Journal of Atmospheric Chemistry

, Volume 59, Issue 3, pp 219–236

Influence of natural and anthropogenic activities on UV Index variations – a study over tropical urban region using ground based observations and satellite data

  • K. V. S. Badarinath
  • Shailesh Kumar Kharol
  • V. Krishna Prasad
  • Anu Rani Sharma
  • E. U. B. Reddi
  • H. D. Kambezidis
  • D. G. Kaskaoutis
Article

Abstract

Measurements of total ozone column and solar UV radiation under different atmospheric conditions are needed to define variations of both UV and ozone and to study the impact of ozone depletion at the Earth’s surface. In this study, spectral and broadband measurements of UV-B irradiance were obtained along with total ozone observations and aerosol optical depth measurements in the tropical urban region of Hyderabad, south India. We specifically used an Ultra-Violet Multifilter Rotating Shadow band Radiometer (UVMFR-SR), to measure UV irradiance in time and space. To assess the aerosol and O3 effects on ground-reaching UV irradiance, we used measurements from a Microtops II sun photometer in addition to the Tropospheric Ultraviolet Visible radiation (TUV) model. We also assessed the Defense Meteorological Satellite Program – Operational Line Scanner (DMSP-OLS) night time satellite data for inferring biomass burning fires during the study period. Results clearly suggested a negative correlation between the DMSP-OLS satellite derived fire count data and UVMFR-SR data suggesting that aerosols from biomass burning are directly attenuating UV irradiance in the study region. Also, correlation analysis between UV index and ozone measurements from sun photometer and TOMS-Ozone Mapping Instrument (OMI) indicated a clear decrease in ground reaching UV-B irradiance during higher ozone conditions. The higher levels are attributed to photochemical production of O3 during the oxidation of trace gases emitted from biomass burning. Results also suggested a relatively high attenuation in UV irradiance (~6% higher) from smoke particles than dust. We also found a relatively good agreement between the modeled (TUV) and measured UV irradiance spectra for different atmospheric conditions. Our results highlight the factors affecting UV irradiance in a tropical urban environment, south India.

