Journal of Atmospheric Chemistry

, Volume 61, Issue 1, pp 1–20 | Cite as

Characteristics of carbonyl compounds in ambient air of Shanghai, China

  • Juan Huang
  • Yanli Feng
  • Jian Li
  • Bin Xiong
  • Jialiang Feng
  • Sheng Wen
  • Guoying Sheng
  • Jiamo Fu
  • Minghong Wu


The levels of carbonyl compounds in Shanghai ambient air were measured in five periods from January 2007 to October 2007 (covering winter, high-air-pollution days, spring, summer and autumn). A total of 114 samples were collected and eighteen carbonyls were identified. Formaldehyde, acetaldehyde and acetone were the most abundant carbonyls and their mean concentrations of 19.40 ± 12.00, 15.92 ± 12.07 and 11.86 ± 7.04 μg m−3 respectively, in the daytime for five sampling periods. Formaldehyde and acetaldehyde showed similar diurnal profiles with peak mixing ratios in the morning and early afternoon during the daytime. Their mean concentrations were highest in summer and lowest in winter. Acetone showed reversed seasonal variation. The high molecular weight (HMW, ≥C5) carbonyls also showed obvious diurnal variations with higher concentrations in the daytime in summer and autumn, while they were all not detected in winter. Formaldehyde and acetaldehyde played an important role in removing OH radicals in the atmosphere, but the contribution of acetone was below 1%. The carbonyls levels in high-air-pollution days were reported. More carbonyl species with higher concentrations were found in high-air-pollution days than in spring. These carbonyls were transported with other pollutants from north and northwest in March 27 to April 2, 2007 and then mixed with local sources. Comparing with Beijing and Guangzhou, the concentrations of formaldehyde and acetaldehyde in Shanghai were the highest, which indicated that the air pollution in Shanghai was even worse than expected.


Diurnal variation Seasonal variation High-air-pollution days Formaldehyde Acetaldehyde 



The authors gratefully acknowledge the NOAA Air Resources Laboratory (ARL) for the provision of the HYSPLIT transport and dispersion model and/or READY website ( used in this publication. This work was financially supported by the Chinese National Natural Science Foundation (40503012, 40773047), Shanghai Leading Academic Disciplines (S30109) and innovation fund of Shanghai University.


  1. Andreini, B.P., Baroni, R., Galimberti, E., Sesana, G.: Aldehydes in the atmospheric environment: Evaluation of human exposure in the north-west area of Milan. Microchem. J. 67(1–3), 11–19 (2000). doi: 10.1016/S0026-265X(00)00087-4 CrossRefGoogle Scholar
  2. Arnold, F., Knop, G., Ziereis, H.: Acetone measurements in the upper troposphere and lower stratosphere—implications for hydroxyl radical abundances. Nature 321, 505–507 (1986). doi: 10.1038/321505a0 CrossRefGoogle Scholar
  3. Atkinson, R.: Gas-phase troposphere chemistry of organic chemistry: A review. Atmos. Environ. 24A, 1–41 (1990)Google Scholar
  4. Atkinson, R.: Atmospheric chemistry of VOCs and NOX. Atmos. Environ. 34, 2063–2101 (2000). doi: 10.1016/S1352-2310(99)00460-4 CrossRefGoogle Scholar
  5. Báez, A.P., Belmont, R., Padilla, H.: Measurements of formaldehyde and acetaldehyde in the atmosphere of Mexico City. Environ. Pollut. 89, 163–167 (1995). doi: 10.1016/0269-7491(94)00059-M CrossRefGoogle Scholar
