Advertisement

Journal of Atmospheric Chemistry

, Volume 63, Issue 2, pp 109–124 | Cite as

First thorough identification of factors associated with Cd, Hg and Pb concentrations in mosses sampled in the European Surveys 1990, 1995, 2000 and 2005

  • Marcel Holy
  • Roland Pesch
  • Winfried Schröder
  • Harry Harmens
  • Ilia Ilyin
  • Renate Alber
  • Yuliya Aleksiayenak
  • Oleg Blum
  • Mahmut Coşkun
  • Maria Dam
  • Ludwig De Temmerman
  • Natalia Fedorets
  • Rui Figueira
  • Marina Frolova
  • Marina Frontasyeva
  • Natalia Goltsova
  • Laura Gonzalez Miqueo
  • Krystyna Grodzińska
  • Zvonka Jeran
  • Szymon Korzekwa
  • Miodrag Krmar
  • Eero Kubin
  • Kestutis Kvietkus
  • Martin Larsen
  • Sébastien Leblond
  • Siiri Liiv
  • Sigurður Magnússon
  • Blanka Maňkovská
  • Raluca Mocanu
  • Juha Piispanen
  • Åke Rühling
  • Jesus Santamaria
  • Eiliv Steinnes
  • Ivan Suchara
  • Lotti Thöni
  • Gábor Turcsányi
  • Viktor Urumov
  • Bert Wolterbeek
  • Lilyana Yurukova
  • Harald G. Zechmeister
Article

Abstract

The aim of this study was, for the first time ever, to thoroughly identify the factors influencing Cd, Hg and Pb concentrations in mosses sampled within the framework of the European Heavy Metals in Mosses Surveys 1990–2005. These investigations can be seen as a follow up of a previous study where only the moss data recorded in the survey 2005 was included in the analysis (Schröder et al. 2010). The analyses of this investigation give a complete overview on the statistical association of Cd, Hg and Pb concentrations in mosses and sampling site-specific and regional characteristics, encompassing data from 4661 (1990), 7301 (1995), 6764 (2000) and 5600 (2005) sampling sites across Europe. From the many metals monitored in the European moss surveys, Cd, Hg and Pb were used as examples, since only for these three metals deposition measurements are being recorded in the framework of the European Monitoring and Evaluation Programme (EMEP). As exemplary case studies revealed that other factors besides atmospheric deposition of metals influence the element concentrations in mosses, the moss datasets of the above mentioned surveys were analysed by means of bivariate statistics and decision tree analysis in order to identify factors influencing metal bioaccumulation. In the analyses we used the metadata recorded during the sampling as well as additional geodata on, e.g., depositions, emissions and land use. Bivariate Spearman correlation analyses showed the highest correlations between Cd and Pb concentrations in mosses and EMEP modelled total deposition data (0.62 ≤ rs ≤ 0.73). For Hg the correlations with all the tested factors were considerably lower (e.g. total deposition r s  ≤ 0.24). Decision tree analyses by means of Classification and Regression Trees (CART) identified the total deposition as the statistically most significant factor for the Cd and Pb concentrations in the mosses in all four monitoring campaigns. For Hg, the most significant factor in 1990 as identified by CART was the distance to the nearest Hg source recorded in the European Pollutant Emission Register, in 1995 and 2000 it was the analytical method, and in 2005 it was the sampled moss species. The strong correlations between the Cd and Pb concentrations in the mosses and the total deposition can be used to calculate deposition maps with a regression kriging approach on the basis of surface maps on the element concentrations in the mosses.

Keywords

Biomonitoring Evaluation procedures Statistics Spatiotemporal analyses 

Notes

Acknowledgements

We thank the United Kingdom Department for Environment, Food and Rural Affairs (Defra; contract EPG 1/3/170, EPG 1/3/205, AQ03509 and AQ0810), the UNECE (Trust Fund) and the Natural Environment Research Council (NERC) for funding the ICP Vegetation Programme Coordination Centre at CEH Bangor, UK. The contributions of many more scientists and all the funding bodies in each country are gratefully acknowledged (for full details see Rühling (1994), Rühling and Steinnes (1998), Buse et al. (2003) and Harmens et al. (2008a)).

