Journal of Atmospheric Chemistry

, Volume 61, Issue 1, pp 31–55 | Cite as

Kinetics of ammonia and ammonium ion inhibition of the atmospheric oxidation of aqueous sulfur dioxide by oxygen

  • Punit Kumar Mudgal
  • Anil Kumar Sharma
  • C. D. Mishra
  • S. P. Bansal
  • K. S. Gupta


This is the first study, which shows both NH3 and NH4+ to inhibit the autoxidation of aqueous SO2 in the pH range 7.0–8.5. The rate of the autoxidation, Raut, in both buffered and unbuffered media at a fixed pH is in conformity with the rate law:
$$ R_{aut} ={{R_0 } \mathord{\left/ {\vphantom {{R_0 } {\left( {{\text{1 + }}B\left[ {\text{Inh}} \right]_{\text{T}} } \right)}}} \right. } {\left( {{\text{1 + }}B\left[ {\text{Inh}} \right]_{\text{T}} } \right)}} $$
where R0 is rate in the absence of the inhibitors, B is a pH dependent empirical constant and [Inh]T is the analytical concentration of NH3 or NH4+. Both ammonia and ammonium ions appear to inhibit the autoxidation either by scavenging SO4 radicals or by forming less-reactive /unreactive Co(II)-NH3 complexes or both. The atmospheric relevance of the inhibition by ammonia and ammonium ions is discussed.


Ammonia Ammonium ion Sulfur(IV) Metal ions Autoxidation Inhibition Kinetics 


  1. Adema, E.H., Heeres, P.: Dry deposition of sulfur dioxide and ammonia on wet surfaces and the surface oxidation kinetics of bisulfite. Atmos. Environ. 29, 1091–1103 (1995). doi:10.1016/1352-2310(95)00039-2 CrossRefGoogle Scholar
  2. Alipazaga, M.V., Moreno, R.G.M., Coichev, N.: Synergistic effect of Ni(II) and Co(II) ions on the sulfite induced oxidation of Co(II)/tetraglycerine complexes. J.C.S. Dalton, 2036-2040 (2004)Google Scholar
  3. Alyea, H.N., Backstrom, H.L.J.: The inhibitive action of alcohols on the autoxidation of sodium sulfite. J. Am. Chem. Soc. 51, 90–107 (1929). doi:10.1021/ja01376a011 CrossRefGoogle Scholar
  4. Backstrom, H.L.J.: The chain mechanism of the autoxidation of sodium sulfite solutions. Z. Physik. Chem. B 25, 122–138 (1934)Google Scholar
  5. Bal Reddy, K., van Eldik, R.: Kinetics and mechanism of the sulfite induced autoxidation of Fe(II) in acidic aqueous solutions. Atmos. Environ. 26A, 661–665 (1992)Google Scholar
  6. Behra, P., Sigg, L., Stumm, W.: Dominating influence of NH3 on the oxidation of aqueous SO2: The coupling of NH3 and SO2 in atmospheric water. Atmos. Environ. 23, 2691–2707 (1989). doi:10.1016/0004-6981(89)90549-0 CrossRefGoogle Scholar
  7. Beilke, S., Gravenhorst, G.: Heterogeneous SO2 -oxidation in the droplet phase. Atmos. Environ. 12, 231–239 (1978). doi:10.1016/0004-6981(78)90203-2 CrossRefGoogle Scholar
  8. Benner, W.H., Ogorevc, B., Novakov, T.: Oxidation of SO2 in thin water films containing NH3. Atmos. Environ. 26A, 1713–1723 (1992)Google Scholar
  9. Berglund, J., Elding, L.I.: Manganese-catalyzed autoxidation of dissolved sulfur dioxide in the atmospheric aqueous phase. Atmos. Environ. 29, 1379–1391 (1995). doi:10.1016/1352-2310(95)91318-M CrossRefGoogle Scholar
  10. Berglund, J., Fronaeus, S., Elding, L.I.: Kinetics and mechanism for manganese- catalyzed oxidation of sulfur(IV) by oxygen in aqueous solution. Inorg. Chem. 32, 4527–4538 (1993). doi:10.1021/ic00073a011 CrossRefGoogle Scholar
  11. Brandt, C., van Eldik, R.: Transition metal catalyzed oxidation of aqueous sulfur(IV) oxides. Atmospheric relevant process and mechanisms. Chem. Rev. 95, 119–190 (1995). doi:10.1021/cr00033a006 CrossRefGoogle Scholar