Keywords

UV index Aerosols Ozone Biomass burning TUV model 

References

  1. Andreae, M.O., Merlet, P.: Emission of trace gases and aerosols from biomass burning. Global Biogeochem. Cycles 15, 955–966 (2001)CrossRefGoogle Scholar
  2. Anjaneyulu, A., Jayakumar, I., Hima Bindu, V., Sagareswar, G., Rao, P.V.M., Rambabu, N., Ramani, K.V.: Use of multi-objective air pollution monitoring sites and online air pollution monitoring system for total health risk assessment in Hyderabad, India. Int. J. Environ. Res. Public Health. 2(2), 343–354 (2005)Google Scholar
  3. Arola, A., Lakkala, K., Bais, A., Kaurola, J., Meleti, C., Taalas, P.: Factors affecting short- and long-term changes of spectral UV irradiance at two European stations. J. Geophys. Res. 108(D17), 4549 (2003). doi:10.1029/2003JD003447 CrossRefGoogle Scholar
  4. Badarinath, K.V.S., Kharol, S.K., Kiran Chand, T.R., Parvathi, Y.G., Anasuya, T., Nirmala Jyothsna, A.: Variations in black carbon aerosol, carbon monoxide and ozone over an urban area of Hyderabad, India, during the forest fire season. Atmos. Res. 85, 18–26 (2007a)CrossRefGoogle Scholar
  5. Badarinath, K.V.S., Kharol, S.K., Kaskaoutis, D.G., Kambezidis, H.D.: Influence of atmospheric aerosols on solar spectral irradiance in an urban area. J. Atmos. Sol. Ter. Phys. 69, 589–599 (2007b)CrossRefGoogle Scholar
  6. Balis, D.S., Amiridis, V., Zerefos, C., Kazantzidis, A., Kazadzis, S., Bais, A.F., Meleti, C., Gerasopoulos, E., Papayannis, A., Matthias, V., Dier, H., Andreae, M.O.: Study of the effect of different type of aerosols on UV-B radiation from measurements during EARLINET. Atmos. Chem. Phys. 4, 307–321 (2004)CrossRefGoogle Scholar
  7. Barnard, W.F., Saxena, V.K., Wenny, B.N., DeLuisi, J.J.: Daily surface UV exposure and its relationship to surface pollutant measurements. J. Air Waste Manag. Assoc. 53(2), 237–245 (2003)Google Scholar
  8. Bhattarai, B.K., Kjeldstad, B., Thorseth, T.M., Bagheri, A.: Erythemal dose in Kathmandu, Nepal based on solar UV measurements from multichannel filter radiometer, its deviation from satellite and radiative transfer simulations. Atmos. Res. 85, 112–119 (2007)CrossRefGoogle Scholar
  9. Bigelow, D.S., Slusser, J.R., Beaubien, A.F., Gibson, J.H.: The USDA ultraviolet radiation monitoring program. Bull. Amer. Meteor. Soc. 79, 601–615 (1998)CrossRefGoogle Scholar
  10. Cañada, J., Pedrós, G., Lopez, A., Boscá, J.V.: Influences of the clearness index for the whole spectrum and of the relative optical air mass on UV solar irradiance for two locations in the Mediterranean area, Valencia and Cordoba. J. Geophys. Res. 105, 4759–4766 (2000)CrossRefGoogle Scholar
  11. Chubarova, N.E.: Monitoring of biologically active UV radiation in the Moscow region. Izv. Atmos. Ocean. Phys. 38(3), 312–322 (2002)Google Scholar
  12. Dahlback, A.: Measurements of biologically effective UV doses, total ozone abundances, and cloud effects with multichannel, moderate bandwidth filter instruments. Appl. Opt. 35, 6514–6521 (1996)Google Scholar
  13. DeLuisi, J.: Atmospheric ultraviolet radiation scattering and absorption. In: Zerefos, C.S., Bais, A.F. (eds.) Solar Ultraviolet Radiation, Modelling, Measurements, and Effects, NATO ASI Series, vol I 52, pp. 65–84. Springer, Berlin, Germany (1997)Google Scholar