  6. Báez, A.P., Padilla, H., Cevantes, J., Pereyra, D., Torres, M.C., Garcia, R., Belmont, R.: Preliminary study of the determination of ambient carbonyls in Xalapa City, Veracruz, Mexico. Atmos. Environ. 35, 1813–1819 (2001). doi: 10.1016/S1352-2310(00)00475-1 CrossRefGoogle Scholar
  7. Báez, A., Padilla, H., Garcia, R., Torres, M.D., Rosas, I., Belmont, R.: Carbonyl levels in indoor and outdoor air in Mexico City and Xalapa, Mexico. Sci. Total Environ. 302, 211–226 (2003). doi: 10.1016/S0048-9697(02)00344-3 CrossRefGoogle Scholar
  8. Bakeas, E.B., Argyris, D.I., Siskos, P.A.: Carbonyl compounds in the urban environment of Athens, Greece. Chemosphere 52, 805–813 (2003). doi: 10.1016/S0045-6535(03)00257-1 CrossRefGoogle Scholar
  9. Bowman, J.H., Barket Jr., D., Shepson, P.B.: Atmospheric chemistry of nonanal. Environ. Sci. Technol. 37, 2218–2225 (2003). doi: 10.1021/es026220p CrossRefGoogle Scholar
  10. Carlier, P., Hannachi, H., Mouvier, G.: The chemistry of carbonyl compounds in the atmosphere-a review. Atmos. Environ. 20, 2079–2099 (1986). doi: 10.1016/0004-6981(86)90304-5 CrossRefGoogle Scholar
  11. Cavalcante, R.M., Campelo, C.S., Barbosa, M.J., Silveira, E.R., Carvalho, T.V., Nascimento, R.F.: Determination of carbonyl compounds in air and cancer risk assessment in an academic institute in Fortaleza, Brazil. Atmos. Environ. 40, 5701–5711 (2006). doi: 10.1016/j.atmosenv.2006.04.056 CrossRefGoogle Scholar
  12. Cecinato, A., Yassaa, N., Di Palo, V., Possanzini, M.: Observation of volatile and semi volatile carbonyls in an Algerian urban environment using dinitrophenylhydrazine/silica-HPLC and pentafluorophenylhydrazine/silica-GC-MS. J. Environ. Monit. 4, 223–228 (2002). doi: 10.1039/b110616n CrossRefGoogle Scholar
  13. Cerón, R.M., Cerón, J.G., Muriel, M.: Diurnal and seasonal trends in carbonyl levels in a semi-urban coastal site in the Gulf of Campeche, Mexico. Atmos. Environ. 41, 63–71 (2007). doi: 10.1016/j.atmosenv.2006.08.008 CrossRefGoogle Scholar
  14. Chi, Y.G.: Determination of carbonyl compounds in the atmosphere and from plant emission by LC/MS. Dissertation for Doctor Degree in Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, November (2007)Google Scholar
  15. Chi, Y., Feng, Y., Wen, S., Lü, H., Zhang, W., Sheng, G., Fu, J.: Determination of carbonyl compounds in the atmosphere by DNPH derivatization and LC–ESI-MS/MS detection. Talanta 72, 539–545 (2007). doi: 10.1016/j.talanta.2006.11.018 CrossRefGoogle Scholar
  16. Christensen, C.S., Skov, H., Lohse, C.: Temporal variation of carbonyl compound concentrations at a semi-rural site in Denmark. Atmos. Environ. 34, 287–296 (2000). doi: 10.1016/S1352-2310(99)00297-6 CrossRefGoogle Scholar
  17. Ciccioli, P., Brancaleoni, E., Frattoni, M., Cecinato, A., Brachetti, A.: Ubiquitous occurrence of semi-volatile carbonyl compounds in tropospheric samples and their possible source. Atmos. Environ. 27A, 1891–1901 (1993)Google Scholar
  18. Correa, S., Martins, E., Arbilla, G.: Formaldehyde and acetaldehyde in a high traffic street of Rio de janeiro, Brazil. Atmos. Environ. 37, 23–29 (2003). doi: 10.1016/S1352-2310(02)00805-1 CrossRefGoogle Scholar
  19. Duan, J., Tan, J., Yang, L., Wu, S., Hao, J.: Concentration, sources and ozone formation potential of volatile organic compounds (VOCs) during ozone episode in Beijing. Atmos. Environ. 88, 25–35 (2008)Google Scholar
  20. Duane, M., Poma, B., Rembges, D., Astorga, C., Larsen, B.R.: Isoprene and its degradation products as strong ozone precursors in Insubria, northern Italy. Atmos. Environ. 36, 3867–3879 (2002). doi: 10.1016/S1352-2310(02)00359-X CrossRefGoogle Scholar
