenheim, J.W., Tang, Y.Z., Wiebe, H.A., Roberts, J.M., Tanner, R.L., Newman, L., Bowersox, V.C., Olszyna, K.J., Bailey, E.M., Rodgers, M.O., Wang, T., Berresheim, H., Roychowdhury, U.K., Demerjian, K.L.: The total recative nitrogen levels and the partititioning between the individual-species at 6 rural sites in eastern North America. J. Geophys. Res. 98(D2), 2927–2939 (1993)CrossRefGoogle Scholar
  94. Parrish, D.D., Trainer, M., Holloway, J.S., Yee, J.E., Warshawsky, M.S., Fehsenfeld, F.C., Forbes, G.L., Moody, J.L.: Relationships between ozone and carbon monoxide at surface sites in the North Atlantic region. J. Geophys. Res. 103(D11), 13357–13376 (1998)CrossRefGoogle Scholar
  95. Plane, J.M., Saiz-Lopez, A.: Differential optical absorption spectroscopy, in analytical techniques for atmospheric measurement. Blackwell, Oxford (2006)Google Scholar
  96. Prospero, J.M., Lamb, P.J.: African droughts and dust transport to the Caribbean: Climate change implications. Science 302, 1,024–021,027 (2003)CrossRefGoogle Scholar
  97. Prospero, J.M., Ginoux, P., Torres, O., Nicholson, S.E., Gill, T.E.: Environmental characterization of global sources of atmospheric soil dust identified with the NIMBUS 7 total ozone mapping spectrometer (TOMS) absorbing aerosol product. Rev. Geophys. 40, 1002 (2002)CrossRefGoogle Scholar
  98. Read, K.A., Mahajan, A.S., Carpenter, L.J., Evans, M.J., Faria, B.V.E., Heard, D.E., Hopkins, J.R., Lee, J.D., Moller, S.J., Lewis, A.C., Mendes, L., McQuaid, J.B., Oetjen, H., Saiz-Lopez, A., Pilling, M.J., Plane, J.M.C.: Extensive halogen-mediated ozone destruction over the tropical Atlantic Ocean. Nature 453(7199), 1232–1235 (2008)CrossRefGoogle Scholar
  99. Read, K.A., Lee, J.D., Lewis, A.C., Moller, S.J., Mendes, L., Carpenter, L.J.: Intra-annual cycles of NMVOC in the tropical marine boundary layer and their use for interpreting seasonal variability in CO. J. Geophys. Res. 114 (2009). doi: 10.1029/2009jd011879
  100. Real, E., Law, K.S., Schlager, H., Roiger, A., Huntrieser, H., Methven, J., Cain, M., Holloway, J., Neuman, J.A., Ryerson, T., Flocke, F., de Gouw, J., Atlas, E., Donnelly, S., Parrish, D.: Lagrangian analysis of low altitude anthropogenic plume processing across the North Atlantic. Atmos Chem Phys 8(24), 7737–7754 (2008)CrossRefGoogle Scholar
  101. Reeves, C.E., Penkett, S.A.: Measurements of peroxides and what they tell us. Chem. Rev. 103(12), 5199–5218 (2003)CrossRefGoogle Scholar
  102. Richardson, A.J., Schoeman, D.S.: Climate impact on plankton ecosystems in the Northeast Atlantic. Science 305(5690), 1609–1612 (2004)CrossRefGoogle Scholar
  103. Richter, A., Burrows, J.P.: Tropospheric NO2 from GOME measurements. Adv. Space Res. 29(11), 1673–1683 (2002)CrossRefGoogle Scholar
  104. Ryall, D.B., Derwent, R.G., Manning, A.J., Simmonds, P.G., O’Doherty, S.: Estimating source regions of European emissions of trace gases from observations at Mace Head. Atmos. Environ. 35(14), 2507–2523 (2001)CrossRefGoogle Scholar
  105. Savoie, D.L., Prospero, J.M., Oltmans, S.J., Graustein, W.C., Turekian, K.K., Merrill, J.T., Levy, H.: Sources of nitrate and ozone in the marine boundary-layer of the tropical North-Atlantic. J. Geophys. Res. 97(D11), 11575–11589 (1992)Google Scholar
  106. Schepanski, K., Tegen, I., Macke, A.: Saharan dust transport and deposition towards the tropical northern Atlantic. Atmos Chem Phys 9(4), 1173–1189 (2009)CrossRefGoogle Scholar
  107. Severinghaus, J.P.: Studies of the terrestrial O2 and carbon cycles in sand dune gases and in Biosphere 2. Ph.D., Columbia University (1995)Google Scholar