  14. di Sarra, A., Cacciani, M., Campanelli, M., Chamard, P., Cornwall, C., Deluisi, J., Silvestri, L.D., Iorio, T.D., Disterhoft, P., Fiocco, G., Fua, D., Grigioni, P., Junkermann, W., Marenco, F., Meloni, D., Monteleone, F., Olivieri, B.: In: Smith, W.L., Timofeyev, Yu.M. (eds.) Radiation, ozone, and aerosol measurements at Lampedusa during the PAUR II Campaign, IRS 2000: Current Problems in Atmospheric Radiation, pp. 1193–1196. A. Deepak, Hampton, VA (2001b)Google Scholar
  15. di Sarra, A., Cacciani, M., Chamard, P., Cornwall, C., DeLuisi, J.J., Di Iorio, T., Disterhoft, P., Fiocco, G., Fuá, D., Monteleone, F.: Effects of desert dust and ozone on the ultraviolet irradiance at the Mediterranean island of Lampedusa during PAUR II. J. Geophys. Res. 107(D18), 8135 (2002). doi:10.1029/2000JD000139 CrossRefGoogle Scholar
  16. Diaz, J.P., Exposito, F.J., Torres, C.J., Carrena, V., Redondas, A.: Simulations of the mineral dust effect on the UV radiation level. J. Geophys. Res. 105, 4979−4991 (2000)CrossRefGoogle Scholar
  17. Elvidge, C.D., Baugh, K.E., Kihn, E.A., Kroehl, H.W., Davis, E.R.: Mapping of city lights using DMSP Operational Linescan System data. Photogramm. Eng. Remote Sensing 63, 727–734 (1997)Google Scholar
  18. Frederick, J.E., Koob, E.K., Alberts, A.D., Weatherhead, E.C.: Empirical studies of tropospheric transmission in the ultraviolet: broadband measurements. J. Appl. Meteor. 32, 1883–1892 (1993)CrossRefGoogle Scholar
  19. Früh, B., Eckstein, E., Trautmann, T., Wendisch, M., Fiebig, M., Feister, U.: Ground-based measured and calculated spectra of actinic flux density and downward UV irradiance in cloudless conditions and their sensitivity to aerosol microphysical properties. J. Geophys. Res. 108(D16), 4509 (2003). doi:10.1029/2002JD002933 CrossRefGoogle Scholar
  20. Gao, W., Slusser, J., Gibson, J., Scott, G., Bigelow, D., Kerr, J., McArthur, B.: Direct-sun column ozone retrieval by the ultraviolet multifilter rotating shadow-band radiometer and comparison with those from Brewer and Dobson spectrophotometers. Appl. Opt. 40(19), 3149–3155 (2001)CrossRefGoogle Scholar
  21. Gies, P., Roy, C., Javorniczky, J., Handerson, S., Lemus-Deschamps, L., Driscoll, C.: Global solar UV index: Australian measurements, forecasts and comparison with the UK. Photochem. Photobiol. 79, 32−39 (2004)CrossRefGoogle Scholar
  22. Harris, N.R.P., Ancellet, G., Bishop, L., Hofmann, D.J., Kerr, J.B., Mcpeters, R.D., Prendez, M., Randel, W.J., Staehelin, J., Subbaraya, B.H., Volz-Thomas, A., Zawodny, J., Zerefos, C.S.: Trends in stratospheric and tropospheric ozone. J. Geophys. Res. 102, 1571–1588 (1997)CrossRefGoogle Scholar
  23. Harrison, L., Michalsky, J., Berndt, J.: Automated multifilter rotating shadow-band radiometer: an instrument for optical depth and radiation measurements. Appl. Opt. 33, 5118–5125 (1994)Google Scholar
  24. Iqbal, M.: An introduction to solar radiation. Academic Press, New York, 107–128 (1983)Google Scholar
  25. Jaroslawski, J.P., Krzyscin, J.W.: Importance of aerosol variations for surface UV-B level: analysis of ground-based data taken at Belsk, Poland, 1992–2004. J. Geophys. Res. 110, D16201 (2005). doi:10.1029/2005JD005951 CrossRefGoogle Scholar
  26. Kalashnikova, O.V., Mills, F.P., Eldering, A., Anderson, D.: Application of satellite and ground-based data to investigate the UV radiative effects of Australian aerosols. Remote Sens. Environ. 107, 65–80 (2007). doi:10.1016/j.rse.2006.07.025 CrossRefGoogle Scholar
  27. Kambezidis, H.D., Adamopoulos, A.D., Zevgolis, D.: Spectral aerosol transmittance in the ultraviolet and visible spectra in Athens, Greece. Pure Appl. Geophys. 162(3), 625–647 (2005)CrossRefGoogle Scholar