  21. Feng, Y.L., Wen, S., Wang, X.M., Sheng, G.Y., He, Q.S., Tang, J.H., Fu, J.M.: Indoor and outdoor carbonyl compounds in the hotel ballrooms in Guangzhou, China. Atmos. Environ. 38, 103–112 (2004). doi: 10.1016/j.atmosenv.2003.09.061 CrossRefGoogle Scholar
  22. Feng, Y.L., Wen, S., Chen, Y.J., Wang, X.M., Lu, H.X., Bi, X.H., Sheng, G.Y., Fu, J.M.: Ambient levels of carbonyl compounds and their sources in Guangzhou, China. Atmos. Environ. 39, 1789–1800 (2005). doi: 10.1016/j.atmosenv.2004.10.009 CrossRefGoogle Scholar
  23. Feng, J., Hu, M., Chan, C.K., Lau, P.S., Fang, M., He, L., Tang, X.: A comparative study of the organic matter in PM2.5 from three Chinese megacities in three different climatic zones. Atmos. Environ 40, 3983–3994 (2006). doi: 10.1016/j.atmosenv.2006.02.017 CrossRefGoogle Scholar
  24. Granby, K., Christensen, C.S., Lohse, C.: Urban and semi-rural observations of carboxylic acids and carbonyls. Atmos. Environ. 31, 1403–1415 (1997). doi: 10.1016/S1352-2310(96)00347-0 CrossRefGoogle Scholar
  25. Grosjean, D.: Formaldehyde and other carbonyls in Los Angeles ambient air. Environ. Sci. Technol. 16, 254–262 (1982). doi: 10.1021/es00099a005 CrossRefGoogle Scholar
  26. Grosjean, E., Grosjean, D., Fraser, M.P., Cass, G.R.: Air quality model evaluation data for organics. 2. C1-C14 carbonyls in Los Angeles. Environ. Sci. Technol 30, 2687–2703 (1996). doi: 10.1021/es950758w CrossRefGoogle Scholar
  27. Grosjean, D., Grosjean, E., Moreira, L.F.R.: Speciated ambient carbonyls in Rio de Janeiro, Brazil. Environ. Sci. Technol. 36, 1389–1395 (2002). doi: 10.1021/es0111232 CrossRefGoogle Scholar
  28. Hellén, H., Hakola, H., Reissell, A., Ruuskanen, T.M.: Carbonyl compounds in boreal coniferous forest air in Hyytiälä, Southern Finland. Atmos. Chem. Phys. Discuss. 4, 2991–3011 (2004)Google Scholar
  29. Hellén, H., Hakola, H., Pirjola, L., Laurila, T., Pystynen, K.H.: Ambient air concentrations, source profiles and source apportionment of 71 different C2–C10 volatile organic compounds in urban and residential areas of Finland. Environ. Sci. Technol. 40, 103–108 (2006). doi: 10.1021/es051659d CrossRefGoogle Scholar
  30. Ho, K.F., Lee, S.C., Louie, P.K.K., Zou, S.C.: Seasonal variation of carbonyl compound concentrations in urban area of Hong Kong. Atmos. Environ. 36, 1259–1265 (2002). doi: 10.1016/S1352-2310(01)00570-2 CrossRefGoogle Scholar
  31. Ho, K.F., Lee, S.C., Tsai, W.Y.: Carbonyl compounds in the roadside environment of Hong Kong. J. Hazard. Mater. A133(1–3), 24–29 (2006). doi: 10.1016/j.jhazmat.2005.09.054 CrossRefGoogle Scholar
  32. Huang, J., Feng, Y., Xiong, B., Fu, J., Sheng, G.: Ambient Levels of Carbonyl Compounds in Shanghai. China Environ. Sci. (2009)Google Scholar
  33. International Agency for Research on Cancer (IARC).: The IARC Monographs Series—IARC classifies formaldehyde as carcinogenic to humans—press release No. 153, 15 June (2004)Google Scholar
  34. Jacob, D.J., Field, B.D., Jin, E.M., Bey, I., Li, Q., Logan, J.A., Yantosca, R.M.: Atmospheric budget of acetone. J. Geophys. Res. 107(D10), 4100 (2002). doi: 10.1029/2001JD000694 CrossRefGoogle Scholar
  35. Khwaja, H.A., Narang, A.: Carbonyls and non-methane hydrocarbons at a rural mountain site in northeastern United States. Chemosphere 71, 2030–2043 (2008). doi: 10.1016/j.chemosphere.2008.01.042 CrossRefGoogle Scholar