References

  1. Aas, W., Breivik, K.: Heavy metals and POP measurements, 2006. EMEP/CCC-Report 4/2008 (2008)Google Scholar
  2. Aničić, M., Frontasyeva, M.V., Tomašević, M., Popović, A.: Assessment of atmospheric deposition of heavy metals and other elements in belgrade using the moss biomonitoring technique and neutron activation analysis. Environ. Monit. Assess. 129, 207–219 (2007)CrossRefGoogle Scholar
  3. Bargagli, R.: The element composition of vegetation and the possible incidence of soil contamination of samples. Sci. Total Environ. 176, 121–128 (1995)CrossRefGoogle Scholar
  4. Berg, T., Steinnes, E.: Use of mosses (Hylocomium splendens and Pleurozium schreberi) as biomonitors of heavy metal deposition: From relative to absolute deposition values. Environ. Pollut. 98(1), 61–71 (1997)CrossRefGoogle Scholar
  5. Berg, T., Røyset, O., Steinnes, E.: Moss (Hylocomium splendens) used as biomonitor of atmospheric trace element deposition: estimation of uptake efficiencies. Atmos. Environ. 29(3), 353–360 (1995)CrossRefGoogle Scholar
  6. Berlekamp, J., Herpin, U., Matthies, M., Lieth, H., Markert, B., Weckert, V., Wolterbeek, B., Verburg, T., Zinner, H.-J., Siewers, U.: Geographic classification of heavy metal concentrations in mosses and stream sediments in the Federal Republic of Germany. Water, Air, & Soil Pollution 101(1–4), 177–195 (1998)CrossRefGoogle Scholar
  7. Breiman, L., Friedman, J.A., Olshen, R.A., Stone, C.J.: Classification and regression trees. Wadsworth, Belmont (1984)Google Scholar
  8. Buse, A., Norris, D., Harmens, H., Büker, P., Ashenden, T., Mills, G.: Heavy metals in European mosses: 2000/2001 survey. ICP Vegetation Programme Coordination Centre, Centre for Ecology and Hydrology, Bangor, UK (2003). http://icpvegetation.ceh.ac.uk
  9. Čeburnis, D., Valiulis, D.: Investigation of absolute metal uptake efficiency from precipitation in moss. In: The Science of the Total Environment 226, pp. 247–253 (1999).Google Scholar
  10. Coşkun, M., Frontasyeva, M.V., Steinnes, E., Cotuk, A.Y., Pavlov, S.S., Coşkun, M., Sazonov, A.S., Cayir, A., Belivermis, M.: Atmospheric deposition of heavy metals in thrace studied by analysis of moss (Hypnum cupressiforme). Bull. Environ. Contam. Toxicol. 74, 201–209 (2005)CrossRefGoogle Scholar
  11. Couto, J.A., Fernández, J.A., Aboal, J.R., Carballeira, A.: Active biomonitoring of element uptake with terrestrial mosses: a comparison of bulk and dry deposition. Sci. Total Environ. 324(1–3), 211–222 (2004)Google Scholar
  12. De Temmerman, L., Claeys, N., Roekens, E., Guns, M.: Biomonitoring of airborne mercury with perennial ryegrass cultures. Environ. Pollut. 146, 458–462 (2007)CrossRefGoogle Scholar
  13. De Temmerman, L., Waegeneers, N., Claeys, N., Roekens, E.: Comparison of concentrations of mercury in ambient air to its accumulation by leafy vegetables: an important step in the terrestrial food chain analysis. Environ. Pollut. 157, 1337–1341 (2009)CrossRefGoogle Scholar
  14. Fernández, J.A., Carballeira, A.: Biomonitoring metal deposition in Galicia (NW Spain) with mosses: factors affecting bioconcentration. Chemosphere 46, 535–542 (2002)CrossRefGoogle Scholar
