The temporal trend of stratospheric carbonyl sulfide

  • M. T. CoffeyEmail author
  • James W. Hannigan


Using a database of spectra collected with an airborne infrared spectrometer between 1978 and 2005, the longest record of this type, we have searched for a temporal trend in the stratospheric OCS amount. The total column above 200 hPa, in latitudes from 30° to 60°N, shows a change of about 0.77 ± 0.80% per year relative to the 2010 value which is 1.34 × 1015 molecules cm−2; thus not a significant change. Observations are made from the base of the stratosphere and are uniquely suited to determining the stratospheric OCS abundance.


Stratospheric chemistry OCS long-term trends Stratospheric aerosols 



We acknowledge the support of the research aircraft facilities that provided the aircraft and flight operations to obtain the airborne data, particularly the NCAR Research Aviation Facility and the NASA Ames Medium Altitude Branch. This work was supported in part by the NASA Upper Atmosphere Research program and in part by the National Science Foundation. The National Center for Atmospheric Research is sponsored by the National Science Foundation. We thank the reviewers for their very helpful and constructive comments.


  1. Bandy, A.R., Thornton, D.C., Scott, D.L., Lalevic, M., Lewin, E.E., Driedger III, A.R.: A time series for carbonyl sulfide in the Northern Hemisphere. J. Atmos. Chem. 14, 527–534 (1992)CrossRefGoogle Scholar
  2. Barkley, M.P., Palmer, P.I., Boone, C.D., Bernath, P.F., Suntharalingam, P.: Global distributions of carbonyl sulfide in the upper troposphere and stratosphere. Geophys. Res. Lett. 35, L14810 (2008). doi: 10.1029/2008GL034270 CrossRefGoogle Scholar
  3. Brasseur, G., Granier, C.: Mount Pinatubo aerosol, chlorofluorocarbons, and ozone depletion. Science 257, 1239–1242 (1992)CrossRefGoogle Scholar
  4. Chin, M., Davis, D.D.: A reanalysis of carbonyl sulfide as a source of stratospheric background sulfur aerosol. J. Geophys. Res. 100, 8993–9005 (1995)CrossRefGoogle Scholar
  5. Coffey, M.T.: Observations of the impact of volcanic activity on stratospheric chemistry. J. Geophys. Res. 101, 6767–6780 (1996)CrossRefGoogle Scholar
  6. Coffey, M.T., Mankin, W.G.: Observations of the loss of stratospheric NO2 following volcanic eruptions. Geophys. Res. Lett. 20, 2873–2876 (1993)CrossRefGoogle Scholar
  7. Connor, B.J., Parrish, A., Tsou, J.-J., McCormick, M.P.: Error analysis for the ground-based microwave ozone measurements during STOIC. J. Geophys. Res. 100(D5), 9283–9291 (1995). doi: 10.1029/94JD00413 CrossRefGoogle Scholar
  8. Crutzen, P.J.: The possible importance of CSO for the sulfate layer of the stratosphere. Geophys. Res. Lett. 3, 73–76 (1976)CrossRefGoogle Scholar
  9. Deshler, T., Anderson-Sprecher, R., Jäger, H., Barnes, J., Hofmann, D.J., Clemesha, B., Simonich, D., Osborn, M., Grainger, R.G., Godin-Beekmann, S.: Trends in the nonvolcanic component of stratospheric aerosol over the period 1971–2004. J. Geophys. Res. 111, D01201 (2006). doi: 10.1029/2005JD006089 CrossRefGoogle Scholar
  10. Farmer, C.B., Norton, R.H.: A high resolution atlas of the infrared spectrum of the sun and the earth atmosphere from space, vol I. The Sun. NASA Reference Publication 1224, (1989)Google Scholar
  11. Granier, C., Brasseur, G.: Impact of heterogeneous chemistry on model predictions of ozone changes. J. Geophys. Res. 97, 18,015–18,033 (1992). doi: 10.1029/92JD02021 Google Scholar
  12. Hase, F., Hannigan, J.W., Coffey, M.T., Goldman, A., Höpfner, M., Jones, N.B., Rinsland, C.P., Wood, S.W.: Intercomparison of retrieval codes used for the analysis of high-resolution, ground-based FTIR measurements. J. Quant. Spectr. Rad. Trans. 87(1), 25–52 (2004)CrossRefGoogle Scholar
