Journal of Atmospheric Chemistry

, Volume 66, Issue 1–2, pp 41–64 | Cite as

Aircraft measurements and model simulations of stratospheric ozone and N2O: implications for chemistry and transport processes in the models

  • Jayanarayanan Kuttippurath
  • Armin Kleinböhl
  • Holger Bremer
  • Harry Küllmann
  • Justus Notholt
  • Björn-Martin Sinnhuber
  • Wuhu Feng
  • Martyn Chipperfield


Airborne measurements of stratospheric ozone and N2O from the SCIAMACHY (Scanning Imaging Absorption Spectrometer) Validation and Utilization Experiment (SCIA-VALUE) are presented. The campaign was conducted in September 2002 and February–March 2003. The Airborne Submillimeter Radiometer (ASUR) observed stratospheric constituents like O3 and N2O, among others, spanning a latitude from 5°S to 80°N during the survey. The tropical ozone source regions show high ozone volume mixing ratios (VMRs) of around 11 ppmv at 33 km altitude, and the altitude of the maximum VMR increases from the tropics to the Arctic. The N2O VMRs show the largest value of 325 ppbv in the lower stratosphere, indicating their tropospheric origin, and they decrease with increasing altitude and latitude due to photolysis. The sub-tropical and polar mixing barriers are well represented in the N2O measurements. The most striking seasonal difference found in the measurements is the large polar descent in February–March. The observed features are interpreted with the help of SLIMCAT and Bremen Chemical Transport Model (CTMB) simulations. The SLIMCAT simulations are in good agreement with the measured O3 and N2O values, where the differences are within 1 ppmv for O3 and 15 ppbv for N2O. However, the CTMB simulations underestimate the tropical middle stratospheric O3 (1–1.5 ppmv) and the tropical lower stratospheric N2O (15–30 ppbv) measurements. A detailed analysis with various measurements and model simulations suggests that the biases in the CTMB simulations are related to its parameterised chemistry schemes.


Airborne measurements Stratospheric ozone Chemical transport model ASUR CTMB SLIMCAT UCI Parameterised chemistry 


  1. Berthet, G., Huret, N., Lefévre, F., Moreau, G., Robert, C., Chartier, M., Pomathiod, L., Pirre, M., Catoire, V.: On the ability of chemical transport models to simulate the vertical structure of the N2, NO2 and HNO3 species in the mid-latitude stratosphere. Atmos. Chem. Phys. 6, 1599–1609 (2006)CrossRefGoogle Scholar
  2. Bovensmann, H., Burrows, J.P., Buchwitz, M., Frerick, J., Noël, S., Rozanov, V.V., Chance, K.V., Goede, A.P.H.: SCIAMACHY—mission objectives and measurement modes. J. Atmos. Sci. 56, 127–150 (1999)CrossRefGoogle Scholar
  3. Bremer, H., von König, M., Kleinböhl, A., Küllmann, H., Künzi, K., Bramstedt, K., Burrows, J. P., Eichmann, K. -U., Weber, M., Goede, A.P.H.: Ozone depletion observed by ASUR during the Arctic winter 1999/2000. J. Geophys. Res. 107(D20) (2002). doi:10.1029/2001JD000546 Google Scholar
  4. Brühl, C., et al.: Halogen Occultation Experiment ozone channel validation. J. Geophys. Res. 101, 10217–10240 (1996)CrossRefGoogle Scholar
  5. Bruns, M., Bühler, S., Burrows, J.P., Heue, K.-P., Platt, U., Pundt, I., Richter, A., Rozanov, A., Wagner, T., Wang, P.: Retrieval of profile information from airborne multiaxis UV-Visible skylight absorption measurements. Appl. Opt. 43, 4415–4426 (2004)CrossRefGoogle Scholar
