Advertisement

Journal of Atmospheric Chemistry

, Volume 59, Issue 1, pp 61–80 | Cite as

Modelling of near-surface ozone over South Asia

  • Magnuz EngardtEmail author
Article

Abstract

Hourly, three-dimensional, fields of tropospheric ozone have been produced for 12 consecutive months on a domain covering South Asia, using the regional Eulerian off-line chemistry transport model MATCH. The results were compared with background observations to investigate diurnal and seasonal variations of near-surface ozone in the region. MATCH reproduced the seasonality of near-surface ozone at most locations in the area. However, the current, and previous, studies indicate that the model consequently overestimate night-time concentrations, while it occasionally underestimates the day-time, near-surface, ozone concentrations. The lowest monthly-mean concentrations of near-surface ozone are typically experienced in June–September, coincident with the rainy season in most areas. The seasonality is not identical across the domain; some locations have a completely different trend. Large areas in Northern India and Nepal show a secondary minimum during the cold winter season (December–January). High concentrations of near-surface ozone are found over the oceans, close to the Indian subcontinent, due to the less efficient dry deposition to water surfaces; over parts of Tibet due to influence of free tropospheric air and little deposition to snow covered surfaces; and along the Gangetic valley due to the large emissions of precursors in this region. Monthly-mean ozone concentrations in the densely populated northern India range from 30–45 ppb(v). The model results were also used to produce maps of AOT40. The results point towards similar levels of AOT40 in India as in Europe: large areas of India show 3-month AOT40 values above 3 ppm(v) hours.

Keywords

AOT40 Crop yield India MATCH Modelling Ozone 

Notes

Acknowledgements

This study has been supported economically by Sida’s RAPIDC-III project administered by Stockholm Environment Institute (SEI). The model simulations were performed on the high performance computers of ECMWF using archived meteorology from ECMWF. The author wish to thank Martin Ferm for providing the raw data of the Carmichael et al. (2003) study, Johan Tidblad and S.N. Das for sharing unpublished O3 data from Bhubaneswar, and David Streets for providing the emission data in a convenient format prior to its publication. Frank Dentener is acknowledged for providing three-dimensional boundary data from TM5 and for valuable comments on the manuscript. I am also indebted to Robert Bergström for teaching me everything I now know about SMHI’s photochemical model.