  28. Kaskaoutis, D.G., Kambezidis, H.D.: The role of aerosol models of the SMARTS code in predicting the spectral direct-beam irradiance in an urban area. Renewable Energy 33, 1532–1543 (2008)CrossRefGoogle Scholar
  29. Kasten, F., Young, A.T.: Revised optical air mass tables and approximation formula. Appl. Opt. 28, 4735–4738 (1989)CrossRefGoogle Scholar
  30. Kharol, S.K., Badarinath, K.V.S.: Impact of biomass burning on aerosol properties over tropical urban region of Hyderabad, India. Geophys. Res. Lett. 33, L20801 (2006). doi:10.1029/2006gl026759 CrossRefGoogle Scholar
  31. Kerr, J.B.: Observed dependencies of atmospheric UV radiation and trends. In: Zerefos, C.S., Bais, A.F. (eds.) Solar Ultraviolet Radiation, Modelling, Measurements, and Effects, NATO ASI Series, vol I 52, pp. 65–84. Springer, Berlin, Germany (1997)Google Scholar
  32. Krotkov, N.A., Bhartia, P.K., Herman, J.R., Fioletov, V., Kerr, J.: Satellite estimation of spectral surface UV irradiance in the presence of tropospheric aerosols 1. Cloud-free case. J. Geophys. Res. 103, 8779–8793 (1998)CrossRefGoogle Scholar
  33. Krzyscin, J.W., Puchalski, S.: Aerosol impact on the surface UV radiation from the ground-based measurements taken at Belk, Poland, 1980–1996. J. Geophys. Res. 103(16), 175–181 (1998)Google Scholar
  34. Lelieveld, J., Dentener, F.J.: What controls tropospheric ozone? J. Geophys. Res. 105, 3531–3551 (2000)CrossRefGoogle Scholar
  35. Levelt, P.F., van den Oord, G.H.J., Dobber, M.R., Mälkki, A., Visser, H., de Vries, J., Stammes, P., Lundell, J., Saari, H.: The ozone monitoring instrument. IEEE Trans. Geosci. Remote Sens. 44(5), 1093 (2006a)CrossRefGoogle Scholar
  36. Levelt, P.F., Hilsenrath, E., Leppelmeier, G.W., van den Oord, G.B.J., Bhartia, P.K., Tamminen, J., de Haan, J.F., Veefkind, J.P.: Science objectives of the ozone monitoring instrument. IEEE Trans Geosci. Remote Sens. 44(5), 1199 (2006b)CrossRefGoogle Scholar
  37. Madronich, S.: UV radiation in the natural and perturbed atmosphere. In: Tevini, M. (ed.) Environmental Effects of Ultraviolet(UV) Radiation, pp. 17–69. Lewis, Boca Raton, FL (1993)Google Scholar
  38. McKenzie, R.L., Paulin, K.J., Dobeker, G.E., Liley, J.B., Sturman, A.P.: Cloud cover measured by satellite and from the ground: relationship to UV radiation at the surface. Int J Remote Sens. 19, 2969–2985 (1998)CrossRefGoogle Scholar
  39. McKenzie, R.L., Aucamp, P.J., Bais, A.F., Björn, L.O., Ilyas, M.: Changes in biologically-active ultraviolet radiation reaching the Earth’s surface. Photochem. Photobiol. Sci. 6, 218–231 (2007)CrossRefGoogle Scholar
  40. McKinlay, A.F., Diffey, B.L.: A reference action spectrum for ultraviolet induced erythema in human skin. CIE J. 6, 17–22 (1987)Google Scholar
  41. Meleti, C., Cappellani, F.: Measurements of aerosol optical depth at Ispra: analysis of the correlation with UV-B, UV-A, and total solar irradiance. J. Geophys. Res. 105, 4971–4978 (2000)CrossRefGoogle Scholar
  42. Meloni, D., di Sarra, A., DeLuisi, J., Di Iorio, T., Fiocco, G., Junkermann, W., Pace, G.: Tropospheric aerosols in the Mediterranean: 2. Radiative effects through model simulations and measurements. J. Geophys. Res. 108(D10), 4317 (2003a). doi:10.1029/2002-JD002807 CrossRefGoogle Scholar
  43. Meloni, D., di Sarra, A., Fiocco, G., Junkermann, W.: Tropospheric aerosols in the Mediterranean: 3. Measurements and modeling of actinic radiation profiles. J. Geophys. Res. 108(D10), 4323 (2003b). doi:10.1029/2002JD003293 CrossRefGoogle Scholar