  13. Hase, F., Demoulin, P., Sauval, A.J., Toon, G.C., Bernath, P.F., Goldman, A., Hannigan, J.W., Rinsland, C.P.: An empirical line-by-line model for the infrared solar transmittance spectrum from 700 to 5000 cm−1. J. Quant. Spectr. Rad. Trans. 102, 450–463 (2006)CrossRefGoogle Scholar
  14. Hofmann, D.J.: Increase in the stratospheric background sulfuric acid aerosol mass in the past 10 years. Science 248, 996–1000 (1990)CrossRefGoogle Scholar
  15. Hofmann, D.J., Rosen, J.M.: On the background stratospheric aerosols. J. Atmos. Sci. 38, 168–181 (1981)CrossRefGoogle Scholar
  16. Hofmann, D.J., Solomon, S.: Ozone destruction through heterogeneous chemistry following the eruption of El Chichón. J. Geophys. Res. 94, 5029–5041 (1989)CrossRefGoogle Scholar
  17. Hofmann, D., Barnes, J., O'Neill, M., Trudeau, M., Neely R.: Increase in background stratospheric aerosol observed with lidar at Mauna Loa Observatory and Boulder, Colorado, Geophys. Res. Lett. 36, L15808 (2009). doi: 10.1029/2009GL039008
  18. Jäger, H.: Long-term record of lidar observations of the stratospheric aerosol layer at Garmisch-Partenkirchen. J. Geophys. Res. 110, D08106 (2005). doi: 10.1029/2004JD005506 CrossRefGoogle Scholar
  19. Jäger, H., Wege, K.: Stratospheric ozone depletion at northern midlatitudes after major volcanic eruptions. J. Atmos. Chem. 10, 273–287 (1990)CrossRefGoogle Scholar
  20. Junge, C.E., Manson, J.E.: Stratospheric aerosol studies. J. Geophys. Res. 66, 2163–2182 (1961)CrossRefGoogle Scholar
  21. Maki, A.G., Wells, J.S.: Wavenumber calibration tables from heterodyne frequency measurements. NIST Special Publication 821, (1991)Google Scholar
  22. Mankin, W. G.: Airborne Fourier transform spectroscopy of the upper atmosphere. Opt. Engr. 17, 39–43 (1978)Google Scholar
  23. Mankin, W.G., Coffey, M.T.: Airborne measurements of stratospheric constituents over Antarctica in the austral spring 1987: 1. Method and ozone observations. J. Geophys. Res. 94, 11,413–11,421 (1989)CrossRefGoogle Scholar
  24. Mankin, W.G., Coffey, M.T., Griffith, D.W.T., Drayson, S.R.: Spectroscopic measurement of carbonyl sulfide (OCS) in the stratosphere. Geophys. Res. Lett. 6, 853–856 (1979)CrossRefGoogle Scholar
  25. McCormick, M.P., Veiga, R.E.: SAGE II measurements of early Pinatubo aerosols. Geophys. Res. Lett. 19, 155–158 (1992)CrossRefGoogle Scholar
  26. McCormick, M.P., Thomason, L.W., Trepte, C.R.: Atmospheric effects of the Mt. Pinatubo eruption. Nature 373, 399–404 (1995)CrossRefGoogle Scholar
  27. Montzka, S.A., Calvert, P., Hall, B.D., Elkins, J.W., Conway, T.J., Tans, P.P., Sweeney, C.: On the global distribution, seasonality, and budget of atmospheric carbonyl sulfide (COS) and some similarities to CO2. J. Geophys. Res. 112, D09302 (2007). doi: 10.1029/2006JD007665 CrossRefGoogle Scholar
  28. Osborn, M.T., DeCoursey, R.J., Trepte, C.R., Winker, D.M., Woods, D.C.: Evolution of the Pinatubo volcanic cloud over Hampton, Virginia. Geophys. Res. Lett. 22, 1101–1104 (1995)CrossRefGoogle Scholar
  29. Pitari, G., Mancini, E., Rizi, V., Shindell, D.T.: Impact of future climate and emission changes on stratospheric aerosols and ozone. J. Atmos. Sci. 59, 414–440 (2002)CrossRefGoogle Scholar
  30. Rinsland, C.P., Zander, R., Mahieu, E., Demoulin, P., Goldman, A., Ehhalt, D.H., Rudolph, J.: Ground-based infrared measurements of carbonyl sulfide total column abundances: Long term trends and variability. J. Geophys. Res. 97, 5995–6002 (1992). doi: 10.1029/92JD00040 Google Scholar
  31. Rinsland, C.P., Mahieu, E., Zander, R., Gunson, M.R., Salawitch, R.J., Chang, A.Y., Goldman, A., Abrams, M.C., Abbas, M.M., Newchurch, M.J., Irion, F.W.: Trends of OCS, HCN, SF6, CHClF2 (HCFC-22) in the lower stratosphere from 1985 and 1994 atmospheric trace molecule spectroscopy experiment measurements near 30°N latitude. Geophys. Res. Lett. 23, 2349–2352 (1996)CrossRefGoogle Scholar