  15. Figueira, R., Sérgio, C., Sousa, A.J.: Distribution of trace metals in moss biomonitors and assessment of contamination sources in Portugal. Environ. Pollut. 118, 153–163 (2002)CrossRefGoogle Scholar
  16. Frahm, J.P.: Moose als Bioindikatoren, Wiesbaden (1998).Google Scholar
  17. Fränzle, O., Straškraba, M., Jørgensen, S.E.: Ecology and ecotoxicology. Ullmann´s encyclop. ind. chem. Vol. B7. Weinheim, VCH 19–154 (1995).Google Scholar
  18. Gramatica, P., Battaini, F., Giani, E., Papa, E., Jones, R.J.A., Preatoni, D.: Analysis of mosses and soils for quantifying heavy metal concentrations in Siciliy: a multivariate and spatial analytical approach. Environ. Sci. Pollut. Res. 13(1), 28–36 (2006)CrossRefGoogle Scholar
  19. Gusev, A., Ilyin, I., Rozovskaya, O., Shatalov, V., Sokovych, V., Travnikov, O.: Modelling of heavy metals and persistant organic pollutants: New developments. EMEP/MSC-E Technical Report 1/2009, p. 149 (2009)Google Scholar
  20. Hagl, S.: Schnelleinstieg Statistik—Daten erheben, analysieren, präsentieren, Freiburg (2008).Google Scholar
  21. Harmens, H., Norris, D. and the participants of the moss survey: Spatial and temporal trends in heavy metal accumulation in mosses in Europe (1990–2005). Programme Coordination Centre for the ICP Vegetation, Centre for Ecology and Hydrology, Environment Centre Wales, Bangor, UK, p. 54 (2008a).Google Scholar
  22. Harmens, H., Norris, D., Cooper, D., Hall, J. and the participants of the moss survey: Spatial trends in nitrogen concentrations in mosses across Europe in 2005/2006. Programme Coordination Centre for the ICP Vegetation, Centre for Ecology and Hydrology, Environment Centre Wales, Bangor, UK, p. 26 (2008b).Google Scholar
  23. Harmens, H., Norris, D.A., Steinnes, E., Kubin, E., Piispanen J., Alber, R., Aleksiayenak, Y., Blum, O., Coşkun, M., Dam, M., De Temmerman L., Fernández, J.A., Frolova, M., Frontasyeva, M., González-Miqueo, L., Grodzińska, K., Jeran, Z., Korzekwa, S., Krmar, M., Kvietkus, K., Leblond, S., Liiv, S., Magnússon, S.H., Maňkovská, B., Pesch, R., Rühling, Å., Santamaria, J.M., Schröder, W., Spiric, Z., Suchara, I., Thöni, L., Urumov, V., Yurukova, L., Zechmeister, H.G.: Mosses as biomonitors of atmospheric heavy metal deposition: spatial (2005) and temporal (199–205) trends in Europe. Environ. Pollut. (Submitted).Google Scholar
  24. Hengl, T., Heuvelink, G.B.M., Rossiter, D.G.: About regression-kriging: from equations to case studies. Comput. Geosci. 33(10), 1301–1315 (2007)CrossRefGoogle Scholar
  25. Herpin, U., Berlekamp, J., Markert, B., Wolterbeek, B., Grodzinska, K., Siewers, U., Lieth, H., Weckert, V.: The distribution of heavy metals in a transect of the three states the Netherlands, Germany and Poland, determined with the aid of moss monitoring. Sci. Total Environ. 187, 185–198 (1996)CrossRefGoogle Scholar
  26. Herpin, U., Siewers, U., Markert, B., Rosolen, V., Breulmann, G., Bernoux, M.: Second German heavy-metal survey by means of mosses, and comparison of the first and second approach in Germany and other European countries. Environ. Sci. Pollut. Res. 11, 57–66 (2004)CrossRefGoogle Scholar
  27. ICP Vegetation: Heavy metals in European mosses: 2005/2006 survey. Monitoring manual. ICP Vegetation Coordination Centre, Centre for Ecology and Hydrology, Bangor, UK (2005).Google Scholar
