Journal of Atmospheric Chemistry

, Volume 61, Issue 2, pp 85–99 | Cite as

Water-soluble organic and nitrogen levels in cloud and rainwater in a background marine environment under influence of different air masses

  • Adriana Gioda
  • Olga L. Mayol-BraceroEmail author
  • Gabriel J. Reyes-Rodriguez
  • Gilmarie Santos-Figueroa
  • Jeffrey L. CollettJr.


Chemical characterization was performed on cloud and rainwater samples collected as part of the Rain In Cumulus over the Ocean Experiment (RICO). This experiment took place at a mountaintop site (East Peak) in Puerto Rico from December 2004 to March 2007 in order to determine water-soluble organic and nitrogen fractions in a marine background environment. For cloud water, similar average concentrations of 1.0 (±0.3) mg/L were found for total organic carbon (TOC) and total nitrogen (TN) and an average concentration of 0.8 (±0.2) mg/L was found for dissolved organic carbon (DOC). In rainwater, these concentrations were lower, ranging from 0.3 to 0.5 (±0.1) mg/L. Changes in the concentrations of these species were observed in periods under the influence of anthropogenic, African dust, and volcanic ash air masses. In these periods the concentrations of TOC, DOC, and TN were 2 to 4 times higher than in periods under the influence of trade winds. The insoluble organic material arriving during African dust events showed total carbon (TC) concentrations on averaging 1.5 mg/L for cloud water. The TC was composed mainly of organic carbon with polar compounds from low to high molecular weight (MW). The polar compounds with high MW were probably associated with pollution (e.g., fossil fuel combustion) from other regions. Crustal species (Al and Fe) dominated particles associated with dust episodes, confirming the soil origin. Our results suggested that a fraction (40–80%) of TOC and (<100%) of TN in Puerto Rican cloud/rainwater could be originated from long-range transport of dust, ash and/or pollution.


Saharan dust Volcanic ash Air masses Fogwater Nutrient flux Elemental composition Precipitation 



Thanks to the El Yunque National Forest for permiting the use of their facilities to collect our samples. We also acknowledge the support of the National Science Foundation (ATM Grant 0342548 and DEB 0620910), the EPSCoR program, the International Institute of Tropical Forestry USDA Forest Service, and the Luquillo Long-Term Ecological Research Program.