  6. Chipperfield, M.P.: Multiannual simulations with a three-dimensional chemical transport model. J. Geophys. Res. 104, 1781–1805 (1999)CrossRefGoogle Scholar
  7. Chipperfield, M.P.: New version of the TOMCAT/SLIMCAT off-line chemical transport model: intercomparison of stratospheric tracer experiments. Q. J. R. Meteorol. Soc. 132, 1179–1203 (2006). doi:10.1256/qj.05.51 CrossRefGoogle Scholar
  8. Crutzen, P.J., Schmailzl, U.: Chemical budgets of the stratosphere. Planet. Space. Sci. 31, 1009–1032 (1983)CrossRefGoogle Scholar
  9. Davies, S., Chipperfield, M.P., Carslaw, K.S., Sinnhuber, B.-M., Anderson, J.G., Stimpfle, R.M., Wilmouth, D.M., Fahey, D.W., Popp, P.J., Richard, E.C., von der Gathen, P., Jost, H., Webster, C.R.: Modeling the effect of denitrification on Arctic ozone depletion during winter 1999/2000. J. Geophys. Res. 107, 8322 (2003). doi:10.1029/2001JD000445 Google Scholar
  10. DeMore, W., Sander, S., Golden, D., Hampson, R., Kurylo, M., Howard, C., Ravishankara, A., Kolb, C., Molina, M.: Chemical kinetics and photochemical data for use in stratospheric modeling. JPL Publication 97-4 of Evaluation No. 12. Jet Propulsion Lab., Pasadena, CA (1997)Google Scholar
  11. Douglass, A.R., Prather, M.J., Hall, T.M., Strahan, S.E., Rasch, P.J., Sparling, L.C., Coy, L., Rodriguez, J.M.: Choosing meteorological input for the global modeling initiative assessment of high-speed aircraft. J. Geophys. Res. 104, 27545–27564 (1999)CrossRefGoogle Scholar
  12. Fang, T.M., Wofsy, S.C., Dalgarno, A.: Opacity distribution functions and absorption in Schumann–Runge bands of molecular-oxygen. Planet. Space. Sci. 22, 413–425 (1974)CrossRefGoogle Scholar
  13. Farman, J.C., Gardiner, B.G., Shanklin, J.D.: Large losses of total ozone over Antarctica reveal seasonal ClOx/NOx interactions. Nature 315, 207–210 (1985)CrossRefGoogle Scholar
  14. Feng, W: Fast ozone loss around the polar vortex during 2002/2003 Arctic Winter deep minihole event. Water Air Soil Pollut. 171, 383–397 (2005)CrossRefGoogle Scholar
  15. Feng, W., Chipperfield, M.P., Davies, S., Sen, B., Toon, G., Blavier, J.F., Webster, C.R., Volk, C.M., Ulanovsky, A., Ravegnani, F., von der Gathen, P., Jost, H., Richard, C.E., Claude, H.: Three-dimensional model study of the Arctic ozone loss in 2002/03 and comparison with 1999/2000 and 2003/04. Atmos. Chem. Phys. 5, 139–152 (2005)CrossRefGoogle Scholar
  16. Feng, W., Chipperfield, M.P., Davies, S., von der Gathen, P., Kyrö, E., Volk, C.M., Ulanovsky, A., Belyaev, G.: Large chemical ozone loss in 2004/2005 Arctic winter/spring. Geophys. Res. Lett. 34(9), L09803.1–L09803.6 (2007a). doi:10.1029/2006GL029098 Google Scholar
  17. Feng, W., Chipperfield, M.P., Dorf, M., Pfeilsticker, K., Ricaud, P.: Mid-latitude ozone changes: studies with a 3-D CTM forced by ERA-40 analyses. Atmos. Chem. Phys. 7, 2357–2369 (2007b)CrossRefGoogle Scholar
  18. Fix, A., Ehret, G., Hentje, H., et al.: SCIAMACHY validation by aircraft remote measurements: design, execution, and first results of the SCIA-VALUE mission. Atmos. Chem. Phys. 5, 1273–1289 (2005)CrossRefGoogle Scholar
  19. Fortuin, P., Kelder, H.: An ozone climatology based on ozonesonde and satellite measurements. J. Geophys. Res. 103, 31709–31734 (1998)CrossRefGoogle Scholar
