Journal of Atmospheric Chemistry

, Volume 60, Issue 3, pp 237–252 | Cite as

Ozone in ambient air at a tropical megacity, Delhi: characteristics, trends and cumulative ozone exposure indices

  • Sachin D. GhudeEmail author
  • S. L. Jain
  • B. C. Arya
  • G. Beig
  • Y. N. Ahammed
  • Arun Kumar
  • B. Tyagi


Seven year data of hourly surface ozone concentration is analyzed to study diurnal cycle, trends, excess of ozone levels above threshold value and cumulative ozone exposure indices at a tropical megacity, Delhi. The ozone levels clearly exhibit a diurnal cycle, similar to what has been found in other urban places. A sharp increase in the ozone levels during forenoon and a sharp decrease in the early afternoon can be observed. The average rate of increase in ozone concentration between 09 and 12 h has been observed to be 7.1 ppb h−1. We find that the daily maximum and daytime 8-h (10–17 h) ozone levels are increasing at a rate of about 1.7 (± 0.7) and 1.3 (± 0.56) ppb y−1, respectively. The directives on ozone pollution in ambient air provided by United Nations Economic Commission for Europe and World Health Organization for vegetation (AOT40) and human health protection were used to assess the air quality. The present surface ozone levels in the city are high enough to exceed “Critical Levels” which are considered to be safe for human health, vegetation and forest. The human health threshold was exceeded for up to ~45 days per year. The AOT40 (Accumulated exposure Over a Threshold of 40 ppb) threshold was exceeded significantly during winter (D-J-F) and pre-monsoon (M-A-M) (Rabi crop growing season) season in India. Translating AOT40 exceedances during pre-monsoon into relative yield loss we estimate yield loss of 22.7%, 22.5%, 16.3% and 5.5% for wheat, cotton, soybean and rice, respectively.


Surface ozone Megacity air quality Ozone pollution Ozone trends AOT40 



We are thankful to Director, Indian institute of Tropical meteorology, Pune and Director, National Physical Laboratory, New Delhi for their encouragement during the course of this study. Thanks also to NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, for providing NCEP Reanalysis Derived data from the website, TEMIS service for providing tropospheric NO2 data from the website and Dr. D.M. Chate for his valuable suggestions. Thanks are also for the financial support under CSIR emeritus scientist scheme to one of the author (SLJ).