  28. Ilyin, I., Travnikov O.: Modelling of heavy metal airborne pollution in Europe: evaluation of the model performance. EMEP/MSC-E Technical Report 8/2005. Meteorological Synthesizing Centre – East, Moscow, Russian Federation (2005).Google Scholar
  29. Ilyin, I., Rozovskaya, O., Travnikov, O., Aas, W., Hettelingh, J.P., Reinds, G.J.: Heavy metals: Transboundary pollution of the environment. EMEP Status Report 2/2008. Meteorological Synthesizing Centre – East, Moskau. p. 94 (2008).Google Scholar
  30. Keil, M., Kiefl, R., Strunz, G.: Corine Landcover 2000 – France. – Oberpfaffenhofen, Final Report. German Aerospace Center, German Remote Sensing Data Center (2005).Google Scholar
  31. Kleppin, L., Pesch, R., Schröder, W.: CHAID-Models on boundary conditions of metal accumulation in mosses collected in Germany 1990, 1995 and 2000. Atmos. Environ. 42(21), 5220–5231 (2008)CrossRefGoogle Scholar
  32. Lindberg, S.E., Turner, R.R.: Factors influencing atmospheric deposition, stream exposrt, and landscape accumulation of trace metals in forested watersheds. Water Air Soil Pollut. 39, 123–156 (1988)CrossRefGoogle Scholar
  33. Odeh, I.O.A., McBratney, A.B., Chittleborough, D.J.: Further results on prediction of soil properties from terrain attributes: heterotopic cokriging and regression-kriging. Geoderma 67(3–4), 215–226 (1995)CrossRefGoogle Scholar
  34. Okland, T., Okland, R.H., Steinnes, E.: Element concentrations in the boreal forest moss Hylocomium splendens: variation related to gradients in vegetation and local environmental factors. Plant Soil 209, 71–83 (1999)CrossRefGoogle Scholar
  35. Osborn, D., Weeks, J.M., Hankard, P., Dale, L.: Potential Uses of Biomonitoring in Pollution Control - An Introductory Guide. Environment Agency Technical Report, p. 319 (2000).Google Scholar
  36. Pakeman, R., Osborn, D., Hankard, P.: Plants as Biomonitors of Atmospheric Pollution: A review of their Potential Use in Integrated Pollution Control. Environment Agency Technical Report, p. 318 (2000).Google Scholar
  37. Pesch, R., Schröder, W.: Spatiotemporal variability of metal accumulation in mosses. Analysis of measurement data and metadata by statistics and GIS. Nova Hedwig. 82(3–4), 447–466 (2006a)CrossRefGoogle Scholar
  38. Pesch, R., Schröder, W.: Integrative exposure assessment through classification and regression trees on bioaccumulation of metals, related sampling site characteristics and ecoregions. Ecol. Inform. 1(1), 55–65 (2006b)CrossRefGoogle Scholar
  39. Pesch, R., Schröder, W., Mohr, K., Matter, Y., Kleppin, L., Holy, M., Goeritz, A., Genßler, L.: Moos-Monitoring 2005 / 2006: Schwermetalle IV und Gesamtstickstoff. - Berlin (Umweltforschungsplan des Bundesministers für Umwelt, Naturschutz und Reaktorsicherheit. FuE-Vorhaben 205 64 200, Final Report, on behalf of the Federal Environment Agency), 90 pp., 11 Tables, 2 Figures (Text); 51 pp. +41 Maps, 34 Tables, 46 Diagrams (Annex) (2007).Google Scholar
  40. Rühling, Å.: Atmospheric heavy metal deposition in Europe – estimation based on moss analysis. NORD 1994:9. Nordic Council of Ministers, Copenhagen, Denmark (1994).Google Scholar
  41. Rühling, A., Tyler, G.: An ecological approach to the lead problem. Bot. Not. 121, 321–343 (1968)Google Scholar