References

  1. Adams, R.M., Glyer, J.D., McCarl, B.A.: The NCLAN economic assessment: approach, findings and implications. In: Heck, W.W., Tingey, D.T., Taylor, O.C. (eds.) Assessment of crop loss from air pollutants, pp. 473–504. Elsevier Applied Science Press, London (1988)Google Scholar
  2. Agrawal, M.: Air pollution impact on vegetation in India. In: Emberson, L.D., Ashmore, M.R., Murray, F. (eds.) Air pollution impacts on crops and forests: a global assessment, pp. 165–187. Imperial College Press, London (2003)Google Scholar
  3. Andersson, C., Langner, J.: Inter-annual variations of ozone and nitrogen dioxide over Europe during 1958–2003 simulated with a regional CTM. Water. Air. Soil. Pollut. 7, 15–23 (2007)CrossRefGoogle Scholar
  4. Andersson, C., Langner, J., Bergström, R.: Interannual variation and trends in air pollution over Europe due to climate variability during 1958–2001 simulated with a regional CTM coupled to the ERA40 reanalysis. Tellus. 59B, 77–98 (2007). DOI  10.1111/j.1600-0889.2006.00196.x Google Scholar
  5. Beig, G., Brasseur, G.P.: Influence of anthropogenic emissions on tropospheric ozone and its precursors over the Indian tropical region during a monsoon. Geophys. Res. Lett. 33, L07808 (2006). DOI  10.1029/2005GL024949 CrossRefGoogle Scholar
  6. Beig, G., Gunthe, S., Jadhav, D.B.: Simultaneous measurements of ozone and its precursors on a diurnal scale at a semi urban site in India. J. Atmos. Chem. 57, 239–253 (2007)CrossRefGoogle Scholar
  7. Berge, E.: Coupling of wet scavenging of sulphur to clouds in a numerical weather prediction model. Tellus. 45B, 1–22 (1993)Google Scholar
  8. Bey, I., Jacob, D.J., Yantosca, R.M., Logan, J.A., Field, B.D., Fiore, A.M., Li, Q., Liu, H.Y., Mickley, L.J., Schultz, M.G.: Global modeling of tropospheric chemistry with assimilated meteorology: Model description and evaluation, J. Geophys. Res. 106, 23073–23096 (2001)CrossRefGoogle Scholar
  9. Carmichael, G.R., Ferm, M., et al.: Measurements of sulphur dioxide, ozone and ammonia concentrations in Asia, Africa, and South America using passive samplers. Atmos. Environ. 37, 1293–1308 (2003)CrossRefGoogle Scholar
  10. Carmichael, G.R., Sakurai, T., Streets, D., Hozumi, Y., Ueda, H., Park, S.U., Fung, C., Han, Z., Kajino, M., Engardt, M., Bennet, C., Hayami, H., Sartelet, K., Holloway, T., Wang, Z., Kannari, A., Fu, J., Matsuda, K., Thongboonchoo, N., Amann, M.: MICS-Asia II: The model intercomparison study for Asia Phase II methodology and overview of findings. Atmos. Environ. DOI  10.1016/j.atmosenv.2007.04.007, in press (2007)
  11. Chan, C.Y., Wong, K.H., Li, Y.S., Chan, L.Y., Zheng, X.D.: The effects of Southeast Asia fire activities on tropospheric ozone, trace gases and aerosols at a remote site over the Tibetan Plateau of southwest China. Tellus. 58B, 310–318 (2006)Google Scholar
  12. Chand, D., Lal, S.: High ozone at rural sites in India. Atmos. Chem. Phys. Discuss. 4, 3359–3380 (2004)Google Scholar
  13. Chand, D., Lal, S., Naja, M.: Variations of ozone in the marine boundary layer over the Arabian Sea and the Indian Ocean during the 1998 and 1999 INDOEX campaigns. J. Geophys. Res. 108, (D6), 4190 (2003). DOI  10.1029/2001JD001589 CrossRefGoogle Scholar
  14. Debaje, S.B., Jeyakumar, S.J., Ganesan, K., Jadhav, D.B., Seetaramayya, P.: Surface ozone measurements at tropical rural coastal station Tranquebar, India. Atmos. Environ. 37, 4911–4916 (2003)CrossRefGoogle Scholar
  15. Dentener, F., et al.: The global atmospheric environment for the next generation. Environ. Sci. & Technol. 40, 3586–3594 (2006). DOI  10.1021/es0523845 CrossRefGoogle Scholar