  1. Agrawal, M., Singh, B., Rajput, M., Marshall, F., Bell, J.N.B., 3: Effect of air pollution on periurban agriculture: a case study. Environ. Pollut. 126(3), 323–339 (2003). doi: 10.1016/S0269-7491(03)00245-8 CrossRefGoogle Scholar
  2. Ahammed, Y.N., Reddy, R.R., Rama Gopal, K., Narasimhulu, K., Baba Basha, D., Siva Sankara Reddy, L., Rao, T.V.R.: Seasonal variation of the surface ozone and its precursor gases during 2001–2003, measured at Anantapur (14.62°N), a semi-arid site in India. Atmos. Res. 80(2–3), 151–164 (2006). doi: 10.1016/j.atmosres.2005.07.002 CrossRefGoogle Scholar
  3. Aunan, K., Berntsen, T.K., Seip, H.M.: Surface ozone in China and its possible impact on agricultural crop yields. Ambio 29, 294–301 (2000). doi: 10.1639/0044-7447(2000)029[0294:SOICAI]2.0.CO;2 Google Scholar
  4. Avol, E.L., Navidi, W.C., Rappaport, E.B., Peters, J.M.: Acute effects of ambient ozone on asthmatic, wheezy, and healthy children. Research Report. Health Effects Institute, 82 (III): 1–18, discussion 19–30 (1998)Google Scholar
  5. Badhwar, N., Trivedi, R.C., Sengupta, B.: Air Quality Status and Trends in India, Better Air Quality (BAQ) Workshop held at Yogyakarta, Indonesia from 13–15th Dec 2006 (2006)Google Scholar
  6. Beig, G., Brasseur, G.P.: Influence of anthropogenic emissions on tropospheric ozone and its precursors over the Indian tropical region during a monsoon. Geophys. Res. Lett. 33, L07808 (2006). doi: 10.1029/2005GL024949 doi:10.1029/2005GL024949 CrossRefGoogle Scholar
  7. Beig, G., Gunthe, S., Jadhav, D.B.: Simultaneous measurements of ozone and its precursors on a diurnal scale at a semi-urban site in Pune. J. Atmos. Chem. Eur. 57, 239–253 (2007). doi: 10.1007/s10874-007-9068-8 CrossRefGoogle Scholar
  8. Beig, G., Ghude, S.D., Polade, S., Tyagi, B.: Threshold exceedances and cumulative ozone exposure indices at tropical suburban site. Geophys. Res. Lett. 35, L02802 (2008). doi: 10.1029/2007GL031434 doi:10.1029/2007GL031434 CrossRefGoogle Scholar
  9. Boersma, K.F., Eskes, H.J., Brinksma, E.J.: Error analysis for troposheric NO2 retrieval from space. J. Geophys. Res. 109(D0), 4311 (2004). doi: 10.1029/2003JD003961 CrossRefGoogle Scholar
  10. Chameides, W.L., Kasibhatla, P.S., Yienger, J., Levy, H.: Growth of continental-scale metroagroplexes, regional ozone pollution, and world food production. Science 264, 76–77 (1994). doi: 10.1126/science.264.5155.74 CrossRefGoogle Scholar
  11. Chand, D., Lal, S.: High ozone at rural sites in India. Atmos. Chem. Phys. Discuss. 4, 3359–3380 (2004)CrossRefGoogle Scholar
  12. Chow, J.C.: Introduction to the A&WMA 2004 Critical Review — Megacities and Atmospheric Pollution. J. Air Waste Manag. Assoc. 54(6), 642–643 (2004)Google Scholar
  13. Coyle, M., Smith, R.I., Stedman, J.R., Weston, K.J., Fowler, D.: Quantifying the spatial distribution of surface ozone concentration in the UK. Atmos. Environ. 36, 1013–1024 (2002). doi: 10.1016/S1352-2310(01)00303-X CrossRefGoogle Scholar
  14. Crutzen, P.J.: Ozone in troposphere. In: Singh, H.B. (ed.) Composition, Chemistry, and Climate of the Atmosphere, pp. 349–399. Van Nostrand Reinohold, New York (1995)Google Scholar
  15. Crutzen, P.J.: Tropospheric ozone: An overview, in ‘Tropospheric Ozone’, I.S.A. Isaksen (Eds), D.Reidel Publ. Co: 3–32 (1988)Google Scholar
  16. Debaje, S.B., Jeyakumar, S.J., Ganesan, K., Jadhav, D.B., Seetaramayya, P.: Surface ozone measurements at tropical rural costal station Tranquebar, India. Atmos. Environ. 37, 4911–4916 (2003). doi: 10.1016/j.atmosenv.2003.08.005 CrossRefGoogle Scholar
  17. Delfno, R.J., Murphy-Moulton, A.M., Becklake, M.R.: Emergency room visits for respiratory illnesses among the elderly in Montreal: association with low-level ozone exposure. Environ. Res. 76, 67–77 (1998). doi: 10.1006/enrs.1997.3794 CrossRefGoogle Scholar
