Journal of Atmospheric Chemistry

, Volume 60, Issue 1, pp 51–70 | Cite as

Novel measurements of atmospheric iodine species by resonance fluorescence

  • Catherine S. E. Bale
  • Trevor Ingham
  • Roisin Commane
  • Dwayne E. Heard
  • William J. Bloss
Article

Abstract

A field instrument has been developed for the purpose of measuring gas-phase atmospheric iodine species in the marine boundary layer. Vacuum UV resonance-fluorescence (RF), generated using a microwave discharge lamp, is employed to detect atomic iodine via the (5p46s)–(5p5) transitions around 178–184 nm. The system can be operated in two modes; either to directly measure ambient iodine atoms, or to measure the total photolabile iodine loading of ambient air, through broadband visible photolysis of photolabile iodine-containing species, with subsequent RF detection of the iodine atoms released. In both cases the instrument allows for the in situ measurement of the species detected, which is advantageous for gathering information concerning their local sources and distribution. The instrument is calibrated through generation of a known concentration of iodine atoms from the photolysis of I2 using a mercury pen-ray lamp. The instrument was deployed for the first time in August 2007 at Mace Head on the west coast of Ireland; initial results from this field trial are presented. Ambient iodine atoms were measured at levels up to 22 ± 4.8 ppt during the day, coinciding with the lowest tides, when Laminaria seaweed beds were exposed. The total photolabile iodine loading was also measured during several night-time and day-time periods and was found to correlate inversely with tidal height. Inferred I2 concentrations based on these measurements indicate levels of several hundred ppt at the Mace Head site. These measurements represent the first direct observations of ambient iodine atoms and measurement of total photolabile iodine in the atmosphere.

Keywords

Iodine Iodine monoxide Mace head Marine boundary layer Resonance-fluorescence 

Notes

Acknowledgements

The authors would like to thank the staff at the Mace Head Atmospheric Research Station and NUI Galway, in particular G. Jennings and G. Spain. Meteorological and supporting measurements were provided by G. Spain. Thanks also to colleagues at the University of Leeds; in particular A. Goddard, J. Dixon and P. Halford-Maw for technical assistance and advice. Support for access to Mace Head was given by the European Community—Research Infrastructure Action under EUSAAR TNA programme. The funding for this research was provided by the UK Natural Environment Research Council (grant NE/D005272/1).