  16. Ehhalt, D., Prather, M.: Atmospheric chemistry and greenhouse gases. In: Houghton, J., Ding, Y., Griggs, D., Noguer, M., van der Linden, P., Xiaosu, D. (eds.) Climate Change 2001; Working Group 1: The scientific basis. Cambridge University Press, Cambridge (2001)Google Scholar
  17. Engardt, M.: Sulphur simulations for East Asia using the MATCH model with meteorological data from ECMWF. Swedish Meteorological and Hydrological Institute. 88, 33 (2000)Google Scholar
  18. European Environment Agency: The European environment—State and outlook 2005, p. 576. EEA, Copenhagen (2005)Google Scholar
  19. Guenther, A., Hewitt, C.N., Erickson, D., Fall, R., Geron, C., Graedel, T., Harley, P., Klinger, L., Lerdau, M., McKay, W.A., Pierce, T., Scholes, B., Steinbrecher, R., Tallamraju, R., Taylor, J., Zimmerman, P.: A global model of natural volatile organic compound emissions. J. Geophys. Res. 100, 8873–8892 (1995)CrossRefGoogle Scholar
  20. Guenther, A., Karl, T., Harley, P., Wiedinmyer, C., Palmer, P.I., Geron, C.: Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature). Atmos. Chem. Phys. 6, 3181–3210 (2006)CrossRefGoogle Scholar
  21. Holland, M., Kinghorn, S., Emberson, L., Cinderby, S., Ashmore, M., Mills, G., Harmens, H.: Development of a framework for probabilistic assessment of the economic losses caused by ozone damage to crops in Europe. Part of the UNECE International Cooperative Programme on Vegetation. Contract Report EPG 1/3/205. CEH Project No: C02309NEW. 49 pp. (2006)Google Scholar
  22. Holloway, T., Sakurai, T., Han, Z., Ehlers, S., Spak, S.N., Horowitz, L.W., Carmichael, G.R., Streets, D.G., Hozumi, Y., Ueda, H., Park, S.U., Fung, C., Kajino, M., Thongboonchoo, N., Engardt, M., Bennet, C., Hayami, H., Sartelet, K., Wang, Z., Matsuda, K., Amann, M.: MICS-Asia II: Impact of global emissions on regional air quality in Asia. Atmos. Environ. DOI  10.1016/j.atmosenv.2007.10.022, in press (2007)
  23. Houweling, S., Dentener, F., Lelieveld, J.: The impact of nonmethane hydrocarbon compounds on tropospheric photochemistry. J. Geophys. Res. 103, 10673–10696 (1998)CrossRefGoogle Scholar
  24. Jain, S.L., Arya, B.C., Kumar, A., Ghude, S.D., Kulkarni, P.S.: Observational study of surface ozone at New Delhi, India. Int. J. Remote. Sensing. 26, 3515–3524 (2005)CrossRefGoogle Scholar
  25. Karl, T., Potosnak, M., Guenther, A., Clark, D., Walker, J., Herrick, J.D., Geron, C.: Exchange processes of volatile organic compounds above a tropical rain forest: Implications for modelling tropospheric chemistry above dense vegetation. J. Geophys. Res. 109, D18306 (2004). DOI  10.1029/2004JD004738 CrossRefGoogle Scholar
  26. Khemani, L.T., Momin, G.A., Rao, P.S.P., Vijayakumar, R., Safai, P.D.: Study of surface ozone behaviour at urban and forested sites in India. Atmos. Environ. 29, 2021–2024 (1995)CrossRefGoogle Scholar
  27. Kulshrestha, U.C., Granat, L., Engardt, M., Rodhe, H.: Review of precipitation monitoring studies in India a search for regional patterns. Atmos. Environ. 39, 7403–7419 (2005)CrossRefGoogle Scholar
  28. Lal, S., Chand, D., Sahu, L.K., Venkataramani, S., Brasseur, G., Schultz, M.G.: High levels of ozone and related gases over the Bay of Bengal during winter and early spring of 2001. Atmos. Environ. 40, 1633–1644 (2006)CrossRefGoogle Scholar
  29. Lal, S., Naja, M., Jayaraman, A.: Ozone in the marine boundary layer over the tropical Indian Ocean. J. Geophys. Res. 103, 18907–18917 (1998)CrossRefGoogle Scholar