  36. Kwok, E.S.C., Atkinson, R.: Estimation of hydroxyl reaction rate constants for gas-phase organic compounds using a structure-reactivity relationship: An update. Atmos. Environ. 39, 1685–1995 (1995). doi: 10.1016/1352-2310(95)00069-B CrossRefGoogle Scholar
  37. Lary, D.J., Shallcross, D.E.: Central role of carbonyl compounds in atmospheric chemistry. J. Geophys. Res. 105, 19771–19778 (2000). doi: 10.1029/1999JD901184 CrossRefGoogle Scholar
  38. Lee, S.C., Ho, K.F., Chan, L.Y., Zielinska, B., Chow, J.C.: Polycyclic aromatic hydrocarbons (PAHs) and carbonyl compounds in urban atmosphere of Hong Kong. Atmos. Environ. 35(34), 5949–5960 (2001). doi: 10.1016/S1352-2310(01)00374-0 CrossRefGoogle Scholar
  39. Levart, A., Veber, M.: Determination of aldehydes and ketones in air samples using cryotrapping sampling. Chemosphere 44, 701–708 (2001). doi: 10.1016/S0045-6535(00)00369-6 CrossRefGoogle Scholar
  40. Liu, W., Zhang, J., Zhang, L., Turpin, B.J., Weisel, C.P., Morandi, M.T., Stock, T.H., Colome, S., Kornl, R.: Estimating contributions of indoor and outdoor sources to indoor carbonyl concentrations in three urban areas of the United States. Atmos. Environ. 40(12), 2202–2214 (2006). doi: 10.1016/j.atmosenv.2005.12.005 CrossRefGoogle Scholar
  41. Liu, L., Flatoy, F., Ordóñez, C., Hak, C., Junkermann, W., Andreani-Aksoyoglu, S., Mellqvist, J., Galle, B., Prévôt, A.S.H., Isaksen, I.S.A.: Photochemnical modeling in the Po basin with focus on formaldehyde and ozone. Atmos. Chem. Phys. 7, 121–137 (2007)CrossRefGoogle Scholar
  42. Lü, H.X., Wen, S., Feng, Y., Wang, X., Bi, X., Sheng, G., Fu, J.: Indoor and outdoor carbonyl compounds and BTEX in the hospitals of Guangzhou, China. Sci. Total Environ. 368(2–3), 574–584 (2006). doi: 10.1016/j.scitotenv.2006.03.044 Google Scholar
  43. Macintosh, D.L., Zimmer-Dauphinee, S.A., Manning, R.O., Williams, P.L.: Aldehyde concentrations in ambient air of coastal Georgia, U.S.A. Environ. Monit. Assess 63, 1573–2959 (2000). doi: 10.1023/A:1006234610865 CrossRefGoogle Scholar
  44. Montero, L., Vasconcello, S.P., Souza, S.R., Pires, M.A.F., Sanchez-ccoyllo, O.R., Andrade, M.F., Carvalho, L.R.F.: Measurements of atmospheric carboxylic acids and carbonyl compounds in Sao Paulo city, Brazil. Environ. Sci. Technol. 35(15), 3071–3081 (2001). doi: 10.1021/es001875g CrossRefGoogle Scholar
  45. Moortgat, G., Grossmann, D., Boddenberg, A., Dallmann, G., Ligon, A.P., Turner, W.V., Gab, S., Slemr, F., Wieprecht, W., Acker, K., Kibler, M., Schlomski, S., Bachmann, K.: Hydrogen peroxide, organic peroxides and higher carbonyl compounds determined during the BERLIOZ campain. J. Atmos. Chem 42, 443–436 (2002). doi: 10.1023/A:1015743013107 CrossRefGoogle Scholar
  46. Moussa, S.G., El-Fadel, M., Saliba, N.A.: Seasonal, diurnal and nocturnal behaviors of lower carbonyl compounds in the urban environment of Beirut, Lebanon. Atmos. Environ. 40, 2459–2468 (2006). doi: 10.1016/j.atmosenv.2005.12.031 CrossRefGoogle Scholar
  47. Müller, K., Pelzing, M., Gnauk, T., Kappe, A., Teichmann, U., Spindler, G., Haferkorn, S., Jahn, Y., Herrmann, H.: Monoterpene emissions and carbonyl compound air concentrations during the blooming period of rape (Brassica napus). Chemosphere 49, 1247–1256 (2002). doi: 10.1016/S0045-6535(02)00610-0 CrossRefGoogle Scholar
  48. Müller, K., Haferkorn, S., Grabmer, W., Wisthaler, A., Hanser, A., Kreuzwieser, J., Cojocariu, C., Rennenberg, H., Herrmann, H.: Biogenic carbonyl compounds within and above a coniferous forest in Germany. Atmos. Environ. 40, S81–S91 (2006). doi: 10.1016/j.atmosenv.2005.10.070 CrossRefGoogle Scholar