  12. Brimblecombe, P., Spedding, D.J.: The catalytic oxidation of micromolar aqueous sulfur dioxide-I: oxidation in dilute solutions containing iron(III). Atmos. Environ. 8, 937–945 (1974). doi:10.1016/0004-6981(74)90083-3 CrossRefGoogle Scholar
  13. Brodzinsky, R., Chang, S.G., Markowitz, S.S., Novakov, T.: Kinetics and mechanism of the catalytic oxidation of sulfur dioxide on carbon in aqueous suspensions. J. Phys. Chem. 84, 3354–3358 (1980). doi:10.1021/j100462a009 CrossRefGoogle Scholar
  14. Bronikowski, T., Pasiuk-Bronikowska, W., Ulejczyk, M., Nowakowski, R.: Interaction between environmental selenium and sulfoxy radicals. J. Atmos. Chem. 35, 19–31 (2000). doi:10.1023/A:1006227327933 CrossRefGoogle Scholar
  15. Boyce, S.D., Hoffmann, M.R., Hong, P.A., Moberly, L.M.: Catalysis of the autoxidation of aquated sulfur-dioxide by homogeneous metal phthalocyanine complexes. Environ. Sci. Technol. 17, 602 (1983). doi:10.1021/es00116a008 CrossRefGoogle Scholar
  16. Carvalho, L.B., Alipazaga, M.V., Lowinsohn, D., Bertotti, M., Coichev, N.: Autoxidation of Ni(II) and Co(II) tetra, penta and hexaglycine complexes accelerated by oxy sulfur radicals. J. Braz. Chem. Soc. 17, 1400–1408 (2006). doi:10.1590/S0103-50532006000700030 CrossRefGoogle Scholar
  17. Clarke, A.G., Radojevic, R.: Oxidation of SO2 in rain water and its role in acid rain chemistry. Atmos. Environ. 21, 1115 (1987). doi:10.1016/0004-6981(87)90238-1 CrossRefGoogle Scholar
  18. Coichev, N., van Eldik, R.: Kinetics and mechanism of the sulfite-induced autoxidation of cobalt(II) in aqueous azide medium. Inorg. Chem. 30, 2375–2380 (1991). doi:10.1021/ic00010a028 CrossRefGoogle Scholar
  19. Connick, R.E., Zhang, Y.X.: Kinetics and mechanism of oxidation of HSO3 by O2. 2. The manganese(II) catalyzed reaction. Inorg. Chem. 35, 4613–4621 (1996). doi:10.1021/ic951141i CrossRefGoogle Scholar
  20. Connick, R.E., Zhang, Y.X., Lee, S., Adamic, R., Chieng, P.: Kinetics and mechanism of oxidation of HSO3 by O2 .1. The uncatalyzed reaction. Inorg. Chem. 34, 4543–4553 (1995). doi:10.1021/ic00122a009 CrossRefGoogle Scholar
  21. Duca, A., Matei, F., Ionescu, G.: A new indicator reaction for kinetic determination of traces of cobalt. Talanta 27, 917–919 (1980). doi:10.1016/0039-9140(80)80155-X CrossRefGoogle Scholar
  22. Easter, R.C., Hobbs, P.: The formation of sulfate and the enhancement of cloud condensation nuclei in clouds. J. Atmos. Sci. 31, 1586–1594 (1974). doi:10.1175/1520-0469(1974)031<1586:TFOSAT>2.0.CO;2 CrossRefGoogle Scholar
  23. Ettel, V.A., Mosoiu, M.A.: Preparation of nickel black. United States Patent 4006216 (1977)Google Scholar
  24. Faust, B.C., Hoffmann, M.R., Bahnemann, D.W.: Photocatalytic oxidation of sulfur dioxide in aqueous suspensions of α-Fe2O3. J. Phys. Chem. 93, 6371–6381 (1989). doi:10.1021/j100354a021 CrossRefGoogle Scholar
  25. Flynn Jr., C.M.: Hydrolysis of inorganic iron(III) salts. Chem. Rev. 84, 31–41 (1984). doi:10.1021/cr00059a003 CrossRefGoogle Scholar
  26. Frank, S.N., Bard, A.J.: Heterogeneous photocatalytic oxidation of cyanide and sulfite in aqueous solution at semiconductor powders. J. Phys. Chem. 81, 1484–1488 (1977). doi:10.1021/j100530a011 CrossRefGoogle Scholar