  20. Froidevaux, L., Allen, M., Yung, Y.L.: A critical analysis of ClO and O3 in the mid-latitude stratosphere. J. Geophys. Res. 90, 12999–13029 (1985)CrossRefGoogle Scholar
  21. Hall, T.M., Waugh, D.W., Boering, K.A., Plumb, R: Evaluation of transport in stratospheric models. J. Geophys. Res. 104, 18815–18839 (1999)CrossRefGoogle Scholar
  22. Hirota, I., Hirooka, T., Shiotani, M.: Upper stratospheric circulations in the two hemispheres observed by satellites. Q. J. R. Meteorol. Soc. 109, 443–454 (1983)CrossRefGoogle Scholar
  23. Jiang, Y.B., et al.: Validation of Aura Microwave Limb Sounder Ozone by ozonesonde and lidar measurements. J. Geophys. Res. 112, D24S34 (2007). doi:10.1029/2007JD008776 CrossRefGoogle Scholar
  24. Khosravi, R., Brasseur, G.P., Smith, A.K., Rusch, D.W., Waters, J.W., Russell III, J.M.: Significant reduction in the stratospheric ozone deficit using a three-dimensional model constrained with UARS data. J. Geophys. Res. 103, 16203–16219 (1998)CrossRefGoogle Scholar
  25. Kiesewetter, G., Sinnhuber, B.-M., Weber, M., Burrows, J.P.: Attribution of stratospheric ozone trends to chemistry and transport: a modelling study. Atmos. Chem. Phys. 10, 12073–12089 (2010)CrossRefGoogle Scholar
  26. Kleinböhl, A., Kuttippurath, J., Sinnhuber, M., Sinnhuber, B.-M., Küllmann, H., Künzi, K., Notholt, J.: Rapid meridional transport of tropical airmasses to the Arctic during the major stratospheric warming in January 2003. Atmos. Chem. Phys. 5, 1291–1299 (2005). doi:10.5194/acp-5-1291-2005 CrossRefGoogle Scholar
  27. Kuttippurath, J.: Study of Stratospheric Composition using Airborne Submillimeter Radiometry and a Chemical Transport Model. Ph.D. thesis, Logos Verlag, Berlin. ISBN 3-8325-11069-9 (2005)Google Scholar
  28. Kuttippurath, J., et al.: Intercomparison of ozone profile measurements from ASUR, SCIAMACHY, MIPAS, OSIRIS, and SMR. J. Geophys. Res. 112, D09311 (2007). doi:10.1029/2006JD007830 CrossRefGoogle Scholar
  29. Lait, L.: An alternative form for potential vorticity. J. Atmos. Sci. 51, 1754–1759 (1994)CrossRefGoogle Scholar
  30. Lamsal, L., Weber, M., Tellmann, S., Burrows, J.P.: Ozone column classified climatology of ozone and temperature profiles based on ozonesonde and satellite data. J. Geophys. Res. 109, D20 (2004). doi:10.1029/2004JD004680 CrossRefGoogle Scholar
  31. McCormack, J.P., Eckermann, S.D., Coy, L., Allen, D.R., Kim, Y.-J., Hogan, T., Lawrence, B., Stephens, A., Browell, E.V., Burris, J., McGee, T., Trepte, C.R.: NOGAPS-ALPHA model simulations of stratospheric ozone during the SOLVE-2 campaign. Atmos. Chem. Phys. 4, 2401–2423 (2004)CrossRefGoogle Scholar
  32. McPeters, R.D.: Ozone Profile Comparisons in the Atmospheric Effects of Stratospheric Air-craft, vol. 1292. Edited by M.J. Prather and E.E. Remsberg, Report of the 1992 Models and Measurements Workshop, NASA Ref. Publ., pp. D1–D37 (1993)Google Scholar
  33. McLinden, C.A., Olsen, S.C., Hannegan, B.J., Wild, O., Prather, M.J., Sundet, J.: Stratospheric ozone in the 3-D models: a simple chemistry and cross-tropopause flux. J. Geophys. Res. 105, 14653–14665 (2000)CrossRefGoogle Scholar
  34. Monge-Sanz, B.M., Chipperfield, M.P., Simmons, A.J., Uppala, S.M.: Mean age of air and transport in a CTM: comparison of different ECMWF analyses. Geophys. Res. Lett. 34, L04801 (2007). doi:10.1029/2006GL028515 CrossRefGoogle Scholar