  49. Nguyen, H.T., Takenaka, N., Bandow, H., Maeda, Y., Oliva, S., Botelho, M., Tavares, T.: Atmopsheric alcohols and aldehydes concentrations measured in Osaka, Japan and in Sao Paulo, Brazil. Atmos. Environ. 35, 3075–3083 (2001). doi: 10.1016/S1352-2310(01)00136-4 CrossRefGoogle Scholar
  50. Ohura, T., Amagai, T., Fusaya, M.: Regional assessment of ambient volatile organic compounds in an industrial harbor area, Shizuoka, Japan. Atmos. Environ. 40, 238–248 (2006). doi: 10.1016/j.atmosenv.2005.09.064 CrossRefGoogle Scholar
  51. Owen, S., Boissard, C., Street, R.A., Duckham, S.C.: Screening of 18 Mediterranean plant species for volatile organic compounds emissions. Atmos. Environ 31(S1), 101–117 (1997). doi: 10.1016/S1352-2310(97)00078-2 CrossRefGoogle Scholar
  52. Pal, R., Kim, K.-H., Hong, Y.-J., Jeon, E.-C.: The pollution status of atmospheric carbonyls in a highly industrialized area. J. Hazard. Mater. 153, 1122–1135 (2008). doi: 10.1016/j.jhazmat.2007.09.068 CrossRefGoogle Scholar
  53. Pang, X., Mu, Y.: Seasonal and diurnal variations of carbonyl compounds in Beijing ambient air. Atmos. Environ. 40, 6313–6320 (2006). doi: 10.1016/j.atmosenv.2006.05.044 CrossRefGoogle Scholar
  54. Peng, Q.T., Hu, W.X., Hou, X.J.: A New HPLC Method to Determine Carbonyl Compounds in Air. Chin. Chem. Lett. 13(12), 1199–1202 (2002)Google Scholar
  55. Pinto, J.P., Solci, M.C.: Comparison of rural and urban atmospheric aldehydes in Londrina, Brazil. J. Braz. Chem. Soc. 18(5), 928–936 (2007). doi: 10.1590/S0103-50532007000500009 CrossRefGoogle Scholar
  56. Possanzini, M., Di Palo, V., Petricca, M., Fratarcangeli, R., Brocco, D.: Measurement of lower carbonyls in Rome urban ambient air. Atmos. Environ. 30, 3757–3764 (1996). doi: 10.1016/1352-2310(96)00110-0 CrossRefGoogle Scholar
  57. Possanzini, M., Di Palo, V., Cecinato, A.: Sources and photodecompositon of formaldehyde and acetaldehyde in Rome ambient air. Atmos. Environ. 36, 3195–3201 (2002). doi: 10.1016/S1352-2310(02)00192-9 CrossRefGoogle Scholar
  58. Possanzini, M., Tagliacozzo, G., Cecinato, A.: Ambient Levels and Sources of Lower Carbonyls at Montelibretti, Rome (Italy). Water Air Soil Pollut. 183, 447–454 (2007). doi: 10.1007/s11270-007-9393-1 CrossRefGoogle Scholar
  59. Satsumabayashi, H., Kurita, H., Chang, Y.S., Carmichael, G.R.: Photochemical formations of lower aldehydes and lower fatty acids under long-range transport in central Japan. Atmos. Environ. 29, 255–266 (1995). doi: 10.1016/1352-2310(94)00231-9 CrossRefGoogle Scholar
  60. Shepson, P.B., Hastie, D.R., Schiff, H.I., Polizzi, M., Bottenheim, J.W., Anlauf, K., Mackay, G.I., Karecki, D.R.: Atmospheric concentrations and temporal variations of C1–C3 carbonyl compounds at two rural sites in central Ontario. Atmos. Environ. 25A, 2001–2015 (1991)Google Scholar
  61. Sin, D.W.M., Wong, Y., Louie, P.K.K.: Trends of ambient carbonyl compounds in the urban environment of Hong Kong. Atmos. Environ. 35, 5961–5969 (2001). doi: 10.1016/S1352-2310(01)00359-4 CrossRefGoogle Scholar
  62. Uebori, M., Imamura, K.: Analysis of aliphatic and aromatic carbonyl compounds in ambient air by LC/MS/MS. Anal. Sci. 20, 1459–1462 (2004). doi: 10.2116/analsci.20.1459 CrossRefGoogle Scholar