References

  1. Admiralty Easytide database. http://easytide.ukho.gov.uk/EasyTide/EasyTide/index.aspx. Cited August 2007
  2. Alicke, B., Hebestreit, K., Stutz, J., Platt, U.: Iodine oxide in the marine boundary layer. Nature. 397, 572–573 (1999). doi: 10.1038/17508 CrossRefGoogle Scholar
  3. Allan, B.J., Plane, J.M.C.: A study of the recombination of IO with NO2 and the stability of INO3: implications for the atmospheric chemistry of iodine. J. Phys. Chem. A. 106, 8634–8641 (2002). doi: 10.1021/jp020089q CrossRefGoogle Scholar
  4. Allan, B.J., McFiggans, G., Plane, J.M.C., Coe, H.: Observations of iodine monoxide in the remote marine boundary layer. J. Geophys. Res. 105(Dll), 14363–14369 (2000)CrossRefGoogle Scholar
  5. Anderson, J.G., Margitan, J.J., Stedman, D.H.: Atomic chlorine and the chlorine monoxide radical in the stratosphere: three in situ observations. Science 198, 501–503 (1977). doi: 10.1126/science.198.4316.501 CrossRefGoogle Scholar
  6. Anderson, J.G., Grassl, H.J., Shetter, R.E., Margitan, J.J.: Stratospheric free chlorine measured by balloon-borne in situ resonance fluorescence. J. Geophys. Res. 85(C5), 2869–2887 (1980). doi: 10.1029/JC085iC05p02869 CrossRefGoogle Scholar
  7. Aschmutat, U., Hessling, M., Holland, F., Hofzumahaus, A.: A tunable source of hydroxyl (OH) and hydroperoxy (HO2) radicals: in the range between 106 and 109 cm−3, Physico-Chemical Behaviour of Atmospheric Pollutants, G. Angeletti and C. Restelli, Eds., Proc. EUR 15609, 811–816 (1994)Google Scholar
  8. Atkinson, R.L., Baulch, D.L., Cox, R.A., Crowley, J.N., Hampson, R.F., Hynes, R.G., et al.: Evaluated kinetic and photochemical data for atmospheric chemistry: volume I—gas phase reactions of Ox, HOx, NOx and SOx species. Atmos. Chem. Phys. 4, 1461–1738 (2004)CrossRefGoogle Scholar
  9. Atkinson, R.L., Baulch, D.L., Cox, R.A., Crowley, J.N., Hampson, R.F., Hynes, R.G., et al.: Evaluated kinetic and photochemical data for atmospheric chemistry: volume III—gas phase reactions of inorganic halogens. Atmos. Chem. Phys. 7, 981–1191 (2007)CrossRefGoogle Scholar
  10. Bitter, M., Ball, S.M., Povey, I.M., Jones, R.L.: A broadband cavity ringdown spectrometer for in-situ measurements of atmospheric trace gases. Atmos. Chem. Phys. 5, 2547–2560 (2005)CrossRefGoogle Scholar
  11. Bloss, W.J., Lee, J.D., Johnson, G.P., Sommariva, R., Heard, D.E., Saiz-Lopez, A., et al.: Impact of halogen monoxide chemistry upon boundary layer OH and HO2 concentrations at a coastal site. Geophys. Res. Lett. 32, L06814 (2005). doi: 10.1029/2004GL022084 CrossRefGoogle Scholar
  12. Brewer, L., Tellinghuisen, J.B.: Detection of iodine atoms by an atomic fluorescence technique: application to study of diffusion and wall recombination. J. Chem. Phys. 54(12), 5133–5138 (1971). doi: 10.1063/1.1674807 CrossRefGoogle Scholar
  13. Brune, W.H., Weinstock, E.M., Anderson, J.G.: Midlatitude chlorine oxide below 22 km altitude: measurements with a new aircraft-borne instrument. Geophys. Res. Lett 15(2), 144–147 (1988). doi: 10.1029/GL015i002p00144 CrossRefGoogle Scholar
  14. Brune, W.H., Anderson, J.G., Chan, K.R.: In situ observations of ClO in the Antarctic: ER-2 aircraft results from 54°S to 72°S latitude. J. Geophys. Res. 94(D14), 16649–16663 (1989a). doi: 10.1029/JD094iD14p16649 CrossRefGoogle Scholar
  15. Brune, W.H., Anderson, J.G., Chan, K.R.: In situ observations of BrO over Antarctica: ER-2 aircraft results from 54°S to 72°S latitude. J. Geophys. Res. 94(D14), 16639–16647 (1989b). doi: 10.1029/JD094iD14p16639 CrossRefGoogle Scholar
