Advertisement

Journal of Atmospheric Chemistry

, Volume 61, Issue 2, pp 133–154 | Cite as

Chemical ionisation mass spectrometer for measurements of OH and Peroxy radical concentrations in moderately polluted atmospheres

  • Alexandre KukuiEmail author
  • Gérard Ancellet
  • Georges Le Bras
Article

Abstract

A new version of an atmospheric pressure chemical ionisation mass spectrometer has been developed for ground based in situ atmospheric measurements of OH and total peroxy (HO2 + organic peroxy) radicals. Based on the previously developed principle of chemical conversion of OH radicals to H2SO4 in reaction with SO2 and detection of H2SO4 using an ion molecule reaction with NO 3 , the new instrument is equipped with a turbulent chemical conversion reactor allowing for measurements in moderately polluted atmosphere at NO concentrations up to several ppb. Unlike other similar devices, where the primary NO 3 ions are produced using radioactive ion sources, the new instrument is equipped with a specially developed corona discharge ion source. According to laboratory measurements, the overall accuracy and detection limits are estimated to be, respectively, 25% and 2 × 105 molecule cm-3 for OH and 30% and 1 × 105 molecule cm-3 for HO2 at 10 min integration times. The detection limit for measurements of OH radicals under polluted conditions is 5 × 105 molecules cm-3 at 10 min integration times. Examples of ambient air measurements during a field campaign near Paris in July 2007 are presented demonstrating the capability of the new instrument, although with reduced performance due to the employment of non isotopic SO2.

Keywords

Hydroxyl radical Peroxy radical Chemical ionisation mass spectrometer Atmospheric measurements 

Notes

Acknowledgements

We thank Bernard Mège and Jean-Christophe Samaké for technical assistance and help in preparation of the field campaign. The development of the instrument has been supported by the “PRIMEQUAL 2” program of the Ministère de l’Aménagement du Territoire et de l’Environnement, the “BQR” programs of the Université de Versailles Saint-Quentin-en-Yvelines (UVSQ) and Université Paris VI, funding from the Institut National des Sciences de l'Univers (INSU). The measurements in the simulation chamber of ICARE (former LCSR) (Orléans) were supported by the EU project EUROCHAMP (RII-CT-2004-505968).