  32. Rinsland, C., et al.: Northern and southern hemisphere ground-based infrared spectroscopic measurements of tropospheric carbon monoxide and ethane. J. Geophys. Res. 103(D21), 28197–28217 (1998)CrossRefGoogle Scholar
  33. Rinsland, C.P., Chiou, L., Mahieu, E., Zander, R., Boone, C.D., Bernath, P.F.: Measurements of long-term changes in atmospheric OCS (carbonyl sulfide) from infrared solar observations. J. Quant. Spect. Rad. Trans. 109, 2679–2686 (2008)CrossRefGoogle Scholar
  34. Rothman, L.S., Gamache, R.R., Tipping, R.H., Rinsland, C.P., Smith, M.A.H., Benner, D.C., Malathy Devi, V., Flaud, J.-M., Camy-Peyret, C., Perrin, A., Goldman, A., Massie, S.T., Brown, L.R., Toth, R.A.: The HITRAN molecular database: Editions of 1991 and 1992. J. Quant. Spect. Rad. Trans. 48(5–6), 469–507 (1992)CrossRefGoogle Scholar
  35. Rothman, L.S., Gordon, I.E., Barbe, A., Benner, D.C., Bernath, P.E., Birk, M., Boudon, V., Brown, L.R., Campargue, A., Champion, J.P., Chance, K., Coudert, L.H., Dana, V., Devi, V.M., Fally, S., Flaud, J.M., Gamache, R.R., Goldman, A., Jacquemart, D., Kleiner, I., Lacome, N., Lafferty, W.J., Mandin, J.Y., Massie, S.T., Mikhailenko, S.N., Miller, C.E., Moazzen-Ahmadi, N., Naumenko, O.V., Nikitin, A.V., Orphal, J., Perevalov, V.I., Perrin, A., Predoi-Cross, A., Rinsland, C.P., Rotger, M., Simeckova, M., Smith, M.A.H., Sung, K., Tashkun, S.A., Tennyson, J., Toth, R.A., Vandaele, A.C., Vander Auwera, J.: The HITRAN 2008 molecular spectroscopic database. J. Quant. Spect. Rad. Trans. 110, 533–572 (2009). doi: 10.1016/j.jqsrt.2009.02.013 CrossRefGoogle Scholar
  36. Solomon, S., Portmann, R.W., Garcia, R.R., Thomason, L.W., Poole, L.R., McCormick, M.P.: The role of aerosol variations in anthropogenic ozone depletion at northern midlatitudes. J. Geophys. Res. 101, 6713–6727 (1996)CrossRefGoogle Scholar
  37. Thomason, L.W., Peter, T.: SPARC assessment of stratospheric aerosol properties, WCRP-124, WMO/TD-No. 1295, SPARC Report No. 4, February (2006)Google Scholar
  38. Thomason, L., Kent, G., Trepte, C., Poole, L.: A comparison of the stratospheric aerosol background periods of 1979 and 1989–1991. J. Geophys. Res. 102(D3), 3611–3616 (1997)CrossRefGoogle Scholar
  39. Turco, R.P., Drdla, K., Tabazadeh, A., Hamill, P.: Heterogeneous chemistry of polar stratospheric clouds and volcanic aerosols. In: Chanin, M.-L. (ed.) The role of the stratosphere in global change, pp. 65–134. Springer-Verlag, Heidelberg (1993)Google Scholar
  40. Vernier, J.-P., Thomason, L.W., Pommereau, J.-P., Bourassa, A., Pelon, J., Garnier, A., Hauchecorne, A., Blanot, L., Trepte, C., Degenstein, D., Vargas, F.: Major influence of tropical volcanic eruptions on the stratospheric aerosol layer during the last decade. Geophys. Res. Lett. 38, L12807 (2011). doi: 10.1029/2011GL047563 CrossRefGoogle Scholar
  41. Yue, G.K., McCormick, M.P., Chiou, E.W.: Stratospheric aerosol optical depth observed by the stratospheric aerosol and gas experiment II: Decay of the El Chichon and Ruiz volcanic perturbations. J. Geophys. Res. 96, 5209–5219 (1991)CrossRefGoogle Scholar
  42. Zander, R.: IR retrieval algorithms intercomparison for the NDSC. Paper presented at OSA Topical Meeting on Fourier Transform Spectroscopy: New Methods and Applications. Santa Fe, NM, February (1995)Google Scholar
  43. Zander, R., Rinsland, C.P., Farmer, C.B., Namkung, J., Norton, R.H., Russell III, J.M.: Concentrations of carbonyl sulfide and hydrogen cyanide in the free upper troposphere and lower stratosphere deduced from ATMOS/Spacelab 3 infrared solar occultation spectra. J. Geophys. Res. 93, 1669–1678 (1988)CrossRefGoogle Scholar
  44. Zhao, J., Turco, R.P., Toon, O.B.: A model simulation of Pinatubo volcanic aerosols in the stratosphere. J. Geophys. Res. 100, 7315–7328 (1995)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.National Center for Atmospheric ResearchBoulderUSA

Personalised recommendations