  30. Lal, S., Naja, M., Subbaraya, B.H.: Seasonal variations in surface ozone and its precursors over an urban site in India. Atmos. Environ. 34, 2713–2724 (2000)CrossRefGoogle Scholar
  31. Langner, J., Bergström, R., Pleijel, K.: European scale modeling of sulfur, oxidised nitrogen and photochemical oxidants. Model development and evaluation for the 1994 growing season. Swedish Meteorological and Hydrological Institute. 82, 71 (1988)Google Scholar
  32. Laurila, T., Jonson, J.E., Langner, J., Sundet, J., Tuovinen, J.-P., Bergström, R., Foltescu, V., Tarvainen, V., Isaksen, I.S.A.: Ozone exposure scenarios in the Nordic countries during the 21st century. EMEP/MSC-W Technical Report 2/2004. Norwegian Meteorological Institute, Oslo. 41 pp. (2004)Google Scholar
  33. Lin, C.Y.C., Jacob, D.J., Munger, J.W., Fiore, A.M.: Increasing background ozone in surface air over the United States. Geophys. Res. Lett. 27, 3465–3468 (2000)CrossRefGoogle Scholar
  34. Martin, R.V., Jacob, D.J., Yantosca, R.M., Chin, M., Ginoux, P.: Global and regional decreases in tropospheric oxidants from photochemical effects of aerosols. J. Geophys. Res. 108, (D3), 4097 (2003). DOI  10.1029/2002JD002622 CrossRefGoogle Scholar
  35. Mills, G., Buse, A., Gimeno, B., Bermejo, V., Holland, M., Emberson, L., Pleijel, L.: A synthesis of AOT40-based response functions and critical levels of ozone for agricultural and horticultural crops. Atmos. Environ. 41, 2630–2643 (2007)CrossRefGoogle Scholar
  36. Mittal, M.L., Hess, P.G., Jain, S.L., Arya, B.C., Sharma, C.: Surface ozone in the Indian Region. Atmos. Environ. 41, 6572–6584 (2007)CrossRefGoogle Scholar
  37. Nair, P.R., Chand, D., Lal, S., Modh, K.S., Naja, M., Parameswaran, K., Ravindran, S., Venkataramani, S.: Temporal variations in surface ozone at Thumba (8.6°N, 77°E) – a tropical coastal site in India. Atmos. Environ. 36, 603–610 (2002)CrossRefGoogle Scholar
  38. Naja, M., Lal, S.: Changes in surface ozone amount and its diurnal and seasonal patterns, from 1954–55 to 1991–93, measured at Ahmedabad (23 N) India. Geophys. Res. Lett. 23, 81–84 (1996)CrossRefGoogle Scholar
  39. Naja, M., Lal, S.: Surface ozone and precursor gases at Gadanki (13.5°N, 79.2°E), a tropical rural site in India. J. Geophys. Res. 107(D14) (2002). DOI  10.1029/2001JD000357
  40. Naja, M., Lal, S., Chand, D.: Diurnal and seasonal variabilities in surface ozone at a high altitude site Mt Abu (24.6°N, 72.7°E, 1680 m asl) in India. Atmos. Environ. 37, 4205–4215 (2003)CrossRefGoogle Scholar
  41. Poisson, N., Kanakidou, M., Crutzen, P.J.: Impact of nonmethane hydrocarbons on tropospheric chemistry and the oxidizing power of the global troposphere: 3-dimensional modelling results, J. Atmos. Chem. 36, 157–230 (2000)CrossRefGoogle Scholar
  42. Pudasainee, D., Sapkota, B., Shrestha, M.L., Kaga, A., Kondo, A., Inoue, Y.: Ground level ozone concentrations and its association with NOX and meteorological parameters in Kathmandu valley, Nepal. Atmos. Environ. 40, 8081–8087 (2006)CrossRefGoogle Scholar
  43. Ramanathan, V., Crutzen, P.J.: New directions: atmospheric brown “Clouds”. Atmos. Environ. 37, 4033–4035 (2003)CrossRefGoogle Scholar
  44. Robertson, L., Langner, J., Engardt, M.: An Eulerian limited-area atmospheric transport model. J. Appl. Meteor. 38, 190–210 (1999)CrossRefGoogle Scholar
  45. Roemer, M., Beekmann, M., Bergström, R., Boersen, G., Feldmann, H., Flatøy, F., Honore, C., Langner, J., Jonson, J.E., Matthijsen, J., Memmesheimer, M., Simpson, D., Smeets, P., Solberg, S., Stern, R., Stevenson, D., Zandveld, P., Zlatev, Z.: Ozone trends according to ten dispersion models. EUROTRAC-2 Special Report, ISS Munich. (2003)Google Scholar