  27. Gebert, J., Neves, E.A., Klockow, D.: Evaluation of the sulfur(IV) catalyzed autoxidation of cobalt(II) in an azide containing medium as a means for the determination of sulfite in precipitation. Fresenius Z. Anal. Chem. 331, 260–267 (1988). doi:10.1007/BF00481894 CrossRefGoogle Scholar
  28. Gupta, K.S., Gupta, Y.K.: Hydrogen ion dependence on reaction rates and mechanisms. J. Chem. Educ. 61, 972 (1984)CrossRefGoogle Scholar
  29. Gupta, K.S., Saxena, S.D., Swarup, R.: Kinetics of oxidation of formamide by thallium(III) in aqueous perchloric acid solutions. Indian J. Chem. 19A, 336–339 (1980)Google Scholar
  30. Gupta, K.S., Jain, U., Singh, A., Mehta, R.K., Manoj, S.V., Prasad, D.S.N., Sharma, A., Parashar, P., Bansal, S.P.: Kinetics and mechanism of the osmium(VIII)—catalyzed autoxidation of aqueous sulfur dioxide in acidic and alkaline media. J. Indian Chem. Soc. 81, 1083–1092 (2004)Google Scholar
  31. Gupta, K.S., Mehta, R.K., Sharma, A.K., Mudgal, P.K., Bansal, S.P.: Kinetics of uninhibited and ethanol-inhibited CoO, Co2O3 and Ni2O3 catalyzed autoxidation of sulfur(IV) in alkaline medium. Trans. Met. Chem. (Weinh.) 33, 809–817 (2008). doi:10.1007/s11243-008-9115-6 CrossRefGoogle Scholar
  32. Hayon, E., Treinin, A., Wilf, J.: Electronic spectra, photochemistry, and oxidation mechanism of the sulfite—bisulfite -pyrosulfite systems. The SO2, SO3, SO4 and SO5 radicals. J. Am. Chem. Soc. 94, 47–57 (1972). doi:10.1021/ja00756a009 CrossRefGoogle Scholar
  33. Hoffmann, M.R., Boyce, S.D.: In: Schwartz, S.E. (ed.) Trace atmospheric constituents: Properties, transformations and fates, pp 147–189. Wiley, New York (1983)Google Scholar
  34. Hoffmann, M.R., Jacob, D.J.: In: Calvert, J.G. (ed.) SO2, NO and NO2 oxidation mechanisms. Atmospheric considerations, pp 101–172. Butterworth, Boston (1984)Google Scholar
  35. Huie, R.E.: In: Barker, J.R. (ed.) Progress and problems in atmospheric chemistry, pp 374–419. World Scientific, Singapore (1995)Google Scholar
  36. Huie, R.E., Neta, P.: Chemical behavior of SO3 and SO5 radicals in aqueous solutions. J. Phys. Chem. 23, 5665–5669 (1984). doi:10.1021/j150667a042 CrossRefGoogle Scholar
  37. Huie, R.E., Wayne Sieck, L.: In: Alfassi Z.B. (ed.) S-Centered Radicals, pp 63–99. Wiley, New York (1999)Google Scholar
  38. Huss Jr., A., Lim, P.K., Eckert, C.A.: The ‘uncatalyzed’ oxidation of sulfur(IV) in aqueous solutions. J. Am. Chem. Soc. 100, 6252–6253 (1978). doi:10.1021/ja00487a059 CrossRefGoogle Scholar
  39. Huss, A., Lim, P.K., Eckert, C.A.: Oxidation of sulfur dioxide. 3. The effects of chelating agents and phenolic antioxidants. J. Phys. Chem. 86, 4224–4228 (1982). and 4233–4237CrossRefGoogle Scholar
  40. Junge, C.E., Ryan, T.G.: Study of the SO2 oxidation in solution and its role in atmospheric chemistry. Q. J. R. Metab. Soc. 84, 46–55 (1958). doi:10.1002/qj.49708435906 CrossRefGoogle Scholar
  41. Khemani, L.T., Momin, G.A., Prakasa Rao, P.S., Safai, P.D., Singh, G., Chatterjee, R.N., Prakash, P.: Long term effects of pollutants on pH of rain water in North India. Atmos. Environ. 23, 753–756 (1989a). doi:10.1016/0004-6981(89)90477-0 CrossRefGoogle Scholar
  42. Khemani, L.T., Momin, G.A., Prakasa Rao, P.S., Safai, P.D., Singh, G., Kapoor, R.K.: Spread of acid rain over India. Atmos. Environ. 23, 757–762 (1989b). doi:10.1016/0004-6981(89)90478-2 CrossRefGoogle Scholar