  108. Sholkovitz, E.R., Sedwick, P.N., Church, T.M.: Influence of anthropogenic combustion emissions on the deposition of soluble aerosol iron to the ocean: Empirical estimates for island sites in the North Atlantic. Geochimica Et Cosmochimica Acta 73(14), 3981–4003 (2009)CrossRefGoogle Scholar
  109. Simmonds, P.G., Derwent, R.G.: Measurements of ozone and other radiatively active gases at Mace Head in the Republic of Ireland. Atmos. Environ. 25(9), 1795–1808 (1991)CrossRefGoogle Scholar
  110. Singh, H.B., Kanakidou, M., Crutzen, P., Jacob, D.: High concentrations and photochemistry of carbonyls and alcohols in the global troposphere. Nature 378, 50–54 (1995)CrossRefGoogle Scholar
  111. Sinha, V., Williams, J., Meyerhöfer, M., Riebesell, U., Paulino, A.I., Larsen, A.: Air-sea fluxes of methanol, acetone, acetaldehyde, isoprene and DMS from a Norwegian fjord following a phytoplankton bloom in a mesocosm experiment. Atmos Chem Phys 7(3), 739–755 (2007)CrossRefGoogle Scholar
  112. Smith, J.N., Barsanti, K.C., Friedli, H.R., Ehn, M., Kulmala, M., Collins, D.R., Scheckman, J.H., Williams, B.J., McMurry, P.H.: Observations of aminium salts in atmospheric nanoparticles and possible climatic implications. Proc. Natl. Acad. Sci. U. S. A. 107(15), 6634–6639 (2010)CrossRefGoogle Scholar
  113. Sokolik, I.N., Toon, O.B.: Direct radiative forcing by anthropogenic airborne mineral aerosols. Nature 381(6584), 681–683 (1996)CrossRefGoogle Scholar
  114. Stephens, B.B., Keeling, R.F., Heimann, M., Six, K.D., Murnane, R., Caldeira, K.: Testing global ocean carbon cycle models using measurements of atmospheric O2 and CO2 concentration. Global Biogeochem. Cycles 12(2), 213–230 (1998)CrossRefGoogle Scholar
  115. Stewart, D.J., Taylor, C.M., Reeves, C.E., McQuaid, J.B.: Biogenic nitrogen oxide emissions from soils: impact on NOx and ozone over west Africa during AMMA (African Monsoon Multidisciplinary Analysis): observational study. Atmos Chem Phys 8(8), 2285–2297 (2008)CrossRefGoogle Scholar
  116. Stramma, L., Brandt, P., Schafstall, J., Schott, F., Fischer, J., Kortzinger, A.: Oxygen minimum zone in the North Atlantic south and east of the Cape Verde Islands. J. Geophys. Res. 113(C4), C04014 (2008)CrossRefGoogle Scholar
  117. Stull, R.B.: An introduction to boundary layer meteorology. Kluwer Academic Publishers, Dordrecht (1988)Google Scholar
  118. Taddei, S., Toscano, P., Gioli, B., Matese, A., Miglietta, F., Vaccari, F.P., Zaldei, A., Custer, T., Williams, J.: Carbon Dioxide and Acetone Air-Sea Fluxes over the Southern Atlantic. Environ. Sci. Technol. 43, 5 (2009)Google Scholar
  119. Tie, X.X., Madronich, S., Walters, S., Edwards, D.P., Ginoux, P., Mahowald, N., Zhang, R.Y., Lou, C., Brasseur, G.: Assessment of the global impact of aerosols on tropospheric oxidants. J. Geophys. Res. 110, D3 (2005).Google Scholar
  120. Tuch, T.M., Haudek, A., Mueller, T., Nowak, A., Wex, H., Wiedensohler, A.: Design and performance of an automatic regenerating adsorption aerosol dryer for continuous operation at monitoring sites. Atmos Meas Tech 2(2), 417–422 (2009)CrossRefGoogle Scholar
  121. Vaughan, S., Ingham, T., Whalley, L.K., Stone, D., Evans, M.J., Read, K.A., Lee, J.D., Moller, S.J., Carpenter, L.J., Lewis, A.C., Fleming, Z.L., Heard, D.E.: Seasonal observations of OH and HO2 in the remote tropical marine boundary layer Atmos. Chem. Phys. Discuss. 11(7), 21429–21487 (2011)CrossRefGoogle Scholar