  63. Vasconcellos, P.C., Carvalho, L.R.F., Pool, C.S.: Volatile organic compounds inside urban tunnels of Sao Paulo City, Brazil. J. Braz. Chem. Soc 16(6A), 1210–1216 (2005). doi: 10.1590/S0103-50532005000700019 CrossRefGoogle Scholar
  64. Villanueva-Fierro, I., Popp, C.J., Martin, R.S.: Biogenic emissions and ambient concentrations of hydrocarbons, carbonyl compounds and organic acids from ponderosa pine and cottonwood trees at rural and forested sites in Central New Mexico. Atmos. Environ. 38(2), 249–260 (2004). doi: 10.1016/j.atmosenv.2003.09.051 CrossRefGoogle Scholar
  65. Viskari, E.-L., Vartiainen, M., Pasanen, P.: Seasonal and diurnal variation information and acetaldehyde concentrations along a highway in Eastern Finland. Atmos. Environ. 34, 917–923 (2000). doi: 10.1016/S1352-2310(99)00307-6 CrossRefGoogle Scholar
  66. Wang, B., Lee, S.C., Ho, K.F.: Characteristics of carbonyls: Concentrations and source strengths for indoor and outdoor residential microenvironments in China. Atmos. Environ. 41, 2851–2861 (2007). doi: 10.1016/j.atmosenv.2006.11.039 CrossRefGoogle Scholar
  67. Wen, S., Feng, Y., Wang, X., Sheng, G., Fu, J., Bi, X.: Development of a compound-specific isotope analysis method for acetone via 2, 4-dinitrophenylhydrazine derivatization. Rapid Commun. Mass Spectrom. 18(22), 2669–2672 (2004). doi: 10.1002/rcm.1674 CrossRefGoogle Scholar
  68. Wen, S., Feng, Y., Yu, Y., Bi, X., Wang, X., Sheng, G., Fu, J., Peng, P.: Development of a compound-specific isotope analysis method for atmospheric formaldehyde and acetaldehyde. Environ. Sci. Technol. 9(16), 6202–6207 (2005). doi: 10.1021/es049553q CrossRefGoogle Scholar
  69. Wildt, J., Kobel, K., Schuh-Thomas, G., Heiden, A.C.: Emissions of oxygenated volatile organic compounds from plants. Part II: Emissions of saturated aldehydes. J. Atmos. Chem. 45, 173–196 (2003). doi: 10.1023/A:1024030821349 CrossRefGoogle Scholar
  70. Yan, Z.G., Wang, C.Z.: Wound-induced green leaf volatiles cause the release of acetylated derivatives and a terpenoid in maize. Phytochemistry 67, 34–42 (2006). doi: 10.1016/j.phytochem.2005.10.005 CrossRefGoogle Scholar
  71. Yu, Y., Wen, S., Feng, Y., Bi, X., Wang, X., Peng, P., Sheng, G., Fu, J.: Development of a compound-specific isotope analysis method for atmospheric formaldehyde via NaHSO3 and cysteamine derivatization. Anal. Chem. 78(4), 1206–1211 (2006). doi: 10.1021/ac051616f CrossRefGoogle Scholar
  72. Yu, Y., Wen, S., Lü, H., Feng, Y., Wang, X., Sheng, G., Fu, J.: Characteristics of atmospheric carbonyls and VOCs in forest park in south China. Environ. Monit. Assess. 137, 275–285 (2008). doi: 10.1007/s10661-007-9759-2 CrossRefGoogle Scholar
  73. Zhang, J., He, Q., Lioy, P.J.: Characteristics of aldehydes:concentrations, sources, and exposure for indoor and outdoor residential microenvironments. Environ. Sci. Technol. 28, 146–152 (1994). doi: 10.1021/es00050a020 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Juan Huang
    • 1
  • Yanli Feng
    • 1
  • Jian Li
    • 1
  • Bin Xiong
    • 1
  • Jialiang Feng
    • 1
  • Sheng Wen
    • 2
  • Guoying Sheng
    • 2
  • Jiamo Fu
    • 2
  • Minghong Wu
    • 3
  1. 1.Institute of Environmental Pollution and Health, School of Environmental and Chemical EngineeringShanghai UniversityShanghaiChina
  2. 2.State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of GeochemistryChinese Academy of SciencesGuangzhouChina
  3. 3.Shanghai Applied Radiation Institute, School of Environmental and Chemical EngineeringShanghai UniversityShanghaiChina

Personalised recommendations