  16. Carpenter, L.J.: Iodine in the marine boundary layer. Chem. Rev. 103, 4953–4962 (2003). doi: 10.1021/cr0206465 CrossRefGoogle Scholar
  17. Carpenter, L.J., Sturges, W.T., Penkett, S.A., Liss, P.S., Alicke, B., Hebestreit, K., et al.: Short-lived alkyl iodides and bromides at Mace Head, Ireland: links to biogenic sources and halogen oxide production. J. Geophys. Res. 104(D1), 1679–1689 (1999). doi: 10.1029/98JD02746 CrossRefGoogle Scholar
  18. Carpenter, L.J., Malin, G., Liss, P.S., Küpper, F.C.: Novel biogenic iodine-containing trihalomethanes and other short-lived halocarbons in the coastal East Atlantic. Glob Biogeochem. Cycles. 14(4), 1191–1204 (2000). doi: 10.1029/2000GB001257 CrossRefGoogle Scholar
  19. Chameides, W.L., Davis, D.D.: Iodine—its possible role in tropospheric photochemistry. J. Geophys. Res. 85, 7383–7398 (1980). doi: 10.1029/JC085iC12p07383 CrossRefGoogle Scholar
  20. Commane, R., Bale, C.S.E., Furneaux, K.L., Ingham, T., Whalley, L.K., Heard, D.E.: Heard, Bloss, W.: Impacts of iodine monoxide in the marine boundary layer. Geophys. Res. Abstr. 10, EGU2008-A-04243 (2008)Google Scholar
  21. Gross, U., Ubelis, A., Spietz, P., Burrows, J.: Iodine and mercury resonance lamps for kinetics experiments and their spectra in the far ultraviolet. J. Phys. D Appl. Phys. 33, 1588–1591 (2000). doi: 10.1088/0022-3727/33/13/305 CrossRefGoogle Scholar
  22. Heard, D.E., Read, K.A., Methven, J., Al-Haider, S., Bloss, W.J., Johnson, G.P., et al.: The North Atlantic Marine Boundary Layer Experiment (NAMBLEX). Overview of the campaign held at Mace Head, Ireland, in summer 2002. Atmos. Chem. Phys. 6, 2241–2272 (2006)CrossRefGoogle Scholar
  23. Ingham, T., Cameron, M., Crowley, J.N.: Photodissociation of IO (355 nm) and OIO (532 nm): quantum yields for O(3P) and I(2PJ) production. J. Phys. Chem. A. 104, 8001–8010 (2000). doi: 10.1021/jp001166p CrossRefGoogle Scholar
  24. Lide, D.R. (ed.): CRC handbook of chemistry and physics, Internet Version 2007, 87th edn. Taylor and Francis, Boca Raton, FL (2007). http://www.hbcpnetbase.com
  25. O’Dowd, C.D., Hoffmann, T.: Coastal new particle formation: a review of the current state-of-the-art. Environ. Chem. 2, 245–255 (2005). doi: 10.1071/EN05077 CrossRefGoogle Scholar
  26. O’Dowd, C.D., Jimenez, J.L., Bahreini, R., Flagan, R.C., Seinfeld, J.H., Hämeri, K., et al.: Marine aerosol formation from biogenic iodine emissions. Nature. 417, 632–636 (2002). doi: 10.1038/nature00775 CrossRefGoogle Scholar
  27. O’Grady, B.V., Lain, L., Donovan, R.J., Gower, M.C.: Competition between reactive and inelastic processes involving I2 (D1σu +). Chem. Phys. Lett. 91(6), 491–493 (1982). doi: 10.1016/0009-2614(82)83097-2 CrossRefGoogle Scholar
  28. Palmer, C.J., Anders, T.L., Carpenter, L.J., Küpper, F.C., McFiggans, G.G.: Iodine and halocarbon response of Laminaria digitata to oxidative stress and links to atmospheric new particle production. Environ. Chem. 2, 282–290 (2005). doi: 10.1071/EN05078 CrossRefGoogle Scholar
  29. Peters, C., Pechtl, S., Stutz, J., Hebstreit, K., Hönninger, G., Heumann, K.G., et al.: Reactive and organic halogen species in three different European coastal environments. Atmos. Chem. Phys. 5, 3357–3375 (2005)CrossRefGoogle Scholar
  30. Plane, J.M.C., Husain, D.: Measurement of the absolute third-order rate constant for the reaction between K+I+He by time-resolved atomic resonance fluorescence monitoring of iodine atoms in the vacuum ultraviolet (I(5p46s(2P3/2))–I(5p5(2P0 3/2))) coupled with steady atomic fluorescence on atomic potassium (K52PJ) –K(42S1/2)). J. Phys. Chem. 90, 501–507 (1986). doi: 10.1021/j100275a030 CrossRefGoogle Scholar