  46. Saraf, N., Beig, G.: Long-term trends in tropospheric ozone over the Indian tropical region. Geophys. Res. Lett. 31, L05101 (2004). DOI  10.1029/2003GL018516 CrossRefGoogle Scholar
  47. Satsangi, G.S., Lakhani, A., Kulshrestha, P.R., Taneja, A.: Seasonal and diurnal variation of surface ozone and a preliminary analysis of exceedance of its critical levels at a semi-arid site in India. J. Atmos. Chem. 47, 271–286 (2004)CrossRefGoogle Scholar
  48. Simmonds, P.G., Derwent, R.G., Manning, A.L., Spain, G.: Significant growth in surface ozone at Mace Head, Ireland, 1987–2003. Atmos. Environ. 38, 4769–4778 (2004)CrossRefGoogle Scholar
  49. Simpson, D., Andersson-Sköld, Y., Jenkin, M.E.: Updating the chemical scheme for the EMEP MSC-W oxidant model: current status. EMEP MSC-W Note 2/93. (1993)Google Scholar
  50. Singh, A., Sarin, S.M., Shanmugam, P., Sharma, N., Attri, A.K., Jain, V.K.: Ozone distribution in the urban environment of Delhi during winter months. Atmos. Environ. 31, 3421–3427 (1997)CrossRefGoogle Scholar
  51. Solberg, S., Bergström, R., Langner, J., Laurila, T., Lindskog, A.: Changes in Nordic surface ozone episodes due to European emission reductions in the 1990s. Atmos. Environ. 39, 179–192 (2005)CrossRefGoogle Scholar
  52. Stevenson, D.S., et al.: Multimodel ensemble simulations of present-day and near-future tropospheric ozone. J. Geophys. Res. 111, D08301 (2006). DOI  10.1029/2005JD006338 CrossRefGoogle Scholar
  53. Streets, D.G., Bond, T.C., , G.R., Fernandes, S.D., Fu, Q., He, D., Klimont, Z., Nelson, S.M., Tsai, N.Y., Wang, M.Q., Woo, J.-H., Yarber, K.F.: An inventory of gaseous and primary aerosol emissions in Asia in the year 2000. J. Geophys. Res. 108, (D21), 8809 (2003). DOI  10.1029/2002JD003093 CrossRefGoogle Scholar
  54. Tarrasón, L., Benedictow, A., Fagerli, H., Jonson, J.E., Klein, H., van Loon, M., Simpson, D., Tsyro, S., Vestreng, V., Wind, P., Forster, C., Stohl, A., Amann, M., Cofala, J., Langner, J., Andersson, A., Bergström, R.: Transboundary acidification, eutrophication and ground level ozone in Europe in 2003. EMEP Status Report 1/2005, Norwegian Meteorological Institute. (2005)Google Scholar
  55. Tilmes, S., Brandt, J., Flatøy, F., Bergström, R., Flemming, J., Langner, J., Christensen, J.H., Frohn, L.M., Hov, Ø., Jacobsen, I., Reimer, E., Stern, R., Zimmermann, J.: Comparison of five Eulerian air pollution forecasting systems for the summer of 1999 using the German Ozone monitoring data. J. Atmos. Chem. 42, 91–121 (2002)CrossRefGoogle Scholar
  56. Uppala, S.M., Kållberg, P.W., Simmons, A.J., co-authors.: The ERA-40 re-analysis. Quart. J. Roy. Meteorol. Soc. 131, 2961–3012 (2005)CrossRefGoogle Scholar
  57. Varshney, C.K., Aggarwal, M.: Ozone pollution in the urban atmosphere of Delhi. Atmos. Environ. 26B, 291–294 (1992)Google Scholar
  58. Wahid, A.: Air pollution impacts on vegetation in Pakistan. In: Emberson, L.D., Ashmore, M.R., Murray, F. (eds.) Air pollution impacts on crops and forests: a global assessment, pp. 189–213. Imperial College Press, London (2003)Google Scholar
  59. Wang, X., Mauzerall, D.L.: Characterizing distributions of surface ozone and its impact on grain production in China, Japan and South Korea: 1990 and 2020. Atmos. Environ. 38, 4383–4402 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Swedish Meteorological and Hydrological InstituteNorrköpingSweden

Personalised recommendations