  43. Khemani, L.T., Momin, G.A., Naik, M.S., Prakasa Rao, P.S., Safai, P.D., Murty, A.S.R.: Influence of alkaline particulates on pH of cloud and rain water in India. Atmos. Environ. 21, 1137–1145 (1987). doi:10.1016/0004-6981(87)90241-1 CrossRefGoogle Scholar
  44. Kuo, D.T.F., Krik, D.W., Jia, C.Q.: The chemistry of aqueous S(IV)-Fe-O2 system: state of the art. J. Sulfur Chem. 27, 461–530 (2006). doi:10.1080/17415990600945153 CrossRefGoogle Scholar
  45. Laidler, K.J.: Chemical kinetics, 3rd edn, pp. 19–20. Harper & Row, New York (1987)Google Scholar
  46. Larson, T.V., Horike, N.R., Harrison, H.: Oxidation of sulfur dioxide by oxygen and ozone in aqueous solution: A kinetic study with significance to atmospheric rate processes. Atmos. Environ. 12, 1597–1611 (1978). doi:10.1016/0004-6981(78)90308-6 CrossRefGoogle Scholar
  47. Lawani, S.A.: Kinetics of the permanganate-bromide reaction at low reagent concentrations. J. Phys. Chem. 80, 105 (1976). doi:10.1021/j100543a003 CrossRefGoogle Scholar
  48. Lepentsiotis, V., Domagala, J., Grgic, I., van Eldik, R., Muller, J.G., Burrows, C.J.: Mechanistic information on the redox cycling of nickel(II/III) complexes in the presence of sulfur oxides and oxygen Correlation with DNA damage experiments. Inorg. Chem. 38, 3500–3505 (1999). doi:10.1021/ic981342x CrossRefGoogle Scholar
  49. Lim, P.K., Hamrick, G.T.: pH-dependent catalyst-inhibitor conversion of manganese(II) in the autoxidation of sulfite. J. Phys. Chem. 88, 1133–1136 (1984). doi:10.1021/j150650a021 CrossRefGoogle Scholar
  50. Linn Jr., D.E., Dargan, M.J., Miller, D.E.: Catalysis of the autoxidation of aqueous sulfur dioxide using [NiIII(cyclam)]: Evidence for a novel radical chain mechanism. Inorg. Chem. 29, 4356 (1990). doi:10.1021/ic00347a002 CrossRefGoogle Scholar
  51. Manoj, S.V., Mishra, C.D., Sharma, M., Rani, A., Jain, R., Bansal, S.P., Gupta, K.S.: Iron, manganese and copper concentrations in wet precipitations and kinetics of the oxidation of SO2 in rain water at two urban sites, Jaipur and Kota, in western India. Atmos. Environ. 34, 4479–4486 (2000a). doi:10.1016/S1352-2310(00)00117-5 CrossRefGoogle Scholar
  52. Manoj, S.V., Singh, R., Sharma, M., Gupta, K.S.: Kinetics and mechanism of heterogeneous cadmium sulfide and homogenous manganese(II) catalyzed oxidation of sulfur(IV) by dioxygen in acetate buffered medium. Indian J. Chem. 39A, 507–521 (2000b)Google Scholar
  53. Manoj, S.V., Mudgal, P.K., Gupta, K.S.: Kinetics of Iron(III) catalysed autoxidation of sulfur(IV) in acetate buffered medium. Trans. Met. Chem. (Weinh.) 33, 311–316 (2008). doi:10.1007/s11243-007-9045-8 CrossRefGoogle Scholar
  54. Martin, L.R.: In: Calvert, J.G. (ed.) SO2, NO and NO2 oxidation mechanisms: Atmospheric considerations, pp 63–100. Butterworth, Boston (1984).Google Scholar
  55. Martin, L.R., Hill, M.W., Tai, A.F., Good, T.W.: The iron catalysed oxidation of sulfur(IV) in aqueous solution: Differing effects of organics at high and low pH. J. Geophys. Res. 96(D2), 3085–3097 (1991). doi:10.1029/90JD02611 CrossRefGoogle Scholar
  56. Matsuura, A., Harada, J., Akehata, T., Shirai, T.: Rate of ammonium sulfite oxidation in aqueous solutions. J. Chem. Eng. of Jpn 2(2), 199–203 (1969). doi:10.1252/jcej.2.199 CrossRefGoogle Scholar