  35. Nagatani, R., Rosenfield, J.: Temperature, net heating and circulation. In: Prather, M.J., Remsberg, E.E. (eds.) The Atmospheric Effects of Stratospheric Aircraft, vol. 1292. Report of the 1992 Models and Measurements Workshop: NASA Ref. Publ., pp. A1–A47 (2001)Google Scholar
  36. Nakamura, N., Ma, J.: Modified Langrangian-mean diagnostics of the stratospheric polar vortices, 2. Nitrous oxide and seasonal barrier migration in the Cryogenic Limb Array Etalon Spectrometer and SKYHI general circulation model. J. Geophys. Res. 102, 25721–25735 (1997)CrossRefGoogle Scholar
  37. Olsen, S.C., Mclinden, C.A., Prather, M.J.: Stratospheric N2O–NOy system: testing uncertainties in a three-dimensional frame work. J. Geophys. Res. 106(D22), 28771–28784 (2001)CrossRefGoogle Scholar
  38. Park, J.H., Ko, M., Jackman, C., Plumb, A., Kaye, J., Sage, K.: Models and Measurements: Intercomparison—II. NASA, Langely Research Center, VA (1999)Google Scholar
  39. Pawson, S., Fiorino, M.: A comparison of reanalyses in the tropical stratosphere. Part 1: Thermal structure and the annual cycle. Clim. Dyn. 14, 631–644 (1998)CrossRefGoogle Scholar
  40. Plumb, R.A., Ko, M.K.W.: Interrelationships between mixing ratios of long-lived stratospheric constituents. J. Geophys. Res. 97, 10145–10156 (1992)Google Scholar
  41. Prather, M.J.: Numerical advection by conservation of second order moments. J. Geophys. Res. 91, 6671–6681 (1986)CrossRefGoogle Scholar
  42. Prather, M.J., Garcia, M.M., Suozzo, R., Rind, D.: Global impact of the Antartic ozone hole: dynamical dilution with a three-dimensional chemical transport model. J. Geophys. Res. 95, 3449–3471 (1990)CrossRefGoogle Scholar
  43. Randall, C.E., Rusch, D., Bevilacqua, R., Hoppel, K.W., Lumpe, J.D.: Validation of POAM-3 O3: comparison to ozonesonde and satellite data. J. Geophys. Res. 108, 4367 (2003). doi:10.1029/2002JD002944 CrossRefGoogle Scholar
  44. Randel, W.J., Gille, J.C., Roche, A.E., Kumer, J.B., Mergenthaler, J.L., Waters, J.W., Fishbein, E.F., Lahoz, W.A.: Stratospheric transport from tropics to middle latitudes by planetary-wave mixing. Nature. 365, 533–535 (1993)CrossRefGoogle Scholar
  45. Rasch, P.J., Boville, B.A., Brasseur, G.P.: A three-dimensional general circulation model with coupled chemistry for the middle atmosphere. J. Geophys. Res. 100, 9041–9071 (1995)CrossRefGoogle Scholar
  46. Rodgers, C.D.: Retrieval of atmospheric temperature and composition from remote measurements of thermal radiation, Rev. Geophys. 14, 609–624 (1976)CrossRefGoogle Scholar
  47. Sander, S., et al.: Chemical kinetics and photochemical data for use in stratospheric modeling, Jet Propul. Lab., California. Eval. 13, JPL Publ. 033 (2003)Google Scholar
  48. Shine, K.P.: The middle atmosphere in the absence of dynamical heat fluxes. Q. J. R. Meteorol. Soc. 113, 603–633 (1987)CrossRefGoogle Scholar
  49. Sinnhuber, B.-M., Weber, M., Amankwah, A., Burrows, J.P.: Total ozone during the unusual Antarctic winter of 2002. Geophys. Res. Lett. 30, 1580 (2003). doi:10.1029/2002GL016798 CrossRefGoogle Scholar
  50. Siskind, D.E., Connor, B.J., Eckman, R.S., Remsberg, E.E., Tsou, J.J., Parrrish, A.: An intercomparison of model ozone deficits in the upper stratosphere and mesosphere from two data sets. J. Geophys. Res. 100, 11191–11201 (1995)CrossRefGoogle Scholar