  1. Aiuppa, A., Bonfanti, P., D’alessandro, W.: Rainwater Chemistry at Mt. Etna (Italy): natural and anthropogenic sources of major ions. J. Atmos. Chem. 46, 89–102 (2003)CrossRefGoogle Scholar
  2. Aloisi, G., Drews, M., Wallmann, K., Bohrmann, G.: Fluid expulsion from the Dvurechenskii mud volcano (Black Sea) Part I. Fluid sources and relevance to Li, B, Sr, I and dissolved inorganic nitrogen cycles. Earth Planet. Sci. Let. 225, 347–363 (2004)Google Scholar
  3. Asbury, C.E., McDowell, W.H., Trinidad-Pizarro, R., Berrios, S.: Solute deposition from cloud water to the canopy of a Puerto Rican montane forest. Atmos. Environ. 28, 1773–1780 (1994)CrossRefGoogle Scholar
  4. Avila, A., Queralt-Mitjans, I., Alarcon, M.: Mineralogical composition of African dust delivered by red rains over the northeastern Spain. J. Geophys. Res. 102, 21977–21996 (1997)CrossRefGoogle Scholar
  5. Blanco, A., De Tomasi, F., Filippo, E., Manno, D., Perrone, M.R., Serra, A., Tafuro, A.M., Tepore, A.: Characterization of African dust over southern Italy. Atmos. Chem. and Phys. 3, 2147–2159 (2003)Google Scholar
  6. Collett Jr., J.L., Hoag, K.J., Sherman, D.E., Bator, A., Richards, L.W.: Spatial and temporal variations in San Joaquin Valley fog chemistry. Atmos. Environ. 33, 129–140 (1999)CrossRefGoogle Scholar
  7. Collett Jr., J.L., Bator, A., Sherman, D.E., Moore, K.F., Hoag, K.J., Demoz, B.B., Rao, X., Reilly, J.E.: The chemical composition of fogs and intercepted clouds in the United States. Atmos. Res. 64, 29–40 (2002)CrossRefGoogle Scholar
  8. Cronin, S.J., Hedley, M.J., Neal, V.E., Smith, G.: Agronomic impact of tephra fallout from 1995 and 1996 Ruapehu volcano eruptions, New Zealand. Environ. Geol. 34, 21–30 (1998)CrossRefGoogle Scholar
  9. Draxler, R.R., Rolph, G.D.: HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) Model access via NOAA ARL READY Website ( NOAA Air Resources Laboratory, Silver Spring, MD (2003)Google Scholar
  10. Eklund, T.J., McDowell, W.H., Pringle, C.M.: Seasonal variation of tropical precipitation chemistry: La Selva, Costa Rica. Atmos. Environ. 31, 3903–3910 (1997)CrossRefGoogle Scholar
  11. Formenti, P., Elbert, W., Maenhaut, W., Haywood, J., Andreae, M.O.: Chemical composition of mineral dust aerosol during the Saharan Dust Experiment (SHADE) airborne campaign in the Cape Verde region, September 2000. J. Geophys. Res. 108(D18), 8576 (2003). doi: 10.1029/2002JD002648 CrossRefGoogle Scholar
  12. Gioda, A., Perez, U., Rosa, Z., Jimenez-Velez, B.: Particulate matter (PM10 and PM2.5) from different areas of Puerto Rico. Fresenius Environ. Bull. 16, 8761–8767 (2007)Google Scholar
  13. Gioda, A., Mayol-Bracero, O.L., Morales-Garcia, F., Collett, J., Decesari, S., Emblico, L., Facchini, M.C., Morales de Jesus, R., Mertes, S., Borrmann, S., Walter, S., Schneider, J.: Chemical composition of cloud water in the Puerto Rican tropical trade cumuli. Water Air Soil Pollut. (2008). doi: 10.1007/s11270-008-9888-4 Google Scholar
  14. Hadi, D.A., Crossley, A., Cape, J.N.: Particulate and dissolved organic carbon in cloud water in Southern Scotland. Environ. Pollut. 88, 299–306 (1995)CrossRefGoogle Scholar
  15. Heartsill-Scalley, T., Scatena, F.N., Estrada, C., McDowell, W.H., Lugo, A.E.: Disturbance and long-term patterns of rainfall and throughfall nutrient fluxes in a subtropical wet forest in Puerto Rico. J. Hydrol. 333, 472–485 (2007)CrossRefGoogle Scholar
  16. Herckes, P., Lee, T., Trenary, L., Kang, G.G., Chang, H., Collett, J.: Organic matter in Central California radiation fogs. Environ. Sci. Technol. 36, 4777–4782 (2002)CrossRefGoogle Scholar
  17. Jickells, T.D.: The inputs of dust derived elements to the Sargasso Sea; a synthesis. Mar. Chem. 68, 5–14 (1999)CrossRefGoogle Scholar
  18. Keene, W.C., Montag, J.A., Maben, J.R., Southwell, M., Leonard, J., Church, T.M., Moody, J.L., Galloway, J.N.: Organic nitrogen in precipitation over Eastern North America. Atmos. Environ. 36, 4529–4540 (2002)CrossRefGoogle Scholar
  19. Kellman, M., Hudson, J., Sanmugadas, K.: Temporal variability in atmospheric nutrient influx to a tropical ecosystem. Biotropica 14, 1–9 (1982)CrossRefGoogle Scholar
  20. Khwaja, H.A., Brudnoy, S., Husain, L.: Chemical characterization of three summer cloud episodes at whiteface mountain. Chemosphere 31, 3357–3381 (1995)CrossRefGoogle Scholar
  21. Kieber, J.R., Peake, B., Willey, J.D., Avery, B.: Dissolved organic carbon and organic acids in coastal New Zealand rainwater. Atmos. Environ. 36, 3557–3563 (2002)CrossRefGoogle Scholar