  57. Miller, J.M., de Pena, R.G.: Contribution of scavenged sulfur dioxide to the sulfate content of rain water. J. Geophys. Res. 77, 5905–5916 (1972). doi:10.1029/JC077i030p05905 CrossRefGoogle Scholar
  58. Mishra, G.C., Srivastava, R.D.: Kinetics of oxidation of ammonium sulfite by rapid-mixing method. Chem. Eng. Sci. 30, 1387–1390 (1975). doi:10.1016/0009-2509(75)85069-X CrossRefGoogle Scholar
  59. Mori, M., Weil, J.A., Ishiguro, M.: Formation of and interrelation between some µ-peroxo binuclear cobalt complexes. II. J. Am. Chem. Soc. 90, 615–621 (1968). doi:10.1021/ja01005a010 CrossRefGoogle Scholar
  60. Mudgal, P.K., Bansal, S.P., Gupta, K.S.: Kinetics of atmospheric oxidation of nitrous acid by oxygen in aqueous medium. Atmos. Environ. 41, 4097–4105 (2007). doi:10.1016/j.atmosenv.2007.01.036 CrossRefGoogle Scholar
  61. Neta, P., Huie, R.E.: One electron redox reactions involving sulfite ions and aromatic amines. J. Phys. Chem. 89, 1783–1787 (1985). doi:10.1021/j100255a049 CrossRefGoogle Scholar
  62. Neta, P., Maruthamuthu, P., Carton, P.M., Fessenden, R.W.: Formation and reactivity of amino radical. J. Phys. Chem. 82, 1875–1878 (1978). doi:10.1021/j100506a004 CrossRefGoogle Scholar
  63. Neves, E.A., Coichev, N.J., Gebert, J., Klockow, D.: Autoxidation of cobalt(II) in azide containing medium in presence of sulfur(IV): an interpretative study. Fresenius Z. Anal. Chem. 335, 386–389 (1989). doi:10.1007/BF00482104 CrossRefGoogle Scholar
  64. Norkus, E., Vaskelis, A., Griguceviciene, A., Rozovskis, G., Reklaitis, J., Norkus P.: Oxidation of cobalt(II) with air oxygen in aqueous ethylenediamine solutions. Trans. Met. Chem. (Weinh.) 26, 465–472 (2001). doi:10.1023/A:1011051222928 CrossRefGoogle Scholar
  65. Pasiuk-Bronikowska, W., Bronikowski, T., Ulejczyk, M.: Synergy in the autoxidation of S(IV) inhibited by phenolic compounds. J. Phys. Chem. A 107, 1742–1748 (2003). doi:10.1021/jp0208790 CrossRefGoogle Scholar
  66. Pezza, H.R., Bonifacio, R.L., Coichev, N.: Oxidation of nickel(II) cyclam and tetraglycine complexes by dissolved oxygen in the presence of sulfur(IV). Synergistic effects of manganese(III) and cobalt(III). J. Chem. Res S, 34 (1999)Google Scholar
  67. Prasad, D.S.N., Rani, A., Madnawat, A., Bhargava, R., Gupta, K.S.: Kinetics of surface catalysed oxidation of sulfur(IV) by dioxygen in aqueous suspension of cobalt(II) oxide. J. Mol. Catal. 69, 393–405 (1991). doi:10.1016/0304-5102(91)80118-M CrossRefGoogle Scholar
  68. Prasad, D.S.N., Rani, A., Gupta, K.S.: Surface-catalyzed oxidation of sulfur(IV) in aqueous silica and copper(II) oxide suspensions. Environ. Sci. Technol. 26, 1361–1368 (1992). doi:10.1021/es00031a013 CrossRefGoogle Scholar
  69. Rani, A., Prasad, D.S.N., Madnawat, P.V.S., Gupta, K.S.: The role of free fall atmospheric dust in catalyzing autoxidation of aqueous sulfur dioxide. Atmos. Environ. 26A, 667–673 (1992)Google Scholar
  70. Rastogi, N., Sarin, M.M.: Chemical characteristics of individual rain events from a semi-arid region in India: Three year study. Atmos. Environ. 39, 3313–3323 (2005). doi:10.1016/j.atmosenv.2005.01.053 CrossRefGoogle Scholar
  71. Reinders, W., Vles, S.I.: Reaction velocity of oxygen with solutions of some inorganic salts. III. The catalytic oxidation of sulfites. Rec. Trav. Chim. 44, 249–268 (1925)Google Scholar