  18. Emberson, L.D., Ashmore, M.R., Murray, F., Kuylenstierna, J.C.I., Percy, K., Izuta, T., Zheng, Y., Shimizu, H., Sheu, B.H., Liu, C.P., Agrawal, M., Wahid, A., Abdel-Latif, N.M., van Tienhoven, M., de Bauer, L.I., Domingos, M.: Impacts of air pollutants on vegetation in developing countries. Water Air Soil Pollut. 130, 107–118 (2001). doi: 10.1023/A:1012251503358 CrossRefGoogle Scholar
  19. Engardt, M.: Modelling of near-surface ozone over South Asia. J. Atmos. Chem. 59, 61–80 (2008). doi: 10.1007/s10874-008-9096-z CrossRefGoogle Scholar
  20. European Union (EU).: Directive 2002/3/EC of the European Parliament and of the Council relating to ozone in ambient air. Official Journal of the European Communities. 9.3.2002, L67/14–30 (2002)Google Scholar
  21. Garland, J.A., Derwent, R.G.: Destruction at the ground and the diurnal cycle of concentration of ozone and other gases. Q. J. R. Meteorol. Soc. 105, 169–183 (1979). doi: 10.1002/qj.49710544311 CrossRefGoogle Scholar
  22. Ghude, S.D.: Van der A R. J., Beig, G., Fadnavis, S., and Polade S. D.: Satellite derived trends in NO2 over the major global hotspot regions during the past decade and their inter-comparison. Environ. Pollut. (2009). doi: 10.1016/j.envpol.2009.01.013
  23. Ghude, S.D., Jain, S.L., Arya, B.C., Kulkarni, P.S., Ashok, Kumar, Ahmeed, N.: Temporal and spatial variability of surface ozone at Delhi and Antarctica. Int. J. Climatol. 26, 2054–2062 (2006). doi: 10.1002/joc.1367 CrossRefGoogle Scholar
  24. Ghude, S.D., Fadnavis, S., Beig, G., Van Der, A.R.J., Polade, S.D.: Detection of surface emission hotspots, trends and seasonal cycle from satellites retrieved NO2 over India. J. Geophys. Res. 113, D20305 (2008). doi: 10.1029/2007JD009615 CrossRefGoogle Scholar
  25. Gurjar, B.R., van Aardenne, J.A., Lelieveld, J., Mohan, M.: Emission estimates and trends (1990–2000) for megacity Delhi and implications. Atmos. Environ. 38, 5663–5681 (2004). doi: 10.1016/j.atmosenv.2004.05.057 CrossRefGoogle Scholar
  26. Gurjar, B.R., Butler, T.M., Lawrence, M.G., Lelieveld, J.: Evaluation of emissions and air quality in megacities. Atmos. Environ. 42, 1593–1606 (2008). doi: 10.1016/j.atmosenv.2007.10.048 CrossRefGoogle Scholar
  27. Jacob, D.J., Logan, J.A., Murti, P.P.: Effect of rising Asian emissions on surface ozone in the United States. Geophys. Res. Lett. 26(14), 2175–2178 (1999). doi: 10.1029/1999GL900450 CrossRefGoogle Scholar
  28. Jain, S.L., Arya, B.C.: Surface ozone measurement over New Delhi. Journal of Marin and Atmospheric research. 2(1), 22–25 (2001)Google Scholar
  29. Jain, S.L., Arya, B.C., Arun, Kumar, Ghude, S.D., Kulkarni, P.S.: Observational study of surface ozone at New Delhi, India. Int. J. Remote Sens. 26(16), 3515–3526 (2005). doi: 10.1080/01431160500076616 CrossRefGoogle Scholar
  30. Kleinman, L., Lee, Y., Springston, S.T., Nunnermacker, L., Zhou, X., Brown, R., Hallock, K., Klotz, P., Leahy, D., Lee, J.H., Newman, L.: Ozone formation at a rural site in the southern United States. J. Geophys. Res. 99, 3469–3482 (1994). doi: 10.1029/93JD02991 CrossRefGoogle Scholar
  31. Klumpp, A., Wolfgang, Ansel, Gabriele, Klumpp, Phillippe, Vergne, Sifakis, N., et al.: Ozone pollution and ozone biomonitoring in European cities. Part I: Ozone concentrations and cumulative exposure indices at urban and suburban sites. Atmos. Environ. 40, 7963–7974 (2006). doi: 10.1016/j.atmosenv.2006.07.017 CrossRefGoogle Scholar
  32. Lal, S., Naja, M., Subbaraya, B.H.: Seasonal variations in surface ozone and its precursors over an urban site in India. Atmos. Environ. 34, 2713–2724 (2000). doi: 10.1016/S1352-2310(99)00510-5 CrossRefGoogle Scholar