References

  1. Appelhans, A.D., Dahl, D.A.: SIMION ion optics simulations at atmospheric pressure. Int. J. Mass Spectrom. 244(1), 1–14 (2005)CrossRefGoogle Scholar
  2. Berresheim, H., Elste, T., Plass-Dülmer, C., Eiseleb, F.L., Tanner, D.J.: Chemical ionization mass spectrometer for long-term measurements of atmospheric OH and H2SO4. Int. J. Mass Spectrom. 202, 91–109 (2000)CrossRefGoogle Scholar
  3. Butkovskaya, N., Rayez, M.-T., Rayez, J.-C., Kukui, A., Le Bras, G.: Water vapour effect on the HNO3 yield in the HO2 + NO reaction: 1. Experimental and theoretical evidence. J. Phys. Chem. A (2009 submitted)Google Scholar
  4. Cantrell, C.A., Zimmer, A., Tyndall, G.S.: Absorption cross sections for water vapor from 183 nm to 193 nm. Geophys. Res. Lett. 24, 2195–2198 (1997)CrossRefGoogle Scholar
  5. Creasey, D.J., Heard, D.E., Lee, J.D.: Absorption cross section measurements of water vapour and oxygen at 185 nm. Implications for the calibration of field instruments to measure OH, HO2 and RO2 radicals. Geophys. Res. Lett. 27, 1651–1654 (2000)CrossRefGoogle Scholar
  6. Dahl, D. A.: SIMION 3D (Version 7.0) Idaho National Engineering and Environmental Laboratory; Idaho Falls, ID, (2000)Google Scholar
  7. Douglas, D.J., French, J.B.: Collisional focusing effects in radio frequency quadrupoles. J. Am. Soc. Mass Spectrom. 3, 398–408 (1992)CrossRefGoogle Scholar
  8. Dubey, M.K., Hanisco, T.F., Wennberg, P.O., Anderson, J.G.: Monitoring potential photochemical interference in laser induced fluorescence measurements of atmospheric OH. Geophys. Res. Lett. 23, 3215–3218 (1996)CrossRefGoogle Scholar
  9. Dusanter, S., Vimal, D., Stevens, P.S., Volkamer, R., Molina, L.T.: Measurements of OH and HO2 concentrations during the MCMA-2006 field campaign - part 1: deployment of the Indiana University laser-induced fluorescence instrument. Atmos. Chem. Phys. Discuss. 8, 13689–13739 (2008)Google Scholar
  10. Edwards, G.D., Cantrell, C.A., Stephens, S., Hill, B., Goyea, O., Shetter, R.E., Mauldin III, R.L., Kosciuch, E., Tanner, D.J., Eisele, F.: Chemical ionization mass spectrometer instrument for the measurement of tropospheric HO2 and RO2. Anal. Chem. 75(20), 5317–5327 (2003)CrossRefGoogle Scholar
  11. Eisele, F.L., Tanner, D.J.: Ion-assisted tropospheric OH measurements. J. Geophys. Res. 96(D5), 9295–9308 (1991)CrossRefGoogle Scholar
  12. Emmerson, K.M., Carslaw, N., Carpenter, L.J., Heard, D.E., Lee, J.D., Pilling, M.J.: Urban atmospheric chemistry during the PUMA Campaign 1: comparison of modelled OH and HO2 concentrations with measurements. J. Atm. Chem. 52, 143–164 (2005)CrossRefGoogle Scholar
  13. Faloona, I.C., Tan, D., Lesher, R.L., Hazen, N.L., Frame, C.L., Simpas, J.B., Harder, H., Mertinez, M., Di Carlo, P., Ren, X., Brune, W.H.: A laser-induced fluorescence instrument for detecting tropospheric OH and HO2: characteristics and calibration. J. Atm. Chem. 47, 139–169 (2004)CrossRefGoogle Scholar
  14. Gerlich, D.: Inhomogeneous RF fields: A versatile tool for the study of processes with slow ions. In: Ng, C. Y., Baer, M. (eds.) State selected and state-to state ion-molecule reaction dynamics. Part 1: Experiment, Adv. Chem. Phys. Vol. LXXXII, pp. 1–176, Wiley, New York (1992)Google Scholar
  15. Hanke, M., Uecker, J., Reiner, T., Arnold, F.: Atmospheric peroxy radicals: ROXMAS, a new mass-spectrometric methodology for speciated measurements of HO2 and ΣRO2 and first results. Int. J. Mass Spectrom. 213, 91–99 (2002)CrossRefGoogle Scholar
  16. Heard, D.E., Pilling, M.J.: Measurement of OH and HO2 in the troposphere. Chem. Rev. 103, 5163–5198 (2003)CrossRefGoogle Scholar
  17. Kanaya, Y., Cao, R., Akimoto, H., Fukuda, M., Komazaki, Y., Yokouchi, Y., Koike, M., Tanimoto, H., Takegawa, N., Kondo, Y.: Urban photochemistry in central Tokyo: 1. observed and modeled OH and HO2 radical concentrations during the winter and summer of 2004. J. Geophys. Res. 112(D2), 1312–1331 (2007)CrossRefGoogle Scholar
  18. Kukui, A., Borissenko, D., Laverdet, G., Le Bras, G.: Gas-phase reactions of OH radicals with dimethyl sulfoxide and methane sulfinic acid using turbulent flow reactor and chemical ionization mass spectrometry. J. Phys. Chem. A 107, 5732–5742 (2003)CrossRefGoogle Scholar
  19. Lovejoy, E.R., Curtius, J.: Cluster Ion thermal decomposition (II): master equation modelling in the low-pressure limit and fall-off regions. Bond energies for HSO4 (H2SO4) × (HNO3)y. J. Phys. Chem A 105, 10874–10883 (2001)CrossRefGoogle Scholar
  20. Mashino, M., Ninomiya, Y., Kawasaki, M., Wallington, T.J., Hurley, M.D.: Atmospheric chemistry of CF3CF = CF2: kinetics and mechanism of its reactions with OH radicals, Cl atoms, and ozone. J. Phys. Chem. A 104, 7255–7260 (2000)CrossRefGoogle Scholar