  31. Platt, U., Hönninger, G.: The role of halogen species in the troposphere. Chemosphere. 52, 325–338 (2003). doi: 10.1016/S0045-6535(03)00216-9 CrossRefGoogle Scholar
  32. Saiz-Lopez, A., Plane, J.M.C.: Novel iodine chemistry in the marine boundary layer. Geophys. Res. Lett 31, L04112.1–L04412.4 (2004). doi: 10.1029/2003GL019215 Google Scholar
  33. Saiz-Lopez, A., Saunders, R.W., Joseph, D.M., Ashworth, S.H., Plane, J.M.C.: Absolute absorption cross-section and photolysis rate of I2. Atmos. Chem. Phys. 4, 1443–1450 (2004)CrossRefGoogle Scholar
  34. Saiz-Lopez, A., Shillito, J.A., Coe, H., Plane, J.M.C.: Measurements and modelling of I2, IO, OIO, BrO and NO3 in the mid-latitude marine boundary layer. Atmos. Chem. Phys. 6, 1513–1528 (2006)CrossRefGoogle Scholar
  35. Saiz-Lopez, A., Mahajan, A.S., Salmon, R.A., Bauguitte, S.J.-B., Jones, A.E., Roscoe, H.K., et al.: Boundary layer halogens in coastal Antarctica. Science. 317, 348–351 (2007). doi: 10.1126/science.1141408 CrossRefGoogle Scholar
  36. Solomon, S., Garcia, R.R., Ravishankara, A.R.: On the role of iodine in ozone depletion. J. Geophys. Res. 99(D10), 20491–20499 (1994). doi: 10.1029/94JD02028 CrossRefGoogle Scholar
  37. Stevens, P.S., Mather, J.H., Brune, W.H.: Measurement of tropospheric OH and HO2 by laser-induced fluorescence at low pressure. J. Geophys. Res. 99(D2), 3543–3557 (1994). doi: 10.1029/93JD03342 CrossRefGoogle Scholar
  38. Stimpfle, R.M., Wilmouth, D.M., Salawitch, R.J., Anderson, J.G.: First measurements of ClOOCl in the stratosphere: the coupling of ClOOCl and ClO in the Arctic polar vortex. J. Geophys. Res. 109, D03301 (2004). doi: 10.1029/2003JD003811 CrossRefGoogle Scholar
  39. Stull, D.R.: Vapor pressure of pure substances organic compounds. Ind. Eng. Chem. 39, 517–540 (1947). doi: 10.1021/ie50448a022 CrossRefGoogle Scholar
  40. Vogt, R., Sander, R., Von Glasow, R., Crutzen, P.J.: Iodine chemistry and its role in halogen activation and ozone loss in the marine boundary layer: a model study. J. Atmos. Chem. 32, 375–395 (1999). doi: 10.1023/A:1006179901037 CrossRefGoogle Scholar
  41. von Glasow, R., Crutzen, P.J.: Tropospheric halogen chemistry. In: Holland, H.D., Turekian, K. K. (eds.) Treatise on Geochemistry, vol. 4(02), pp. 1–67. Elsevier, Amsterdam (2007)Google Scholar
  42. Von Hobe, M., Grooß, J.-U., Müller, R., Hrechanyy, S., Winkler, U., Stroh, F.: A re-evaluation of the ClO/Cl2O2 equilibrium constant based on stratospheric in-situ observations. Atmos. Chem. Phys. 5, 693–702 (2005)CrossRefGoogle Scholar
  43. Von Hobe, M., Ulanovsky, A., Volk, C.M., Grooß, J.-U., Tilmes, S., Konopka, P., et al.: Severe ozone depletion in the cold Arctic winter 2004–05. Geophys. Res. Lett. 33, L17815 (2006). doi: 10.1029/2006GL026945 CrossRefGoogle Scholar
  44. Whalley, L.K., Furneaux, K.L., Gravestock, T., Atkinson, H.M., Bale, C.S.E., Ingham, T., et al.: Detection of iodine monoxide radicals in the marine boundary layer using laser induced fluorescence spectroscopy. J. Atmos. Chem. 58, 19–39 (2007). doi: 10.1007/s10874-007-9075-9 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Catherine S. E. Bale
    • 1
  • Trevor Ingham
    • 1
  • Roisin Commane
    • 1
  • Dwayne E. Heard
    • 1
  • William J. Bloss
    • 2
  1. 1.School of ChemistryUniversity of LeedsLeedsUK
  2. 2.School of Geography, Earth and Environmental SciencesUniversity of BirminghamBirminghamUK

Personalised recommendations