  33. Mills, G., Buse, A., Gimeno, B., Bermejo, V., Holland, M., Emberson, L., Pleijel, H.: A synthesis of AOT40-based response functions and criticallevels of ozone for agricultural and horticultural crops. Atmos. Environ. 41, 2630–2643 (2007). doi: 10.1016/j.atmosenv.2006.11.016 CrossRefGoogle Scholar
  34. MOEF: White Paper on Air Pollution in Delhi with an Action Plan, Ministry of Environment and Forests, Government of India (1997)Google Scholar
  35. Naja, M., Lal, S.: Changes in surface ozone amount and its diurnal and seasonal pattern from 1954–1955 to 1991–1993, measured at Ahmedabad (23oN), India. Geophys. Res. Lett. 23, 81–84 (1996). doi: 10.1029/95GL03589 CrossRefGoogle Scholar
  36. Naja, M., Lal, S.: Surface ozone and precursor gases at Gadanki (13,5°N, 79.2°E), a tropical rural site in India. J. Geophys. Res. 107, ACH-8 (2002). doi: 10.1029/2001JD000357 CrossRefGoogle Scholar
  37. Penkett, S.A.: Indications and causes of ozone increase in the troposphere, in ‘The changing atmosphere.’ Rowland FS. Isaksen ISA.(eds.) J. Wiley & Sons; 91, (1998)Google Scholar
  38. Pochanart, P., Hirokawa, J., Kajii, Y., Akimoto, H., Nakao, M.: The influence of regional scale antropogenic activity in northeast Asia on seasonal variation of surface ozone and carbon monoxide at Oki, Japan. J. Geophys. Res. 104, 3621–3631 (1999). doi: 10.1029/1998JD100071 CrossRefGoogle Scholar
  39. Sillman, S.: The relation between ozone, NOx and hydrocarbons in urban and polluted rural environments. Atmos. Environ. 33, 1821–1845 (1999). doi: 10.1016/S1352-2310(98)00345-8 CrossRefGoogle Scholar
  40. Sillman, S., Logan, J.A., Wofsy, S.C.: The sensitivity of ozone to nitrogen oxides and hydrocarbons in regional ozone episodes. J. Geophys. Res. 95, 1837–1852 (1990). doi: 10.1029/JD095iD02p01837 CrossRefGoogle Scholar
  41. Van der, A.R.J., Peters, D.H.M.U., Eskes, H., Boersma, K.F., Van Roozendael, M., Smedt, I.De, Kelder, H.M.: Detection of the trend and seasonal variation in tropospheric NO2 over China. J. Geophys. Res. 111, D12317 (2006). doi: 10.1029/2005JD006594 CrossRefGoogle Scholar
  42. Van Dingenen R., Dentener, F.J., Raes, F., Krol, M.C., Emberson, L., Cofala, J.: The global impact of ozone on agricultural crop yields under current and future air quality legislation. Atmos. Environ. 43(3), 604–618 (2009). doi: 10.1016/j.atmosenv.2008.10.033 CrossRefGoogle Scholar
  43. Wang, H., Kiang, C.S., Tang, X., Zhou, X., Chameides, W.L.: Surface ozone: A likely threat to crops in Yangtze delta of China. Atmos. Environ. 39(21), 3843–3850 (2005). doi: 10.1016/j.atmosenv.2005.03.013 Google Scholar
  44. World Health Organization (WHO): Air Quality Guidelines for Europe, second ed. WHO Regional Office for Europe, Copenhagen. WHO Reg. Publ. Eur. Ser. (91):288 (2000)Google Scholar
  45. Zhang, J., Rao, S.T.: The role of vertical mixing in the temporal evolution of ground-level ozone concentrations. J. Appl. Meteorol. 38(12), 1674–1691 (1999). doi: 10.1175/1520-0450(1999)038 < 1674:TROVMI > 2.0.CO;2 CrossRefGoogle Scholar
  46. Zhang, R., Lei, W., Tie, X., Hess, P.: Industrial emissions cause extreme urban ozone diurnal variability. Proc. Natl Acad. Sci. USA 101, 6346–6350 (2004). doi: 10.1073/pnas.0401484101 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Sachin D. Ghude
    • 1
    Email author
  • S. L. Jain
    • 2
  • B. C. Arya
    • 2
  • G. Beig
    • 1
  • Y. N. Ahammed
    • 2
  • Arun Kumar
    • 2
  • B. Tyagi
    • 3
  1. 1.PMA Division, Indian Institute of Tropical MeteorologyPuneIndia
  2. 2.Radio and Atmospheric Sciences DivisionNational Physical LaboratoryNew DelhiIndia
  3. 3.Indian Institute of TechnologyKharagpur, CORAL DivisionKharagpurIndia

Personalised recommendations