  42. Rühling, A., Tyler, G.: Ecology of heavy metals – a regional and historical study. Bot. Not. 122, 248–259 (1969)Google Scholar
  43. Rühling, A., Tyler, G.: Sorption and retention of heavy metals in the woodland moss Hylocomium splendens (Hedw.). Br. Et Sch. Oikos 21, 248–342 (1970)CrossRefGoogle Scholar
  44. Rühling, Å., Steinnes, E.: Atmospheric heavy metal deposition in Europe 1995–1996. NORD 1998:15, Nordic Council of Ministers, Copenhagen, Denmark (1998).Google Scholar
  45. Schroeder, W.H., Munthe, J.: Atmospheric mercury – an overview. Atmos. Environ. 32(5), 809–822 (1998)CrossRefGoogle Scholar
  46. Schröder, W., Pesch, R., Englert, C., Harmens, H., Suchara, I., Zechmeister, H.G., Thöni, L., Maňkovská, B., Jeran, Z., Grodzinska, K., Alber, R.: Metal accumulation in mosses across national boundaries: uncovering and ranking causes of spatial variation. In: Environ. Pollut. 151, 377–388 (2008)CrossRefGoogle Scholar
  47. Schröder, W., Holy, M., Pesch, R., Harmens, H., Ilyin, I., Steinnes, E., Alber, R., Aleksiayenak, Y., Blum, O., Coşkun, M., Dam, M., De Temmerman, L., Frolova, M., Frontasyeva, M., González-Miqueo, L., Grodzińska, K., Jeran, Z., Korzekwa, S., Krmar, M., Kubin, E., Kvietkus, K., Leblond, S., Liiv, S., Magnússon,S., Maňkovská, B., Piispanen, J., Rühling, Å., Santamaria, J., Spiric, Z., Suchara, I., Thöni, L., Urumov, V., Yurukova, L., Zechmeister, H.G.: Are cadmium, lead and mercury concentrations in mosses across Europe primarily determined by atmospheric deposition of these metals? J. Soil Sediments (in press) (2010).Google Scholar
  48. Sharma, S.: Marchantia polymorpha L.: A Bioaccumulator. Aerobiologia 23, 181–187 (2007)CrossRefGoogle Scholar
  49. Steinnes, E., Rühling, Å., Lippo, H., Mäkinen, A.: Reference material for large-scale metal deposition surveys. Accredit. Qual. Assur. 2, 243–249 (1997)CrossRefGoogle Scholar
  50. Steinnes, E., Berg, T., Sjøbakk, T.E.: Temporal and spatial trends in Hg deposition monitored by moss analysis. Sci. Total Environ. 304, 215–219 (2003)CrossRefGoogle Scholar
  51. Stevens, S.S.: On the theory of scales of measurement. Science 103, 677–680 (1946)CrossRefGoogle Scholar
  52. Szczepaniak, K., Astel, A., Simeonov, V., Tsakovski, S., Biziuk, M., Bode, P., Przyjazny, A.: Comparison of dry and living Sphagnum palustre moss samples in determining their biocumulative capability as biomonitoring tools. J. Environ. Sci. Health, Part A 42(8), 1101–1115 (2007)CrossRefGoogle Scholar
  53. Timofeev, R.: Classification and Regression Trees (CART). Theory and Applications. Center of Applied Statistics and Economics. Humboldt University, Berlin (2004)Google Scholar
  54. Zechmeister, H.G.: Correlation between altitude and heavy metal deposition in the Alps. Environ. Pollut. 89, 73–80 (1995)CrossRefGoogle Scholar
  55. Zechmeister, H.G., Grodzinska, K., Szarek-Lukaszewska, G.: Bryophytes. In: Markert, B.A., Breure, A.M., Zechmeister, H.G. (eds.) Bioindicators & biomonitors – principles. Concepts and Applications, Amsterdam (2003)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Marcel Holy
    • 1
  • Roland Pesch
    • 1
  • Winfried Schröder
    • 1
  • Harry Harmens
    • 2
  • Ilia Ilyin
    • 3
  • Renate Alber