  22. Marinoni, A., Laj, P., Sellegri, K., Mailhot, G.: Cloud chemistry at the Puy de Dome: variability and relationships with environmental factors. Atmos. Chem. Phys. 4, 715–728 (2004)CrossRefGoogle Scholar
  23. Mayol-Bracero, O.L., Gabriel, R., Andreae, M.O., Kirchstetter, T.W., Novakov, T., Ogren, J., Sheridan, P., Streets, D.G.: Carbonaceous aerosols over the Indian Ocean during the Indian Ocean Experiment (INDOEX): Chemical characterization, optical properties, and probable sources. J. Geophys. Res. 107 (D19), 8030, (2002). doi: 10.1029/2000JD000039
  24. McDowell, W.H., Sánchez, C.G., Asbury, C.E., Pérez, C.R.R.: Influence of sea salt aerosols and long range transport on precipitation chemistry at El Verde, Puerto Rico. Atmos. Environ. 24, 2813–2821 (1990)Google Scholar
  25. Neal, C., Robson, A.J., Neal, M., Reynolds, B.: Dissolved organic carbon for upland acidic and acid sensitive catchments in mid-Wales. J. Hydrol. 304, 203–220 (2005)CrossRefGoogle Scholar
  26. Ogren, J.A., Groblicki, P.J., Charlson, R.J.: Measurement of the removal of elemental carbon from the atmosphere. Sci. Total Environ. 36, 329–38 (1984)CrossRefGoogle Scholar
  27. Prospero, J.M., Nees, R.T.: Impact of the North African drought and El Niño on mineral dust in the Barbados trade winds. Nature 320, 735–738 (1986)CrossRefGoogle Scholar
  28. Raes, F., Dingenen, R.V., Vignati, E.: Formation and cycling of aerosols in the global troposphere. Atmos. Environ. 34, 4215–4240 (2000)CrossRefGoogle Scholar
  29. Reyes-Rodriguez, G.J, Gioda, A., Mayol-Bracero, O.L., Collett, J.: Organic carbon and total nitrogen, and water—soluble ions in clouds from a tropical montane cloud forest in Puerto Rico, Atmospheric Enviroment. (2009), doi: 10.1016/j.atmosenv.2009.05.049
  30. Reynolds, B., Fowler, D., Thomas, S.: Chemistry of cloud water at an upland site in mid-Wales. Sci. Total Environ. 188, 115–125 (1996)CrossRefGoogle Scholar
  31. Savoie, D.L., Prospero, J.M., Saltzman, E.S.: Non-sea-salt and nitrate in trade wind aerosols at Barbados: evidence for long-range transport. J. Geophys. Res. 94, 5069–5080 (1989)CrossRefGoogle Scholar
  32. Sempere, R., Kawamura, K.: Low molecular weight dicarboxylic acids and related polar compounds in the remote marine rain samples collected from Western Pacific. Atmos. Environ. 30, 1609–1619 (1996)CrossRefGoogle Scholar
  33. Straub, D.J., Lee, T., Collett, J.: Chemical composition of marine stratocumulus clouds over the eastern Pacific Ocean. J. Geophys. Res. 112, D04307 (2007)CrossRefGoogle Scholar
  34. Veneklass, E.J.: Nutrient fluxes in bulk precipitation and throughfall in two montane tropical rain forest, Colombia. J. Ecol. 78, 974–992 (1990)CrossRefGoogle Scholar
  35. Watanabe, K., Ishizaka, Y., Takenaka, C.: Chemical characteristics of cloud water over the Japan Sea and the Northwestern Pacific Ocean near the central part of Japan: airborne measurements. Atmos. Environ. 35, 645–655 (2001)CrossRefGoogle Scholar
  36. Weathers, K.C., Likens, G.H., Borman, F.B.: Cloud chemistry from ten sites in North America. Atmos. Environ. 22, 1018–1026 (1988)Google Scholar
  37. Weathers, K.C., Lovett, G.M., Likens, G.E., Caraco, N.F.M.: Cloudwater inputs of nitrogen to forest ecosystems in southern Chile: forms, fluxes and sources. Ecosystems 3, 590–595 (2000)CrossRefGoogle Scholar
  38. Willey, J.D., Kieber, R.J., Eyman, M.S., Avery, G.B.: Rainwater dissolved organic carbon: concentrations and global flux. Glob. Biogeochem. Cycles 14, 139–148 (2000)CrossRefGoogle Scholar
  39. Yu, J.Z., Yang, H., Zhang, H., Lau, A.K.H.: Size distributions of water-soluble organic carbon in ambient aerosols and its size-resolved thermal characteristics. Atmos. Environ. 38, 1061–1071 (2004)CrossRefGoogle Scholar
  40. Zafiriou, O.C., Gagosian, G., Peltzer, E.T., Alford, J.B., Loder, T.: Air-to-sea fluxes of lipids at Enewetak Atoll. J. Geophys. Res. 90, 2409–2423 (1995)CrossRefGoogle Scholar
  41. Zhang, Q., Anastasio, C.: Chemical of fog waters in California’s Central Valley, 3: concentrations and speciation of organic nitrogen. Atmos. Environ. 35, 5629–5643 (2001)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Adriana Gioda
    • 1
    • 2
  • Olga L. Mayol-Bracero
    • 1
    Email author
  • Gabriel J. Reyes-Rodriguez
    • 1
    • 3
  • Gilmarie Santos-Figueroa
    • 1
    • 3
  • Jeffrey L. CollettJr.
    • 4
  1. 1.Institute for Tropical Ecosystem StudiesUniversity of Puerto RicoSan JuanUSA
  2. 2.Pontifícia Universidade Católica do Rio de Janeiro (PUC-RIO)Departamento of ChemistryRio de JaneiroBrazil
  3. 3.Department of ChemistryUniversity of Puerto RicoSan JuanUSA
  4. 4.Department of Atmospheric ScienceColorado State UniversityFort CollinsUSA

Personalised recommendations