  122. Wang, S.C., Flagan, R.C.: Scanning Electrical Mobility Spectrometer. J. Aerosol Sci. 20, 1485–1488 (1989)CrossRefGoogle Scholar
  123. Whalley, L.K., Furneaux, K.L., Goddard, A., Lee, J.D., Mahajan, A., Oetjen, H., Read, K.A., Kaaden, N., Carpenter, L.J., Lewis, A.C., Plane, J.M.C., Saltzman, E.S., Wiedensohler, A., Heard, D.E.: The chemistry of OH and HO2 radicals in the boundary layer over the tropical Atlantic Ocean. Atmos Chem Phys 10(4), 1555–1576 (2010)CrossRefGoogle Scholar
  124. Yienger, J.J., Levy, H.: Empirical-model of global soil-biogenic NOx emissions. J. Geophys. Res.-Atmos. 100(D6), 11447–11464 (1995)CrossRefGoogle Scholar
  125. Zeng, X.B., Brunke, M.A., Zhou, M.Y., Fairall, C., Bond, N.A., Lenschow, D.H.: Marine atmospheric boundary layer height over the eastern Pacific: Data analysis and model evaluation. J. Climate 17(21), 4159–4170 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • L. J. Carpenter
    • 1
    Email author
  • Z. L. Fleming
    • 2
  • K. A. Read
    • 1
  • J. D. Lee
    • 1
  • S. J. Moller
    • 1
  • J. R. Hopkins
    • 1
  • R. M. Purvis
    • 1
  • A. C. Lewis
    • 1
  • K. Müller
    • 4
  • B. Heinold
    • 4
  • H. Herrmann
    • 4
  • K. Wadinga Fomba
    • 4
  • D. van Pinxteren
    • 4
  • C. Müller
    • 4
  • I. Tegen
    • 4
  • A. Wiedensohler
    • 4
  • T. Müller
    • 4
  • N. Niedermeier
    • 4
  • E. P. Achterberg
    • 5
  • M. D. Patey
    • 5
  • E. A. Kozlova
    • 6
    • 15
  • M. Heimann
    • 6
  • D. E. Heard
    • 7
  • J. M. C. Plane
    • 7
  • A. Mahajan
    • 7
    • 16
  • H. Oetjen
    • 7
    • 17
  • T. Ingham
    • 8
  • D. Stone
    • 7
    • 9
  • L. K. Whalley
    • 8
  • M. J. Evans
    • 9
    • 18
  • M. J. Pilling
    • 7
  • R. J. Leigh
    • 10
  • P. S. Monks
    • 3
  • A. Karunaharan
    • 3
  • S. Vaughan
    • 7
  • S. R. Arnold
    • 9
  • J. Tschritter
    • 11
  • D. Pöhler
    • 11
  • U. Frieß
    • 11
  • R. Holla
    • 11
  • L. M. Mendes
    • 12
  • H. Lopez
    • 12
  • B. Faria
    • 12
  • A. J. Manning
    • 13
  • D. W. R. Wallace
    • 14
  1. 1.National Centre for Atmospheric Science, Department of ChemistryUniversity of YorkYorkUK
  2. 2.National Centre for Atmospheric Science, Department of ChemistryUniversity of LeicesterLeicesterUK
  3. 3.Department of ChemistryUniversity of LeicesterLeicesterUK
  4. 4.Leibniz-Institut für Troposphärenforschung e.V.LeipzigGermany
  5. 5.School of Ocean and Earth Science, National Oceanography Centre SouthamptonUniversity of SouthamptonSouthamptonUK
  6. 6.Max-Planck-Institut für BiogeochemieJenaGermany
  7. 7.School of ChemistryUniversity of LeedsLeedsUK
  8. 8.National Centre for Atmospheric Science, School of ChemistryUniversity of LeedsLeedsUK
  9. 9.Institute for Climate & Atmospheric Science, School of Earth & EnvironmentUniversity of LeedsLeedsUK
  10. 10.Earth Observation Science, Department of Physics & AstronomyUniversity of LeicesterLeicesterUK
  11. 11.Institute of Environmental PhysicsUniversity of HeidelbergHeidelbergGermany
  12. 12.Instituto Nacional de Meteorologia e Geofísica (INMG)MindeloCape Verde
  13. 13.The Met OfficeExeterUK
  14. 14.Leibniz-Institut für Meereswissenschaften (IFM-GEOMAR) Marine BiogeochemieKielGermany
  15. 15.School of Environmental SciencesUniversity of East Anglia (UEA)NorwichUK
  16. 16.Laboratorio de Ciencias de la Atmósfera y el Clima (CIAC)ToledoSpain
  17. 17.Department of ChemistryUniversity of ColoradoBoulderUSA
  18. 18.Department of ChemistryUniversity of YorkYorkUK

Personalised recommendations