  21. McKeen, S.A., Mount, G., Eisele, F., Williams, E., Harder, J., Goldan, P., Kuster, W., Liu, S.C., Baumann, K., Tanner, D., Fried, A., Sewell, S., Cantrell, C., Shetter, R.: Photochemical modelling of hydroxyl and its relationship to other species during the tropospheric OH photochemistry experiment. J. Geophys. Res. 102(D5), 6467–6493 (1997)CrossRefGoogle Scholar
  22. Mihele, C.M., Mozurkewich, M., Hastie, D.R.: Radical loss in a chain reaction of CO and NO in the presence of water: Implications for the radical amplifier and atmospheric chemistry. Int. J. Chem. Kinet. 31, 145–152 (1999)CrossRefGoogle Scholar
  23. Nagato, K., Matsui, Y., Miyata, T., Yamamuchi, T.: An analysis of the evolution of negative ions produced by a corona ionizer in air. Int. J. Mass Spectrom. 248, 142–147 (2006)CrossRefGoogle Scholar
  24. Page, J.S., Tolmachev, A.V., Tang, K., Smith, R.D.: Theoretical and experimental evaluation of the low m/z transmission of an electrodynamic ion funnel. J. Am. Soc. Mass Spectrom. 17, 586–592 (2006)CrossRefGoogle Scholar
  25. Reiner, T., Hanke, M., Arnold, F.: Atmospheric peroxy radical measurements by ion molecule reaction-mass spectrometry: A novel analytical method using amplifying chemical conversion to sulfuric acid. J. Geophys. Res. 102(D1), 1311–1326 (1997)CrossRefGoogle Scholar
  26. Ren, X., Brune, W.H., Cantrell, C.A., Edwards, G.D., Shirley, T., Metcalf, A.R., Lesher, R.L.: Hydroxyl and peroxy radical chemistry in a rural area of central pennsylvania: Observations and Model Comparisons. J. Atm. Chem. 52, 231–257 (2005)CrossRefGoogle Scholar
  27. Ren, X., Brune, W.H., Mao, J., Mitchell, M.J., Lesher, R.L., Simpas, J.B., Metcalf, A.R., Schwab, J.J., Cai, C., Li, Y., Demerjian, K.L., Felton, H.D., Boynton, G., Adams, A., Perry, J., He, Y., Zhou, X., Hou, J.: Behavior of OH and HO2 in the winter atmosphere in New York City. Atmos. Environ. 40, S252–S263 (2006)CrossRefGoogle Scholar
  28. Sander, S. P., Friedl, R. R., Golden, D. M., Kurylo, M. J., Moortgat, C. K., Wine, P. H., Ravishankara, A. R., Kolb, C. E., Molina, M. J., Finlayson-Pitts, B. J., Huie,R. E., Orkin, V. L.: Chemical kinetics and photochemical data for use in atmospheric studies, Evaluation Number 15. JPL Publication 06-2, NASA Jet Propulsion Laboratory, Pasadena, California (2006)Google Scholar
  29. Scalny, J.D., Orszagh, J., Mason, N.J., Rees, J.A., Aranda-Gonzalvo, Y., Whitmore, T.D.: Mass spectrometric study of negative ions extracted from point to plane negative corona discharge in ambient air at atmospheric pressure. Int. J. Mass Spectrom. 272, 12–21 (2008)CrossRefGoogle Scholar
  30. Shaffer, S.A., Tang, K., Anderson, G.A., Prior, D.C., Udseth, H.R., Smith, R.D.: A novel ion funnel for focusing ions at elevated pressure using electrospray ionization mass spectrometry. Rapid Commun. Mass Spectrom. 11, 1813–1817 (1997)CrossRefGoogle Scholar
  31. Shirley, T.R., Brune, W.H., Ren, X., Mao, J., Lesher, R., Cardenas, B., Volkamer, R., Molina, L.T., Molina, M.J., Lamb, B., Velasco, E., Jobson, T., Alexander, M.: Atmospheric oxidation in the Mexico City Metropolitan Area (MCMA) during April 2003. Atmos. Chem. Phys. 6, 2753–2765 (2006)CrossRefGoogle Scholar
  32. Sjostedt, S.J., Huey, L.G., Tanner, D.J., Peischl, J., Chen, G., Dibb, J.E., Lefer, B., Hutterli, M.A., Beyersdor, A.J., Blake, N.J., Blake, D.R., Sueper, D., Ryerson, T., Burkhart, J., Stohl, A.: Observations of hydroxyl and the sum of peroxy radicals at Summit, Greenland during summer 2003. Atmos. Environ. 41, 5122–5137 (2007)CrossRefGoogle Scholar
  33. Tanner, D.J., Jefferson, A., Eisele, F.L.: Selected ion chemical ionisation mass spectrometric measurements of OH. J. Geophys. Res. 102(D5), 6415–6425 (1997)CrossRefGoogle Scholar
  34. Tolmachev, A.V., Kim, T., Udseth, H.R., Smith, R.D., Bailey, T.B., Futrell, J.H.: Simulation-based optimization of the electrospray ion funnel for high sensitivity electrospray ionization mass spectrometry. Int. J. Mass Spectrom. 203, 31–47 (2000)CrossRefGoogle Scholar
  35. Tolmachev, A.V., Vilkov, A.N., Bogdanov, B., Pǎsa-Tolić, L., Masselon, C.D., Smith, R.D.: The effective ion temperature treatment. J. Am. Soc. Mass Spectrom. 15, 1616–1628 (2004)CrossRefGoogle Scholar
  36. Zafonte, L., Rieger, P.L., Holmes, J.R.: Nitrogen dioxide photolysis in the Los Angeles atmosphere. Environ. Sci. Technol. 11(5), 483–487 (1977)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Alexandre Kukui
    • 1
    Email author
  • Gérard Ancellet
    • 1
  • Georges Le Bras
    • 2
  1. 1.Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS)CNRSVerrières le BuissonFrance
  2. 2.Institut de Combustion, Aérothermique, Réactivité et Environnement (ICARE)CNRSOrléans cedex 2France

Personalised recommendations