  72. Renard, J.J., Calidonna, S.E., Henley, M.V.: Fate of ammonia in the atmosphere-a review for applicability to hazardous releases. J. Hazard. Mater. 108, 29–60 (2004). doi:10.1016/j.jhazmat.2004.01.015 CrossRefGoogle Scholar
  73. Satsangi, G.S., Lakhani, A., Khare, P., Singh, S.P., Kumari, K.M., Srivastav, S.S.: Composition of rain water at a semi-arid rural site in India. Atmos. Environ. 32, 3783–3793 (1998). doi:10.1016/S1352-2310(98)00115-0 CrossRefGoogle Scholar
  74. Saxena, A., Sharma, S., Kulshrestha, U.C., Srivastava, S.S.: Factors affecting alkaline nature of rain water in Agra (India). Environ. Pollut. 74, 129–138 (1991). doi:10.1016/0269-7491(91)90109-A CrossRefGoogle Scholar
  75. Scott, W.D., Hobbs, P.V.: The formation of sulfate in water droplets. J. Atmos. Sci. 24, 54–57 (1967). doi:10.1175/1520-0469(1967)024<0054:TFOSIW>2.0.CO;2 CrossRefGoogle Scholar
  76. Sharma, S., Kulshreshtha, U.C., Saxena, A., Srivastava, S.S.: Bulk and wet atmospheric deposition chemistry at Agra. Indian J. Environ. Prot. 10, 677–682 (1990)Google Scholar
  77. Sillen, L.G., Martell, A.E.: Stability constants of metal ion complexes, Special Publication No. 25. The Chemical Society, London, p. 26 (1971)Google Scholar
  78. Simplicio, J., Wilkins, R.G.: The uptake of oxygen by ammoniacal cobalt(II) solutions. J. Am. Chem. Soc. 91, 1325–1329 (1969). doi:10.1021/ja01034a011 CrossRefGoogle Scholar
  79. Thacker, M. A., Scott, K. L., Simpson, M. E., Murray, R. S., Higginson, W. C. E.: Redox decomposition of trans-tetra-ammineaquosulfitocobalt(III) in aqueous solution. J. C. S Dalton, 647–651 (1974)Google Scholar
  80. Tsunogai, S.: Oxidation rate of sulfite in water and its bearing on the origin of sulfate in meteoric precipitation. Geochem. J. 5(4), 175–185 (1971)Google Scholar
  81. Tursic, J., Berner, A., Podkrajsek, B., Grgic, I.: Influence of ammonia on sulfate formation under haze conditions. Atmos. Environ. 38, 2789–2795 (2004). doi:10.1016/j.atmosenv.2004.02.036 CrossRefGoogle Scholar
  82. van Eldik, R., Harris, G.M.: Kinetics and mechanism of the formation, acid-catalyzed decomposition, and intramolecular redox reaction of oxygen-bonded (sulfito) pentaamminecobalt(III) ions in aqueous solution. Inorg. Chem. 19, 880–886 (1980). doi:10.1021/ic50206a018 CrossRefGoogle Scholar
  83. Wilkins, R.G.: The study of kinetics and mechanism of reactions of transition metal complexes, p. 108. Allyn and Bacon, Boston (1974)Google Scholar
  84. Yatsimirskii, K.B., Bratushko, Y.I., Zatsny, I.L.: Kinetics and the mechanism of the reduction of molecular oxygen, coordinated in the complex Co2(L-Histidine)4 O2 by sodium sulfite in aqueous solution. Russ. J. Inorg. Chem. 22, 875–877 (1977)Google Scholar
  85. Ziajka, J., Pasiuk-Bronikowska, W.: Autoxidation of sulfur dioxide in the presence of alcohols under conditions related to tropospheric aqueous phase. Atmos. Environ. 37, 3913–3922 (2003). doi:10.1016/S1352-2310(03)00503-X CrossRefGoogle Scholar
  86. Zhou, J., Li, W., Xiao, W.: Kinetics of heterogeneous oxidation of concentrated ammonium sulfite. Chem. Eng. Sci. 55, 5637–5641 (2000). doi:10.1016/S0009-2509(00)00197-4 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Punit Kumar Mudgal
    • 1
  • Anil Kumar Sharma
    • 1
  • C. D. Mishra
    • 1
  • S. P. Bansal
    • 1
  • K. S. Gupta
    • 1
  1. 1.Atmospheric Chemistry Lab, Department of ChemistryUniversity of RajasthanJaipurIndia

Personalised recommendations