    • 4
  • Yuliya Aleksiayenak
    • 5
  • Oleg Blum
    • 6
  • Mahmut Coşkun
    • 7
  • Maria Dam
    • 8
  • Ludwig De Temmerman
    • 9
  • Natalia Fedorets
    • 10
  • Rui Figueira
    • 11
  • Marina Frolova
    • 12
  • Marina Frontasyeva
    • 13
  • Natalia Goltsova
    • 14
  • Laura Gonzalez Miqueo
    • 15
  • Krystyna Grodzińska
    • 16
  • Zvonka Jeran
    • 17
  • Szymon Korzekwa
    • 18
  • Miodrag Krmar
    • 19
  • Eero Kubin
    • 20
  • Kestutis Kvietkus
    • 21
  • Martin Larsen
    • 22
  • Sébastien Leblond
    • 23
  • Siiri Liiv
    • 24
  • Sigurður Magnússon
    • 25
  • Blanka Maňkovská
    • 26
  • Raluca Mocanu
    • 27
  • Juha Piispanen
    • 20
  • Åke Rühling
    • 28
  • Jesus Santamaria
    • 15
  • Eiliv Steinnes
    • 29
  • Ivan Suchara
    • 30
  • Lotti Thöni
    • 31
  • Gábor Turcsányi
    • 32
  • Viktor Urumov
    • 33
  • Bert Wolterbeek
    • 34
  • Lilyana Yurukova
    • 35
  • Harald G. Zechmeister
    • 36
  1. 1.University of VechtaVechtaGermany
  2. 2.Centre for Ecology and Hydrology, BangorGwyneddUK
  3. 3.Meteorological Synthesizing Centre East of EMEPMoscowRussia
  4. 4.Environmental Agency of BolzanoLaivesItaly
  5. 5.International Sakharov Environmental UniversityMinskBelarus
  6. 6.National Botanical Garden, Academy of Science of UkraineKyivUkraine
  7. 7.Canakkale Onsekiz Mart UniversityÇanakkaleTurkey
  8. 8.Food, Veterinary and Environmental AgencyTórshavn (Faroe Islands)Denmark
  9. 9.Veterinary and Agrochemical Research CentreTervurenBelgium
  10. 10.Forest Research Institute, Karelian Research CentrePetrozavodskRussian Federation
  11. 11.Jardim Botânico da Universidada de LisboaLisbonPortugal
  12. 12.Latvian Environment, Geology and Meteorology AgencyRigaLatvia
  13. 13.Joint Institute for Nuclear ResearchDubnaRussia
  14. 14.St Petersburg State UniversitySt PetersburgRussian Federation
  15. 15.University of NavarraPamplonaSpain
  16. 16.Institute of Botany, Polish Academy of SciencesKrakowPoland
  17. 17.Jožef Stefan Institute, Department of Environmental SciencesLjubljanaSlovenia
  18. 18.KatowicePoland
  19. 19.Faculty of ScienceUniversity of Novi SadNovi SadSerbia
  20. 20.Finnish Forest Research InstituteMuhosFinland
  21. 21.Institute of PhysicsVilniusLithuania
  22. 22.National Environmental Research InstituteUniversity of AarhusRoskildeDenmark
  23. 23.Muséum National d’Histoire NaturelleParisFrance
  24. 24.Tallinn Botanic GardenTallinnEstonia
  25. 25.Icelandic Institute of Natural HistoryReykjavíkIceland
  26. 26.Institute of Landscape Ecology, Slovak Academy of ScienceBratislavaSlovakia
  27. 27.University of IasiIasiRomania
  28. 28.OskarshamnSweden
  29. 29.Department of ChemistryNorwegian University of Science and TechnologyTrondheimNorway
  30. 30.Silva Tarouca Research Institute for Landscape and Ornamental GardeningPruhoniceCzech Republic
  31. 31.FUB-Research Group for Environmental MonitoringRapperswilSwitzerland
  32. 32.Szent István UniversityGödöllőHungary
  33. 33.Saints Cyril and Methodius UniversitySkopjeFYR Macedonia
  34. 34.University of Technology, RIDDelftThe Netherlands
  35. 35.Bulgarian Academy of SciencesSofiaBulgaria
  36. 36.University of ViennaViennaAustria

Personalised recommendations