  44. Meloni, D., Marenco, F., di Sarra, A.: Ultraviolet radiation and aerosol monitoring at Lampedusa, Italy. Ann. Geophys. 46(2), 373–383 (2003c)Google Scholar
  45. Meloni, D., Marenco, F., Sarra, A.D.: Ultraviolet radiation and aerosol monitoring at Lampedusa, Italy. Anal. Geophys. 46(2), 373–383 (2004)Google Scholar
  46. Meloni, D., di Sarra, A., Herman, J.R., Monteleone, F., Piacentino, S.: Comparison of ground-based and Total Ozone Mapping Spectrometer erythemal UV doses at the island of Lampedusa in the period 1998–2003: role of tropospheric aerosols. J. Geophys. Res. 110, D01202 (2005). doi:10.1029/2004JD005283 CrossRefGoogle Scholar
  47. Micheletti, M.I., Wolfram, E., Piacentini, R.D., Pazmiño, A., Quel, E., Orce, V., Paladini, A.A.: The incidence of erythemal and UV solar irradiance over Buenos Aires, Argentina. J. Opt. A: Pure Appl. Opt. 5(5), S262–S268 (2003)CrossRefGoogle Scholar
  48. Morys, M., Mims III, F.M., Hagerup, S., Anderson, S.E., Baker, A., Kia, J., Walkup, T.: Design calibration, and performance of MICROTOPS II handheld ozone monitor and Sun photometer. J. Geophys. Res. 106(D13), 14,573–14,582 (2001)CrossRefGoogle Scholar
  49. Ogunjobi, K.O., Kim, Y.J.: Ultraviolet (0.280–0.400 mm) and broadband solar hourly radiation at Kwangju, South Korea: analysis of their correlation with aerosol optical depth and clearness index. Atmos. Res. 71(3), 193–214 (2004)CrossRefGoogle Scholar
  50. Pace, G., Meloni, D., di Sarra, A.: Forest fir aerosol over the Mediterranean basin during summer 2003. J. Geophys. Res. 110, D21202 (2005). doi:10.1029/2005JD005986 CrossRefGoogle Scholar
  51. Palancar, G.G., Toselli, B.M.: Erythemal ultraviolet irradiance in Córdoba, Argentina. Atmos. Environ. 36(2), 287–292 (2002)CrossRefGoogle Scholar
  52. Reuder, J., Schwander, H.: Aerosol effects on UV radiation in nonurban regions. J. Geophys. Res. 104, 4065–4067 (1999)CrossRefGoogle Scholar
  53. Schuster, G.L., Dubovik, O., Holben, B.N.: Angstrom exponent and bimodal aerosol size distributions. J. Geophys. Res. 111, D07207 (2006)CrossRefGoogle Scholar
  54. Singh, S., Singh, R.: High-altitude clear-sky direct solar ultraviolet irradiance at Leh and Hanle in the western Himalayas: observations and model calculations. J. Geophys. Res. 109, D19201 (2004). doi:10.1029/2004JD004854 CrossRefGoogle Scholar
  55. Udelhofen, P.M., Cies, P., Roy, C., Randel, W.J.: Surface UV radiation over Australia, 1979–1992: effects of ozone and cloud cover changes on variations of UV radiation. J. Geophys. Res. 104, 19135–19159 (1999)CrossRefGoogle Scholar
  56. WHO: Global Solar UV Index: A Practical Guide. World Health Organization, Geneva (2002)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • K. V. S. Badarinath
    • 1
  • Shailesh Kumar Kharol
    • 1
  • V. Krishna Prasad
    • 2
  • Anu Rani Sharma
    • 1
  • E. U. B. Reddi
    • 3
  • H. D. Kambezidis
    • 4
  • D. G. Kaskaoutis
    • 4
    • 5
  1. 1.Department of Space, Atmospheric Science Section, National Remote Sensing AgencyGovernment of IndiaBalanagarIndia
  2. 2.Agroecosystem Management ProgramThe Ohio State UniversityColumbusUSA
  3. 3.Department of Environmental SciencesAndhra UniversityVisakhapatnamIndia
  4. 4.Atmospheric Research Team, Institute for Environmental Research and Sustainable DevelopmentNational Observatory of AthensAthensGreece
  5. 5.Department of Physics, Laboratory of MeteorologyUniversity of IoanninaIoanninaGreece

Personalised recommendations