  51. Solomon, S., Rusch, D.W., Thomas, R.J., Eckman, R.S.: Comparison of mesospheric ozone abundances measured by the Solar Mesosphere Explorer and model calculations. Geophys. Res. Lett. 10, 249–252 (1983)CrossRefGoogle Scholar
  52. Stohl, A., Cooper, O., James, P.: A cautionary note on the use of meteorological analyses field for quantifying atmospheric mixing. J. Atmos. Sci. 61, 1446–1453 (2004)CrossRefGoogle Scholar
  53. Strahan, S.E., Polansky, B.C.: Meteorological implementation issues in chemistry and transport models. Atmos. Chem. Phys. 6, 2895–2910 (2006)CrossRefGoogle Scholar
  54. Strong, K., Wolff, M.A., Kerzenmacher, T.E., et al.: Validation of ACE-FTS N2O measurements. Atmos. Chem. Phys. 8, 4759–4786 (2008). doi:10.5194/acp-8-4759-2008 CrossRefGoogle Scholar
  55. Swinbank, R., O’Neill, A.: A stratosphere-troposphere data assimilation system. Mon. Weather Rev. 122, 686–702 (1994)CrossRefGoogle Scholar
  56. Thompson, A., Witte, J., McPeters, R., Oltmans, S., Schmidlin, F., Logan, J., Fujiwara, M., Kirchhoff, V., Posny, F., Coetzee, G., Hoegger, B., Kawakami, S., Ogawa, T., Johnson, B., Vömel, H., Labow, G.: Southern Hemisphere Additional Ozonesondes (SHADOZ) 1998–2000 tropical ozone climatology 1. Comparison with Total Ozone Mapping Spectrometer (TOMS) and ground-based measurements. J. Geophys. Res. 108, 8238 (2003a). doi:10.1029/2001JD000967 CrossRefGoogle Scholar
  57. Thompson, A., Witte, J., Oltmans, S., Schmidlin, F., Logan, J., Fujiwara, M., Kirchhoff, V., Posny, F., Coetzee, G., Hoegger, B., Kawakami, S., Ogawa, T., Fortuin, J., Kelder, H.: Southern Hemisphere Additional Ozonesondes (SHADOZ) 1998–2000 tropical ozone climatology 2. Tropospheric variability and the zonal wave-one. J. Geophys. Res. 108, 8241 (2003b). doi:10.1029/2002JD002241 CrossRefGoogle Scholar
  58. von König, M., Bremer, H., Eyring, V., Goede, A., Hetzheim, H., Kleipool, Q., Küllmann, H., Künzi, K.: An Airborne Submm Radiometer for the Observation of Stratospheric Trace Gases: Microwave Radiometry and Remote Sensing of the Earth’s Surface and Atmosphere. Edited by P. Pampaloni and S. Paloscia. VSP, Utrecht, pp. 409–415 (2000)Google Scholar
  59. Waugh, D.W.: Seasonal variation of isentropic transport out of the tropical stratosphere. J. Geophys. Res. 101, 4007–4023 (1996)CrossRefGoogle Scholar
  60. Waugh, D.W., Hall, T.M.: Age of stratospheric air: theory, observations, and models. Rev. Geophys. 40(4), 1010 (2002). doi:10.1029/2000RG000101 CrossRefGoogle Scholar
  61. Wirth, M., Renger, W.: Evidence of large scale ozone depletion within the Arctic polar vortex 94/95 based on airborne LIDAR measurements. Geophys. Res. Lett. 13, 813–816 (1996)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Jayanarayanan Kuttippurath
    • 1
    • 2
  • Armin Kleinböhl
    • 1
    • 3
  • Holger Bremer
    • 1
    • 4
  • Harry Küllmann
    • 1
  • Justus Notholt
    • 1
  • Björn-Martin Sinnhuber
    • 1
    • 5
  • Wuhu Feng
    • 6
  • Martyn Chipperfield
    • 6
  1. 1.Institute of Environmental PhysicsUniversity of BremenBremenGermany
  2. 2.LATMOS/CNRS/UPMCParisFrance
  3. 3.JPL/NASACalifornia Institute of TechnologyPasadenaUSA
  4. 4.Physikalisch-Technische BundesanstaltBraunschweigGermany
  5. 5.Institute for Meteorology and Climate ResearchKarlsruhe Institute of TechnologyKarlsruheGermany
  6. 6.School of the EnvironmentUniversity of LeedsLeedsUK

Personalised recommendations